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Abstract

We combined the campaign contribution records
and congressional bill co-sponsorship data to
construct a tri-partite graph, in order to model
the money politics in the US Congress. We
found that the US Congressional Politics is in-
deed a small world with collaboration resem-
bling academic collaborations. More impor-
tantly, we modeled the bill co-sponsorship pre-
diction as a link prediction problem, using at-
tributes learned from campaign contribution
networks. Result shows that using campaign
networks is a good way to predict future in-
office collaboration between legislators, espe-
cially with a supervised, decision-tree model.

1 Introduction

Political collaboration is an important part of
legislative life, and congress bill cosponsorships
provide a rich source of information about the
social network between legislators [1], and serv-
ing as a proxy to understand legislators’ ”con-
nectedness” and collaboration graph. Moreover,
according to Mark Twain, "we have the best
government that money can buy” - money and
politics have already been intertwined. In this
project, we applied social network analysis tools

on political donation networks and congress bill
cosponsorship networks, and framed our re-
search problem as a link prediction task on
congress bill cosponsorship networks using po-
litical campaign donation records for the US
(Congress and Presidential Campaigns) with its
network characteristics. We modeled and pre-
sented graph characteristics of the two politi-
cal networks, and showed investigation results of
link prediction using various supervised learning
techniques for this project. We then compared
models’ performance to a naive baseline to come
up with evaluations.

2 Related Work

While there is a substantial amount of literature
in studying the congress networks and the link
prediction problem, no prior work exists on com-
bining congress bill sponsorship network with
campaign money networks and apply link pre-
diction algorithms to the combined graph. Be-
low, we review some of the state-of-the-art pa-
pers on this topic.

Fowler in his Connecting the Congress: A
Study of Cosponsorship Networks [1] mapped
the cosponsorship networks of all 280,000 pieces
of legislation proposed in the U.S. House and
Senate from 1973 to 2004, and reported out



several interesting statistics about the result-
ing networks. He further proposed a measure
of ”connectedness” by looking at the frequency
of cosponsorship and the number of cosponsors
on each bill to estimate the social ”distance”
between legislators, and used ”connectedness”
as a proxy for legislative influence. While the
paper has done an excellent exploration around
America’s political networks from an unique an-
gle, it leaves more to be desired. He treated all
the links as unweighted in the paper; but as he
himself pointed out, some cosponsors are proba-
bly more important than others. Another down-
side of this paper is that it ignores the temporal
aspects of the co-sponsorship network. It only
looks at each Congress in this isolation without
change over time. Yet, given the dynamic nature
of bill writing and co-sponsoring, a study of how
co-sponsorship network forms and evolves (link
prediction) can reveal insight on how one can
work on being more connected and more influ-
ential in legislative outcomes.

Dominguez [3] examined the makeup of
the Democratic and Republican party coalitions
by analyzing the contribution patterns of elite
donors (defined as all individual donors who
gave over $200 to one of the two major polit-
ical party committees in the 2003-2004 election
cycle) and their network patterns. He showed
that both parties are similar in their degree of
centralization, with the party committees being
the most central actors in the network.

Both political donor networks (in the form
of Super PACs) and Congress bill cosponsor-
ships have been studied by students in CS224W
before. In Co-Authorship Networks in
Congress [Y], the authors looked at the impact
of co-sponsorship on legislation success. They
used the network characteristics to predict fu-
ture co-sponsorship, via Supervised Random
Walks and Triads. While this past project
provided a lot good ideas, it lacked a discus-
sion on using other machine learning models,
which can potentially yield good results, espe-
cially when the network is dense and Supervised

Random Walks are known to perform well on
sparse graphs.

In Super-PAC Donor Networks [7], the
author studied individual donors and their con-
tributions to specifically Super PACs, a new
form of political action committees that can
raise unlimited sum of money for campaigns.
The authored looked at community structures
and other network characteristics for insights
on partisan polarization. The author did not
show how networks evolve over time, as dona-
tions might swing back and forth depending on
which party is in power, and the change in donor
demographics.

For Link Prediction, Liben-Nowell et al.
[6] discusses similarity based methods for link
prediction, and focuses on using network in-
trinsic traits to predict its future edge evolu-
tion. It explores a wide array of similarity mea-
sures (such as Common Neighbors, Jaccard’s In-
dex, Adamic/Adar, and Katz clustering, etc.)
and compares their prediction accuracy among
themselves and against a random predictor as
baseline. However, the definition of node sim-
ilarity is a nontrivial challenge, and it’s likely
that different networks would require different
definition of node ”proximity”. Moreover, a lot
of the similarity measures assume that the link
itself indicated similarity between two nodes,
which may or may not be true.

Al Hasan et al. [l] models the link pre-
diction problem as a supervised learning task,
identifies a set of proximity, aggregated, and
topological feartures, and applies common su-
pervised algorithms like decision tree, SVM, k-
NN, etc. It evaluates these different models us-
ing metrics such as accuracy, recall, F-values,etc.
However, the paper skips entirely on hyper-
parameter fine-tuning for the model of choice
(SVM), likely because of the high accuracy it
was able to achieve with its well selected fea-
tures. Moreover, the paper landed luckily on
a balanced data set with roughly equal num-
bers of positive and negative labels; yet for most
tight-knit communities that resemble a ”small



world”, labels are likely skewed, and we need to
pay close attention to data selection for training,
and probably considering techniques like down-
sampling.

Backstrom et al [2] proposed a new hy-
brid solution in tackling link prediction prob-
lem. It uses Random Walks with Restarts (ba-
sically Personalized PageRank with one node) as
a way to explore the network structure. It then
looks at the node and edge attribute data to bias
the random walk so that it will more often visit
nodes to which creates edges in the future, in
a direct and principled way and not to overfit.
Yet, the paper only considers node and edge at-
tribute data, and posits that such intrinsic struc-
ture likely reflects exogenous characteristics as
well (in the Facebook friending example, ones
location /closeness in network to other people re-
flects the likelihood of people partying together
and therefore adding on Facebook together). Its
unclear to me if this holds true in political net-
works, especially in the Congress, when politi-
cians come from vastly different places all over
the country and from different ideological alle-
giances as well.

The related work reviewed above provided
a lot great ideas, and the most obvious one
is perhaps to combine political donor network,
congress bill co-sponsorship network, and link
prediction together. Below, we present 3 cre-
ative contributions our project explored.

1. Model networks: Both sections above
deal with bipartite graphs, and our subject
of study is a tripartitite graph consisting of
donors, politicians and bills. Unlike Fowler
[1], we modeled networks as undirected,
which is more compatible with existing link
prediction literature.

2. Incorporate edge weights in super-
vised learning models: Because our net-
work of interest here carries a lot im-
portant information such as contribution
amount, We extended the abovementioned
work by incorporating edge weights.

3. Compare features learned from graph
to candidate information: We ran mod-
els based on features learned from can-
didates’ campaign donation networks ver-
sus models based on candidates’ party
and home state information, to understand
what information is more predictive. We
compared the performance of this model
with two other models, a naive baseline
model using network density and a candi-
date only model using candidate attributes
only.

3 Method

3.1 Problem Statement

Our project is made up of two parts: graph mod-
eling, and link prediction. For graph modeling,
we aim to construct a tripartite graph of politi-
cal committees, legislators (we will ignore those
failed to get elected to office), and the bills those
legislators worked together on. A sample graph
can be found in Figure 1. With the graph con-
structed, we provide a set of statistics and de-
scriptions of the graph structure (including their
one-mode projections, for both bills-legislators
and committees-legislators subgraphs). After
that, we construct a link prediction problem by
dividing graph into different years of congress,
and select the suitable years for model training
and evaluation. Lastly, we report our learnings
from the entire exercise.

Practically, we hope our research can quanti-
tatively answer the question: Does donation
in election affect collaboration in office?
Given a graph of congressional politicians and
their campaign donations, we want to predict
who will co-sponsor bills together as a form of
political collaboration. Here we focus on con-
gressional bill (including all resolutions, bills,
and amendments) co-sponsorship because co-
sponsorship is an observable signal, and tells us
intuitively how much support one bill has and
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Figure 1: Ilustration of the Congress Political
Network

therefore how much clout the politician behind
the bill has.

This problem has obvious utility: it would be
useful to keep the electorate informed of their
elected representatives’ political collaborations
and alliances in the Congress, as well as indi-
cate any changes or tendencies in politicians’
stances on various issues. Moreover, for politi-
cians, this information can be used as a guid-
ance to seek more targeted co-sponsors, sparing
them from wasting precious political capital and
writing countless (and potentially spammy and
ineffective) ”Dear Colleagues” letters.

3.2 Data Preparation

In this project, we used the campaign financial
data provided by the Federal Election Commit-
tee! from 1981 to 2016 (the 97th to the 114th
Congress, including House, Senate and Presi-
dential races). The bill co-authorship data is
obtained from the Government Publishing Of-
fice’s website for the same period. 2. We have
hosted our code repository at https://github.
com/yzhong94/cs224w-project/.

A large part of effort to date has been de-
voted to data cleaning. In particular, we have

'FEC Website data: https://www.fec.gov/data/
advanced/?tab=bulk-data
Zhttps://www.govinfo.gov/bulkdata/BILLS/115

to join the campaign financial data, which uses
FEC’s Candidaite IDs, with the Congress bill
data, which uses its own ID system, on legis-
lators. Our approach is to first join by legis-
lator’s capitalized full first name + last name
+ state (abbreviation), which leaves out more
than 100 legislators not being matched between
the two datasets. A close examination reveals
that some legislators go by nicknames in sign-
ing bills but have full legal names on the cam-
paign financial records - for instance, Tom Lewis
is actually Thomas Lewis, and James Cooper
going by Jim; this is made worse by irregular
nicknames too, such as Richard "Doc” Hast-
ings. Some legislators go by their middle names,
such as Raymond Eugene Green going by Gene
Green, David Adam Smith by Adam Smith. To
combat this, we first filtered out all the candi-
dates not matched by the method above (capi-
talized full first name + last name + state ab-
breviation), and joined them together by capi-
talized full last name + state abbreviation, be-
cause people are very unlikely to have nicknames
for their last names. After that, we created an
Excel check function to alert us if we have one
NodelD (from the bill data) maps to multiple
different Candidate IDs (note: it’s possible for
a person to have two different Candidate IDs,
which happens when this person ran for House
first, then Senate later). We then manually in-
spected the flagged rows and kicked out false
positives. In the end, we were able to find 1813
legislators/candidates from both the campaign
financial record and the bill co-sponsorship data
from 1981 to 2016.

3.3 Network Construction

We constructed a tripartite network: commit-
tees, legislators, bills. A committee can be a
PAC, SuperPAC or party committee. A legisla-
tor is an elected official in the Congress, which
can be a senator or a representative. A bill is a
draft of legislation that has been sponsored by
a legislator and co-sponsored by others. To de-



scribe the whole graph, we include all years of
data first (from 1981 to 2016), and then look at
one term’s data for an individual graph.

Between committees and legislators, an undi-
rected link is added if a committee donates to a
legislator (we do not allow for multiple edges be-
tween two nodes). This way, we ended up hav-
ing 1813 candidates with donations across the
years. We aggregated the donation amounts be-
tween candidates and committees by year and
preserved the sum as edge weights, to simplify
multi-edges. Between legislators and bills, an
undirected link is added first if candidates ap-
pear on the bill as either an author or a co-
Sponsor.

3.4 Link Prediction

After constructing the graph, we applied super-
vised learning link prediction on the bill co-
sponsorship part of the tripartitite graph, be-
tween politicians and bills.

Formally, let G(V,E) be our entire tripar-
titite graph with node set V and edge set
E, covering periods from tgq¢ to tenq. Let
to be an arbitrary time period between .,
to teng-  Our training and test graph pair
will be {Gy,G}: we will train based on
network characteristics found in the subgraph
Gcampmgn(v;egislatorsa ‘/committees), and use that to

to
predict edge formations among the candidate

nodes in Gglo_sponsor(‘/legislatorm %ills) where V' €
{Gt()7 Wegislators} (Wthh 18 ‘/legislators,h)- We can
then repeat the process, run the best model on a
new pair of graphs (for different years) as valida-
tion, and report the metrics for final evaluation.

We frame our link prediction problem as fol-
lows: predict the link between legislators, where
a link exists if two legislators cosponored a bill
together, for a specific Congress term.

We have constructed three link prediction
models:

e Naive baseline predictor: a baseline model
based on graph density

e Legislator only predictor: a baseline model
based on candidate attributes (party, state)

e Campaign only predictor: prediction model
using features generated from campaign
graph network attributes

3.4.1 Naive baseline predictor

We define our naive baseline predictor as fol-
lows: given a pair of nodes vy, v9, we will always
predict there will be an edge between these two
pairs, i.e. as a complete graph. This is com-
puted for Gp_sponsor- That is,
AccuracyNaiveBaseline = 2| |E| |
VAV = 1)
Using the 100th Congress (1987 - 1988) as the
training set and the 101th Congress (1989-1990)
as the test set. The baseline accuracy is calcu-
lated as 96,052/138,075 = 0.695 per above.

3.4.2 Legislator only predictor

We define a second baseline using legislator at-
tributes only. Features for link prediction
all come from information about the legis-
lators. There are two features: IsFromSameS-
tate, IsFromSameParty.

Formally, for every E(Vzegislatmﬂ,ia Vzegislator,j in
G co—sponsor, 1sFromSameState is 1 if Viegisiator,i
and Viegisiator,; are from the same state, and 0
other wise, likewise for IsFromSameParty. Fea-
tures are then used in machine learning models
for link prediction.

3.4.3 Campaign only predictor

Features for link prediction all come
from the campaign network prior to the
Congress going into session, which is a bi-
partite network (legislators and committees),
where a link between a committee node and a
legislator node exists if the committee donates
money to the legislator. We want to see if im-
mediate donation has an effect on collaboration,



hence we use campaign data two years before
to predict the cosponsorship network during a
congressional term.

For example, if we are predicting cosponsor-
ship in the 100th congress (1987 - 1988), we
would use campaign data from 1985 to 1986, in
order to construct the features.

We tried two types of feature construction:

e Supervised feature learning using network
structure

e Unsupervised feature learning using node
embedding from node2vec random walks

For generated features, we constructed fea-
tures from the campaign subgraph solely. Fea-
tures include:

e Common Neighbors, Union of Neighbors,
Jaccard Index

e Degree Difference in a pair of legislator
nodes

e Contribution Amount (sum and absolute
difference)

e Clustering Co-efficient (sum, absolute dif-
ference, mean)

e Degree Centrality difference

e Shortest Distance between two legislator
nodes

e Spectral Clusters from Clauset-Newman-
Moore greedy modularity maximization

Before feeding all the features engineered
above into our machine learning models, we con-
ducted feature selection as well, using Scikit-
Learn’s implementation of F-statistic in an
ANOVA test.

For features construction using node embed-
dings, we used shallow encoding, FNC(v) =
Zv, and node2vec algorithm for random walks.
We used the example implementation from[7]
with the following parameter:

e p =1, ¢ =2 for BFS-like walks

e walk length = 80, number of walks = 10

Using node embeddings learned from random
walks, we computed features using the follow-
ing aggregation function:

e Hadamard: f(z;, Zj) = g(z * Zj)

o Sum: f(z;,2;) = g(z + 2)

zl2zj)

o Average: f(z;,z2;) = g(

e Distance: f(zz-, Zj) = g(||Zz - Zj||2)

Before feeding all the features learned above
into our machine learning models, we con-
ducted feature selection as well, again using
Scikit-Learn’s implementation of F-statistic in
an ANOVA test to select the top 20 percentile.

For models to predict link, we have tried two
algorithms: logistic regression and decision tree.
For logistic regression, we used scikit-learn’s [¢]
default implementation with -1,1 notation for la-
bels and L2 regularization. The optimization
problem formulation is as

1 n
minw’céwTw s 7 Z log(e(_yi(XiT’lU‘l'C))—l-l)

i=1

A decision tree is a tree where each node rep-
resents a feature, each branch represents a deci-
sion/rule and each leaf represents a classification
in our case. We used Scikit Learn’s default im-
plementation which uses Gini Index as the met-
ric [8]. Specifically, we define C' = {—1,1} as
our target class, E as the set of records where
(E1, Es, ...E}) will be the splits induced on E.
We aim to decrease the impurity measure, which
is measured by the Gini Index (Perfectly classi-
fied, Gini Index would be zero).

Let p; be the fraction of records in E of class
Cj,

_ [t€ E:tC]=¢
o B

Then, as we have 2 classes in our case,

2
Gini(E)=1-) p}
j=1



3.4.4 Evaluation Method

We used accuracy as our main success measure:

NumberO fCorrect Predictions

A =
Couracy Total NumberO f Predictions M ade

4 Results and Findings

4.1 Network Description

The basic stats of the tripartitie graph are in-
cluded below:

e Legislator count: 1,919 (1813 of which are
found in campaign financial network)

e Bill count: 221,726
e Committee count: 14,326

e Edges between legislators and bills:

3,086,039

e Edges between committees and candidates:
911,965

e Overall tripartite graph node count:

237,971, and edge count: 3,998,004

In order to understand -clustering coeffi-
cients of each parts of the graph, we have
divided it into ”bill” and ”campaign” sub-
graphs by applying graph folding to the re-
spective bipartite graphs (legislators-bills and
legislators-committees, both folding to the leg-
islator nodes). As a result, the bill subgraph
Clustering coefficient: 0.821170 while the cam-
paign subgraph has a clustering coefficient of
0.988841 - both are very high numbers, indicat-
ing that both subgraphs represent a very small
and tightly connected world. We are dealing
with very dense graphs.

The bill subgraph’s highest degree is 11,316
for any legislators (connecting to bills), while
for bills it is 433 (so a top bill can garner 433
co-sponsors...for reference, the entire US House

Figure 2: Overall Tripartite Graph Degree Dis-
tribution on log-log scale

6000 000 10000 12000 0 500 1000
Degree Degree

Figure 4: Degree
Distribution of Leg-
islator Nodes in the
Campaign Subgraph
on a linear scale

Figure 3: Degree Dis-
tribution of Legisla-
tor Nodes in the Bill
Subgraph on a linear
scale

has 435 seats). Similarly, the campaign sub-
graph’s highest is 2,093 for legislators connecting
to political committees, while the highest for any
committees to connect with candidates is 1,669
- this could be the Democratic and/or Republi-
can Party Committee that provides support to
all their party’s candidates.

In addition, we have plotted the degree distri-
butions of the overall tripartite graph in 2.

It’s perhaps more informative to look at can-
didates’ degree distribution in the context of
each subgraphs as well; so we have plotted de-
gree distributions for both subgraphs, for legis-
lator nodes in 3 and 4.

Moreover, we have applied role detection to
both subgraphs, with the ”average legislator” as
the comparison baseline and looking at the same
three features as HW2: the degree of node c,
the number of edges in the egonet of v, and the
number of edges connects v’s egonet and the rest
of the graph. The ”average legislator” is defined
as a hypothetical node with average values of
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Figure 6: Roles in
Campaign Subgraph

Figure 5: Roles in
Bill Subgraph

the 3 features. After computing cosine similarity
using -
S ) = el - Tl

For the bill subgraph, the role distribution is
as shown in 5; for the campaign subgraph, it’s
shown in 6. The bill role distribution shows Leg-
islator Node IDs 346 - Jerry Morgan of KS, 533 -
Wicker Roger of MS, 1709 - Paul Simon of IL as
top 3 most similar to the ”average legislator”;
while the campaign subgraph shows Node IDs
322 - Thomas ”"Tom” McClintock of CA, 1854
- Harold Washington of 1L, 369 -Beto O’Rourke
of TX as top 3 most similar to the ”average leg-
islator”. None of them overlap. Clearly, the
campaign subgraph’s roles are not very mean-
ingful as all nodes appear to have similar cosine
similarities. We suspect that this is because we
collated all the years together so that we lost
data granularity in the process, and when one’s
been around for a while, he/she does the same
thing for raising money - that is, he/she will take
donations and build the money network.

Lastly, we wanted to understand how we can
cut the graph efficiently, with the cut being a
potential feature we can use later in link predic-
tion in lieu of legislators’ party allegiances. For
the bill graph, we have the Positive Set of size
and the Negative Set, S of size 933. For the
campaign subgraph, we have the Positive Set, S
of size 946 and the Negative Set, S of size 867,
using the Clauset-Newman-Moore greedy mod-
ularity maximization provided by NetworkX.
This closely resembles an even split of the ag-
gregate two-party divide of the Congress.

Moreover, we recognize that so far, we are
treating the 36 years’ data as one aggregate
graph - this probably aggravates the connect-
edness of the graph (as over time, one tends to
collaborate with most people, and to get dona-
tions from all committees on the same of the
aisle). Therefore, we also isolated one batch of
the tripartite graph (defined as two years’ cam-
paign contribution data plus the two following
years’ bill co-sponsorship data). It turns out
that even 2 years is enough time for the graph
to become densely connected. We have plotted a
few degree distribution plots for Campaign Year
1999-2000 with bill data from 2001 to 2002 (the
107th Congress) in Figures 7 and 8.

It holds true that the Bill Co-sponsorship
Graph resembles the academic collabora-
tion graph with a power law pattern (long
tail) - the most frequent degrees are the small-
est degrees, and it has a very high clustering co-
efficient. It’s likely due to a few reasons: politics
is a tiny field that everyone knows all the issues
pretty well, and can have an opinion on almost
anything and therefore removing the knowledge
hurdle to co-sponsor bills; Congress is a two-
party system, and legislators within one party
tends to co-sponsor bills together along party
lines; once more than two legislators sponsor a
bill, they would create a triangle thus the high
clustering coefficient; yet bills come in a dime a
dozen, and it’s unlikely that one legislator finds
it necessary or efficient to co-sponsor every sin-
gle bill he/she agrees with. Moreover, sponsor-
ing bills together can signal an alliance, mak-
ing legislators consider carefully before putting
down their names.

For the folded campaign contribution
graph, it represents a typical small world
pattern with high clustering coefficient,
when we look at legislators only, and a some-
what normal distribution - degrees are peaked
between the smallest and the largest degrees.
This makes sense as politics is a very small cir-
cle, and the national players and donors are rel-
atively constant as they are mostly career politi-
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4.2 Feature Selection

Using 100th and 101st Congress, we first

observed that features from contribution
amounts always rank dead last, while con-
tributing to slow running time of our algorithms.
Thus, we removed these features first (sum and
absolute difference). We then tabulated results
of running F-tests for the remaining features be-
low:

Feature F-Score
Clustering Coeff Difference 19265.8
Jaccard Index 14453.4
Degree Centrality Diff 10964.6
Shortest Distance 4615.9
Degree Difference 3438.7
Clustering Coeff Sum 1950.9
Common Neighbors 1391.9
Union of Neighbors 1215.6
Clustering Coeff Mean 841.1
If From Same Spectral Cluster 0.8

This indicates that knowing clusters gener-
ated from modularity maximization to mimic
partyline is actually not helpful, which is a new
learning to us. It also shows that the legisla-
tors’ connectedness and the financial contribu-
tion communities they are in are important and
indicative of their collaboration in office. The
observation holds true when we re-ran the se-
lection algorithm all the datasets available from
the 98 to the 112"¢ Congress, with the same

10._Grid search for optimal selector percentile
5rid sgarch for optimal max depth of decision tree classifi

1 % 30
max depth of decision tree classifier

SelectorFigure 10:  Grid Search

for Optimal Tree Depth

Figure 9:
Percentile for Feature
Ranking

Top 3 Features (see Apendix A).

In order to determine how many features we
should be using in logistic regression, we used
grid search to determine the optimal selector
percentile as shown in Figure 9. This shows that
we should be using all the features generated so
far. For the decision tree, we have tuned the pa-
rameter for tree-depth, in order to avoid overfit-
ting by running a grid search as shown in Figure
10. Therefore, we set the maximum tree depth
to be 10.

4.3 Model Performance

We have run models in two ways: based on lim-
ited dataset (i.e. training on the 100" Congress
and test on the 101! Congress, in what we call a
one-term set), and based on richer datasets (i.e.
training on the 98" to 112"¢ Congress combined
graph, and test on the 113" to 114" Congress
combined graph). Below are our model perfor-
mance in Tables 1 and 2, respectively . Can-
didate Only Predictor uses only the Affiliated
Party and Home State information from candi-
dates, gathered form the campaign contribution
data.

Model Train Accuracy
0.695
0.695
0.786
0.854

0.728

Test Accuracy
0.695
0.698
0.774
0.794
0.728

1.Naive Baseline

2.Candidate Party/State, Logistic Reg
3.1.Campaign only, Logistic Regression
3.2.Campaign only, Decision Tree
3.3.Campaign only, Logistic Reg w/ node2Vec

Table 1:
Dataset

Model Performance for Limited



Model Train Accuracy | Test Accuracy
1.Naive Baseline 0.697 0.691
2.Candidate Party/State, Logistic Reg 0.695 0.698
3.1.Campaign only, Logistic Regression 0.748 0.714
3.2.Campaign only, Decision Tree 0.795 0.740

Table 2: Model Performance for All Datasets
Combined

Normalized Confusion Matrix for Logistic Regression

Figure 12: Confusion
Matrix for Logistic
Regression in Limited
Dataset

Figure 11: Confusion
Matrix for Deci-
sion Tree in Limited
Dataset

To visualize models’ accuracy in terms of true
positives and true negatives, we have plotted
confusion matrices for the limited dataset in Fig-
ures 11 and 12.

4.4 Discussion

It’s interesting to note that knowing candidates’
party and home state information does not lead
to a better model when compared to the naive
baseline, and using node2vec as we tried in this
paper does not help either. Decision tree per-
formed neck and shoulders above the rest, and
a better performance in avoiding false positives
and false negatives too when compared to logis-
tic regression. This lends support to our hypoth-
esis that money has a big influence in political
collaboration: knowing the network structures
of candidates’ campaign donation graphs, we
can reliably predict whom they wil collaborate
with when elected, in the form of co-sponsoring
bills.

5 Conclusion

US Congressional Politics is indeed a small
world: legislators are connected to other legis-
lators via common donors and co-authorship on
bills. We have identified the academic collabora-
tion network-like pattern for bill co-authorship
data, and a ”"small world” pattern among leg-
islators, with consistently high clustering coeffi-
cients. Moreover, it does appear that "money
moves politics”: using features learned from
campaign donation networks, we can confidently
predict if two legislators will later collaborate
on bills together - easily beating a naive base-
line. In particular, decision tree model per-
formed very well to give us 79.4% accuracy for
limited dataset.

This sheds new light on understanding politi-
cians’ behavior in Congress. Among many po-
tential application, we now have a reliable way
to predict if an elected candidate’s campaign
trail promises will likely carry through, by look-
ing at whose money he/she has taken from,
and with what other politicians does one share
donors with.
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A Feature Ranking with
All Datasets

Feature F-Score
Jaccard Index 180126.1
Degree Centrality Diff 99775.0
Clustering Coeff Difference 65108.8
Shortest Distance 49727.1
Common Neighbors 22229.7
Clustering Coeff Sum 19472.1
Union of Neighbors 9183.6
Degree Difference 8650.4
Clustering Coeff Mean 7026.5
Congress Term 3.6
If From Same Spectral Cluster 2.6




