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Abstract— During ’flu season”, influenza, a common
infectious disease, spreads rapidly across the United
States and throughout the world. In this work, we explore
methods to curb the spread of the flu throughout air
traffic networks, a frequent culprit of flu transmission.
Using link-removal of edges in real air traffic network
datasets, we model a delay of the spread of the flu
throughout the network. In this work, we analyze some
of the existing methods for link-removal that use prop-
erties inherent to the network, including Jaccard index,
betweeness centrality, and MinAtRisk, and evaluate their
performance using discrete-stochastic simulations. We
use these methods to create simulations to measure
impact, and look toward optimal ways to inhibit the
spread of infection through networks.

[. INTRODUCTION

A. Background on Influenza

Influenza, commonly known as the flu, is a mild
to severe upper respiratory virus that infects people
across the world, hitting the United States particu-
larly hard between December and March. Because
of the virus’ swift ability to mutate and resulting
mismatch between the vaccine specimen and the
circulating virus, the flu vaccination doesn’t fully
protect against illness. Thus, in the US winter of
2017-2018, approximately 900,000 people were
hospitalized from the flu and 80,000 deaths oc-
curred from the flu and related complications [1].

In general, the flu is easily transmitted
through human-to-human interactions, with virus
molecules caught in water droplets from coughs or
sneezes or transmitted via surfaces. Furthermore,
people infected with the flu are most contagious a
day before the start exhibiting symptoms, increas-
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ing the chances of flu spreading unbeknownst to
the host.

B. The Airport Problem

The spreading patterns of the flu make public
places danger zones for flu transmission. In partic-
ular, airports are a prime breeding ground for the
virus, because of the sheer number of people from
different origins and different destinations that pass
through airports daily, and the close proximity of
people in the airplane’s closed environment.

There are a variety of ways in which flu
transmission can be curbed throughout the airport
system. On the individual scale, these methods
include: preventing or discouraging people with
visible symptoms from flying, cleaning and dis-
infecting public surfaces, and providing masks for
people on flights. Zooming out, on a higher level,
these include: cancelling flights and shutting down
airports to see more widespread impact.

Looking at the ways in which flu propagation
can be curbed, we can help set the groundwork
for protecting people across the world from other
serious epidemics, ones that spread faster or have
a higher infection rate, and where swift action can
be critical to saving lives.

Overall, we will look into existing methods such
as the Jaccard index and betweenness centrality
to selectively remove the links which are most
susceptible to transmitting diseases and evaluate
them on real flight-traffic network data subsets.
Based on these methods, we compare various ways
of modeling spread and inhibiting the spread of
infection.

II. RELATED WORK
A. Link Removal

There are several existing papers attempting to
accomplish the task of reducing flu transmission



through link removal.

In 2014, Nandi and Medal used mixed-integer-
programming formulations (instead of the non-
linear formulations used in other papers) of dif-
ferent models to inhibit the spread through a
network [2]. The first two models are aimed at
optimizing the number of connections between
nodes. These models are the MinConnect model,
which minimizes the connections between infected
and susceptible nodes, and the MinAtRisk model,
which minimizes the number of susceptible nodes.
The second two models try to optimize the trans-
mission paths in the network. The MinPaths model
tries to maximize the number of transmission paths
removed from the network, while the MinWPaths
model tries to minimize the weighted number of
transmission paths between all infected nodes and
all susceptible nodes. They implemented greedy
algorithms for each of these models which allow
them to get within 5 percent of the optimal so-
lution with a reasonable run time. They compare
their four different models in a variety of starting
simulations. Each simulation starts with a different
percentage of infected nodes and they are allowed
to remove only a certain percentage of links.
They compare their models with a model that
randomly deletes edges, a model that greedily re-
moves links with the highest contamination degree,
and a model that removes based on betweenness
centrality scores.

One flaw in this paper is that all of the networks
that they tested their algorithms on were artificially
generated. As a result, it is difficult to draw a result
that could apply to real-world situations such as
the spread patterns of real infectious diseases over
flight networks. On a purely mathematical basis,
their methods seem to work well. However, the
simulations they use (susceptible-infectious and
susceptible-infectious-recovered) are quite simplis-
tic. In their simulations, nodes will infect a neigh-
boring node with a pre-determined transmission
probability.

In addition, in 2012, Marcelino and Kaiser
built on the research behind link removal [3].
Similar to other contemporary papers studying flu
spread in airline networks, they recognized that
removal of hubs or high-traffic airports is not
the most practical solution, and instead worked

to identify key flights and remove those so as to
cause less of a disruption on the system. They
also modeled the spreading of HIN1 through the
network, taking into account the population of the
airports surrounding cities, time for the flu to be
at peak infection power, and interactions between
individuals. For the edge removal strategies, they
employed a model to remove a certain amount
of connections depending on characteristics of the
edges using betweenness centrality and the Jaccard
coefficient. With a target of removing 25 percent of
the connections and measuring impact, the results
showed a decrease in infected population of 37
percent for edge betweenness centrality and 23
percent for the Jaccard coefficient, compared to
only 18 percent for the hub removal strategy [3].

This paper has limitations, including compu-
tationally heavy measurements, a limited data
set that treats all airport connections with equal
weights and frequencies, and unrealistic assump-
tions of the flu originating in Mexico city, when in
reality its likely that the flu enters the airline net-
work from multiple starting places and spreads in
parallel from those multiple origins. We overcome
some of these limitations in our work.

B. Betweenness Centrality

Focusing in on using betweenness centrality as
a metric, in 2001, Brandes discusses new meth-
ods of optimizing for betweenness centrality [4].
Brandes outlined the method of determining cen-
tral nodes by looking at nodes that are hit in
the most shortest paths between all start points
and end points on the graph. The article also
makes comparisons to other centrality measures in-
cluding: graph centrality, closeness centrality, and
stress centrality. Brandes introduces the concept
of dependencies of one node on another when
calculating shortest paths which means that one
can determine the betweenness centrality index by
solving one single-source shortest-paths problem
for each vertex, a great improvement [4]. And
another tactic for increasing speed is to split the
graph into biconnected components and solving for
those first. Brandes also provided evidence based
on real tests for the algorithms developed in the
article.

Overall, Brandes tested these new algorithms
and measured the speed on undirected and un-



weighted random graphs as well as on one
weighted directed graph. However, it would be
more helpful to see if this holds for not only ran-
domly generated graphs and the naturally-occuring
social network, but also real human-engineered
networks like flight patterns, and on diverse sets
of data with both high and low clustering / density
/ diameter / etc. The network sample that these
tests were run on also had a low density and low
out degree on average for nodes, making harder to
extend this runtime optimization to other network
types, and making the evaluation less robust or
realistic for this case.

III. METHODS
A. Data Collection

We gathered our data from two sources. First,
the sample data set used in the Marcelino study
with 500 global airports, and second, a weighted
network of flights between US airports in 2002,
weighted by available seats between two airports
over the course of the year.

Having data from both of these sources was
helpful for comparison, both between a global and
US dataset, and between the constructed weighted
and unweighted networks from these two sources.
Working with both of these sources allowed for a
wider view of general flu persistence and growth,
in conjunction with the effects of edge removal.

B. Network Construction

The first step was constructing the network
structures from the data sets, using the Snap.py
and NetworkX frameworks. To work with the
Marcelino unweighted global dataset, we pro-
cessed the csv files downloaded from the research
site. To work with the US weighted dataset, we
created loaded the edge list, and stored alongside
it, a separate dictionary of edges to their respective
weights (weights calculated from amount of traffic
along that flight path). We calculated constant
metrics for both of the two graphs, using the edge
weights for the weighted graph, allowing us to
compare the two.

We decided to also test our link removal meth-
ods on a randomly generated graph with 50 nodes
and 150 edges. We decided to do this after we dis-
covered that the min-at-risk algorithm would not

run in reasonable time on a graph with 500 nodes
and thousands of edges (this was also mentioned
by Nandi et al. [2]). While this graph is not as
accurate of a representation of our problem as the
US airlines weighted graph or the global airline
graph, we thought it would give us a sense of how
the min-at-risk algorithm would compare to our
other link removal methods in reducing the number
of infections of the flu virus. The random graph
is directed and unweighted, and generated as an
Erdos Renyi random graph.

C. Equations

Nandi et al. model the problem of inhibiting
the transmission of a virus through a network
as a mixed-integer-program, where the goal is to
minimize the number of susceptible nodes in the
network by repeatedly removing edges [3]. They
refer to this approach as the MinAtRisk model.

The MinAtRisk mixed-integer-program is as fol-
lows:
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While Nandi et al. don’t explicitly solve this opti-
mization problem, they present a greedy algorithm
to solve it in a more reasonable amount of time.

D. MinAtRisk Algorithm

We use the Greedy Algorithm to solve this
MinAtRisk problem [2]. In this algorithm, we take
a set of infected nodes I, a budget for how many
edges we are allowed to remove b, and the number
of times we are going to randomly remove a set of
links M. In [2], I has a predetermined size and is
then randomly selected from N, and M is always
set to 100. The set of susceptible nodes S is the



Algorithm 1 Greedy Algorithm to minimize the
number of nodes at risk of infection in a network
1: procedure GREEDYMINATRISK(G)
% I < set of infected nodes in N

3 b <— number of edges to remove

4: M < sample size

5: L+ 0

6: while |L| < b do

7: for i € [1, |E|] do

8: E «+ E\E;

9: TRE,» +~0

10: for je[1,M] do

11: TL<+ b—|L|—1 Rand edges
12: E <+ E\TL

13: REi<—{E,-j|i€Iand ]ES}
14: TRE, < TRE, + Rg,

15¢ E < EUTL

16: E=FEUE;

17: if TRg; < TRp.s then

18: Ipest < 1

19: L+ LUE;
20: E <+ E\E;,,
2 return L

set of all nodes that have one or more connections
to an infected node.

Essentially, this algorithm goes through all the
edges of the network, and removes the edges that
contribute most to the number of at risk nodes. At
each iteration of the while loop, we remove the
edge that results in the greatest decrease in the
number of susceptible nodes when it is removed
from the network. (See Algorithm 1)

It is important to note here that we do not
remove any edges that would disconnect the graph.
We decided that it is important for the graph to
stay connected to make sure people can travel
between any two vertices in the graph. This applies
both to the MinAtRisk algorithm and also to all
subsequent link-removal methods - betweenness
centrality and Jaccard algorithm.

E. Betweenness Centrality Algorithm

One measure used by Marcelino et al. to deter-
mine which edges to remove from the network is
betweenness centrality. Centrality scores are meant
to measure the 'importance’ of vertices or edges

in a network. The betweenness centrality score
calculates the importance of a node or edge using
the concept of ’shortest paths.” In an unweighted
network, the shortest path between to vertices is
the path that traverses the fewest edges. For a
weighted network, the shortest path between two
vertices is the path that minimizes the total sum of
the edge weights along the path.

The betweenness centrality of a vertex v in a
network is given by the following formula:

The betweenness centrality of a vertex is a
measure of how many shortest paths that pass
through a given node. Similarly, the betweenness
centrality of an edge in a graph is the number of
shortest paths that traverse that edge. Here, we
will use edge betweenness centrality to provide
fewer disruptions to the airline networks (remov-
ing nodes would equate to shutting down entire
airports, which would be a large disruption for
travellers).

FE. Jaccard Coefficient Algorithm

Marcelino et al. also remove edges based on
their Jaccard coefficient. The Jaccard coefficient
between two neighbors is given by the following
formula:

_ LNy |

J —_— 7
()C,y) |erry|

Where I, is the set of neighbors of a node x.
This is defined for undirected graphs, but since we
are dealing with directed graphs, we needed a way
to modify this so that it applies to the networks
we are using. At the moment, we can calculate
separate Jaccard coefficients for in and out degrees.
So, instead of using just I'y, we calculate two
coefficients, the first using I'y,in (ie: neighbors of
x that have edges ending at x) and the second
using I'y,out which is similarly defined. We try
multiplying these coefficients together to create a
Jaccard coefficient for each edge, but plan to look
into other ways of distilling these two values into
a similarity measure.



G. Model

In order to see the change before and after
the link removal interventions, we constructed a
flu spread simulation model based loosely off
of Epstein et al.’s 2007 model [6]. We use the
weighted and unweighted networks of airline traf-
fic separately to predict spread of travellers, and we
use these alongside stored data about the current
number of people in a city who are flu infective,
as well as the total number of people in a city who
have been infected throughout the duration of the
simulation. We will detail the algorithm for our
model in the following sections.

In our model, we use a Susceptible-Infective-
Recovered (SIR) model because, even though the
flu can mutate, making it SIS in the long-term,
it’s almost impossible for it to change drastically
enough to cause someone to become infected twice
within the 30-day time frame of our simulation.
Therefore, similar to Epstein et al., we look at
the infective period as the 1 day when a person
is infected with the flu, but not yet exhibiting
symptoms. This is because on this 1 day, they are
the most contagious, and may unwittingly spread
the flu during travel. In contrast, when they have
visible symptoms, they are much more likely to
remain in their homes and postpone travel plans,
because the flu is more severe than say a common
cold. Therefore, we use this 1-day infective period
for our model [6].

We also use the reproduction number of 1.7
from the Epstein et al. paper, to remain con-
sistent for comparison in the field. We calculate
the expected number of additional people infected
per day, 3, using the definition of reproduction
number, Ry, where Y is the mean infective period

[8]:

Ro=B/y

Other assumptions include setting a fixed city
population for each of the cities in the model,
constant probability of a city being infected at the
start of the simulation, and a fixed probability of
travelling per day for each person in the city. We
also use a starting percentage of people infected
in an infected city, of 0.032, based on a historical
CDC report of people infected with the flu at a

given time in the same year as our flight data
network dataset [7].

Thus, we use the following starting values for
our simulation:

NUM.IN.CITY = 100000
PROB.TRAVEL.PER.DAY = 0.01
PROB.START.CITY =0.10

START .PERCENT.INF.IN.CITY =0.032
SIM.NUM .DAY S = 30

At the onset of the simulation, we initialize the
flu for a set number of individuals in multiple
start cities. We ensure that each method of link
removal on a given dataset uses the same set of
start cities using a seeded random generator, so
that we can consistently compare results. From
there, those subset of travellers in all cities travel”
during the day, meaning move to a neighbor of
their city of origin, chosen corresponding to the
edge weights of the outgoing edges. As part of the
“travel” group, travellers who are infected are now
in a new city. At the end of the day, the "infecting”
occurs, and all the people in a city who are infected
(as noted before, all individuals are infective for
one day only) pass on the flu to others in the city.
At the start of the next day, we repeat the process
of people travelling to new cities, and this iteration
occurs for all days of the simulation.

In the implementation of our model, we use
the Epstein et al. referenced equation “Infection
of Susceptibles” to model the passing of the flu
within cities. This equation guides calculation for
the number of newly infective individuals [6]. We
scale the expected number of individuals infected
in a day, using the ratio of susceptible individuals,
S;(t), over total individuals in the city, T;(¢), where
Y2 Ii(t,t) is the number of infectious individuals
in the city on the current day, and A is the rate of
infection. We can use this equation, because like
Epstein et al., we assume homogeneous mixing
with uniformly distributed contact between indi-
viduals [6]:




IV. RESULTS

To evaluate our results, we compare the statistics
and infected individuals before and after the de-
scribed simulation and intervention, as well as use
network visualizations to portray the effectiveness
of the various strategies.

In order to visually track the changes and com-
pare different methods, we created a visualization
technique where a network’s airport city nodes
are labeled by color, red if “infected” and blue
if “not infected”. We use a threshold percentage
of residents of a city with the flu in order for a
node to qualify as “infected”, default threshold:
THRESH = NUM_.IN.CITY /1000

We illustrate our experiments with the follow-
ing: 1) table of totals of infected persons following
the simulation, 2) visualization of the graph post-
and pre- intervention, color-coded based on num-
ber of infected persons in the city relative to the
threshold, and 3) summary statistics of each graph
post- and pre- intervention.

A. Experiments

Note: The following are results from the different
experiments, with the corresponding statistics
below each visualization. You can note the
changes between the initial and the interventions
by noticing the decrease in red (cities infected
above the threshold).

1) US airlines weighted graph

Fig 1. Initial graph. With statistics: Nodes: 500,
Edges: 5960, Clustering Coef: 0.6174892374,

Probability of path: 1.0, Effective diameter of

graph: 3.77195306586, Diameter: 7, Avg shortest
path length: 3.02814

Fig 2. Betweenness centrality method.
With statistics: Nodes: 500, Edges: 4470,
Clustering Coef: 0.597068158343, Probability
of path: 0.23, Effective diameter of graph:
3.48397260274, Diameter: 9, Avg shortest path
length: 2.56248224936

Fig 3. Jaccard method. With statistics:
Nodes: 500, Edges: 4470, Clustering Coef:
0.308972242916, Probability of path: 0.41,
Effective diameter of graph: 5.42301425662,
Diameter: 12, Avg shortest path length:
3.60214894771

2) Global airline unweighted graph

Fig 4. Initial graph. With statistics: Nodes: 500,
Edges: 24009, Clustering Coef: 0.64884037988,
Probability of path: 1.0, Effective diameter of



graph: 2.78642670084, Diameter: 5, Avg shortest
path length: 2.30242

Fig 5. Betweenness centrality method.
With statistics: Nodes: 500, Edges: 18007,
Clustering Coef: 0.584374926898, Probability
of path: 0.95, Effective diameter of graph:
4.20966214762, Diameter: 8, Avg shortest path
length: 3.11229008101

Fig 6. Jaccard method. With
Nodes: 500, Edges: 18007, Clustering Coef:
0.623270376986, Probability of path: 1.0,
Effective diameter of graph: 4.14071078431,
Diameter: 9, Avg shortest path length:
3.09691200564

statistics:

3) Random unweighted graph
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Fig 7. Initial graph. With statistics: Nodes: 50,

Edges: 150 Clustering Coef: 0.144207126207,
Probability of path: 0.84, Effective diameter of
graph: 4.93425605536, Diameter: 10, Avg shortest
path length: 3.43225806452

Fig 8. Betweenness centrality method.
With statistics: Nodes: 50, Edges: 113,
Clustering Coef: 0.144698412698, Probability
of path: 0.15, Effective diameter of graph:
3.9152173913, Diameter: 7, Avg shortest path
length: 2.47896440129
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Fig 9. Jaccard method. With statistics: Nodes:
50, Edges: 113, Clustering Coef: 0.126841269841,
Probability of path: 0.64, Effective diameter of
graph: 4.79214876033, Diameter: 8, Avg shortest
path length: 3.3877159309

Fig 10. MinAtRisk method. With statistics:
Nodes: 50, Edges: 112, Clustering Coef:



| Original | Jaccard | B-Centrality | Min-At-Risk

air 500 33.06 31.35 31.25 N/A

USAir Weighted | 17.95 13.15 12.17 N/A

Random Graph 2.38 1.98 2,30 1.04
TABLE I

NUMBER OF INFECTED PEOPLE AFTER SIMULATION IN
MILLIONS. (NOTE THAT EACH SIMULATION STARTED WITH
16,000 PERSONS INFECTED.)

0.123230880231, Probability of path: 0.68,
Effective diameter of graph: 5.60268456376,
Diameter: 10, Avg shortest path length:
3.69852034525

B. Overall Findings

Overall, we found that both Jaccard and Be-
tweeness Centrality reduce the number of people
infected by the flu, without drastically reducing the
average shortest path. This is important because
average shortest path is a metric for determining
the amount of detriment cancelling these flights
has on the system of travellers. (In this instance,
it would be the number of connections a traveller
has to take with the restricted number of edges.)

In addition, we experimented with different
number of starting cities, and settled on using a
percentage of the overall number, randomly se-
lected, in order to make a more robust simulation,
building off of the single initial disease outbreak
starting point in the Marcelino et al. study.

Furthermore, we learned from comparing the
different starting datasets, that the more densely
connected graph, the Global airline network, made
it much more difficult to decrease flu propogation,
which points to an overall trend of: more connec-
tions and more direct travel makes it harder to curb
outbreaks in an efficient and timely fashion. This
has implications as the world becomes increasingly
more physically connected as time goes on.

Finally, the MinAtRisk method depicts a real
scenario of prior information (here, knowing the
cities that are origins of the flu), which shows
that detecting where the outbreaks start has great
potential for being able to feed more information
into the simulation model and using a method that
makes more educated choices for efficient link
removal.

V. DISCUSSION
A. Limitations

There are specific limitations that we encoun-
tered through the process, noted here:

o Evaluating effectiveness of our models on
inhibiting the spread of viruses through the
network. We use the metrics of total number
of people infected throughout the time period,
as well as global graph statistics, but our
models make simplifying assumptions that
make it difficult to evaluate real impact.

o Working with a limited set of airline datasets
that, although they depict the interaction be-
tween major cities, don’t account for within-
community spreading in closer-proximity
cities.

« Extrapolating the SIS model to fit spread for
the networks we worked with. This included
deciding to ignore the chances for someone
to be vaccinated in our calculations of flu
spread, as well as other simplifying assump-
tions about susceptible persons in the cities
we modeled.

B. Future Directions

So far, we’ve gained a better understanding on
what is needed to inhibit the flow of infectious dis-
eases throughout a network, and begun to explore
improvements on existing methods for network
interdiction.

One interesting result that we found was that
the MinAtRisk algorithm performed far better than
our other two link removal methods on the random
graph on 50 nodes. It would be interesting to see
how the MinAtRisk algorithm performs on a real
dataset, such as the US airline weighted graph.
To do this, improvements would be needed in the
runtime complexity of the algorithm in order to
process the thousands of edges in those graphs

A direction for future work would be to improve
on our simulation of the spread of the flu virus.
One such improvement would be to model the
populations of the cities in a more nuanced fashion.
In our simulation, each city has 100,000 persons.
In a more realistic simulation, some cities would
have much larger populations than others, which
would in turn affect how likely those nodes are



to infect their neighbors (since higher population
correlates with higher number of travelers).

GITHUB REPOSITORY

Visit https://github.com/marisapi/cs224w-proj to
see the code for our project, including the disease
simulation, algorithm implementations, data mod-
eling, etc.
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