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Abstract

We investigate the structure of nouns in the
English lexicon using the Word Net data
base. We construct two classes of graphs,
one class with meanings as nodes and the
other with words as nodes. For both classes,
we construct edges based on the lexical se-
mantic relations of hypernymy, polysemy, and
meronymy. We characterize the global struc-
ture of these graphs, finding a small world
structure emerges when the polysemy and hy-
pernymy relations are considered together. We
also conduct a mesostructural analysis includ-
ing structural role discovery using the RolX al-
gorithm, community detection using the Lou-
vain algorithm, and node embedding construc-
tion using Poincare and node2vec algorithms.
We conduct an analysis to determine whether
there is interactions between the polysemy and
hypernymy relation, and discover some evi-
dence that there is. We additionally test the
viability of our node vectors for the task of
natural language inference, and find weak evi-
dence that using such vectors can increase the
generalization capabilities of neural models.!

1 Introduction

Polysemy is the crosslinguistic phenomenon of in-
dividual words being mapped to multiple distinct
meanings. Polysemy often connects meanings that
do not have an interesting semantic relation, for
example institutions where we store our money
and the land next to a river are concepts with
no profound semantic connection, but the word
bank has both meanings. As such, it is not ob-
vious whether polysemy occurs arbitrarily or has
some deep causes governing it. To investigate this
question, we analyze the role of polysemy in the
structure of the English lexicon and whether it
is influenced by the relations of hypernymy and
meronymy.
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The English Lexicon consists of all En-
glish word meanings and the relations between
them. The part of speech we consider here
is nouns and the relations we consider are hy-
ponymy/hypernymy, meronymy/holonymy, and
polysemy. A hypernym is a word meaning that
is broader than its hyponym. For example, animal
is a hypernym of dog. A meronym is a meaning
that is a part of its holonym’s meaning. For exam-
ple, finger is a meronym of hand. We consider two
meanings to be in the polysemy relation if there is
a polysemous word that has both meanings. We
also define these relations over words. We define
two words to be in the hyponymy relation if any of
their meanings are in the hyponymy relation, and
likewise for meronymy. We define two words to
be in the polysemy relation if they share a mean-
ing in common.

We aim to study polysemy using the following
methods. First, we will construct different graph
types to capture different relations between words.
We will then carry out analyses of these relations
using role discovery and community detection.
We will use this to assess the relationship between
hyponymy, meronymy and polysemy. Then, we
will study if we can predict whether a word is
a polysemy using node embeddings trained using
the hyponymy graph. These methods will help us
establish either the presence or the lack of a corre-
lation between hyponymy and polysemy.

We additionally test the viability of node vec-
tors trained on the hypernymy task for the task of
natural language inference. We hope to assess if
capturing the structural relations within language
itself can impact progress in NLP and provide ev-
idence for it.

2 Related Work

Sigman and Cecchi (2002) have investigated the
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Figure 1: The tree induced on noun meanings by the hypernymy relation
global structure of the Wordnet lexicon. They Graph | Nodes | Edges P C
found that the three semantic relations of hyper- Gy 82115 | 84427 | 13.06 | 0.00048
nymy, meronymy, and polysemy are scale invari- Gy 82115 | 22187 | 14.24 | 0.0015
ant, which is typical of naturally occurring self or- Gﬁ 82115 | 60662 | 9.30 0.21
ganizing graphs. They began with the hypernymy GAHf 82115 | 145064 | 7.66 0.11
relation, which creates a tree structure over the set GIMP | 82115 | 166483 | 7.26 0.11
of nouns and a large average minimal path. They Glﬁfv 117798 | 300890 | 8.52 0.014
found that the inclusion of the polysemy relation G% 117798 | 101021 | 10.86 | 0.017
transformed the graph into a small world network G{/DV 117798 | 108771 | 9.77 037
(Watts and H. Strogatz, 1998). Moreover, they G}V{/P 117798 | 408512 | 6.34 0.74
found that that the length of minimal paths be- GgVMP 117798 | 506651 | 2.42 0.74

tween nodes in the hypernymy tree structure show
low correlation with the length of minimal paths
between the same nodes once polysemy is added.
They also identified the three largest simplexes, re-
sulting from the highly polysemous words head,
line, and point, in as the traffic hubs of the net-
work.

We see an opportunity to add breadth and depth
to the work of Sigman and Cecchi (2002). Word-
net is a growing database and we reproduce results
on scale invariance, minimal paths, and clustering.
We discover subgraph communities and identify
various structural roles nodes play. Finally, we
consider a new class of graphs where words are
nodes and provide the same global and mesostruc-
tural analysis on these graphs.

3 Dataset

For our analysis, we use the database Wordnet, an
impressive representation of the English lexicon
(Fellbaum, 1998). In Wordnet, a meaning is rep-
resented as the set of words that have that mean-
ing. Such sets are called synsets. For example, the
meaning of a long seat with arms with room for
two or more people is represented as the synset
{couch, sofa,lounge}. The word couch is also
contained in the synset for the meaning of phras-
ing of expressing something in a specific man-
ner, e.g. “His comments were couched in strong
terms”. Then we would consider these two mean-
ings to be in a polysemy relation, as the word

Table 1: Statistics characterizing the global structure of
our graphs where P is average minimal path and C' is
the average clustering coefficient.

couch can evoke both of them. This example
shows how Wordnet encodes the polysemy rela-
tion.

Wordnet also contains hypernymy and
meronymy relations between meanings. The
hypernymy relation defines a tree-like structure
over the set of all noun meanings. The meaning
of the word entity according to wordnet is ’that
which is perceived or known or inferred to have
its own distinct existence (living or nonliving)’
and it is this meaning that is the root of the tree.
In figure 1, we show the first few levels of this
tree. The meronymy relation is divided into
three subcategories, but we ignore these for our
analysis.

At this point in time, Wordnet contains 82115
meanings and 117798 words, but these numbers
are arbitrary and ever growing.

4 Graph Construction

We find two natural sets of nodes in Wordnet
the set of all meanings and the set of all words.
For each of these sets of nodes, we have three
sets of edges corresponding to the hypernymy,
meronymy, and polysemy relations. In this paper,
we denote graphs by the symbol GG with subscripts



and superscripts. If the subscript W is present, the
nodes of the graph are words and if the subscript
M is present the nodes of the graph are meanings.
Similarly, if the superscripts H, M, and/or P are
present, the edges of the graphs are from the re-
lations hyponymy, meronymy, and polysemy, re-
spectively. For example, G%P is a graph where
words are nodes and edges are defined by the hy-
pernymy and polysemy relations. All graphs we
consider are undirected. We will treat these graphs
as simple graphs, except in structural role discov-
ery where we will treat G%MP and GAH/[M P as
multigraphs and for training poincare embeddings,
we will treat G4 as directed.

5 Global Organization

In this section, we characterize our graphs using
global properties. We begin with basic terminol-
ogy. The degree of a node is the number of edges
the node has and we will sometimes use hyper-
nymy/meronymy/polysemy degree to refer to the
number of edges a node has from a particular rela-
tion. The density of a graph is the fraction of edges
that exist out of all possible edges and is computed
as %.The average path length is the aver-
age of all minimal paths in a graph, computed as
W&Jevdistmm(i,j) - 0; ; where 0 is the
Kronecker delta. The clustering coefficient of a
node is the fraction of edges between the neigh-
bors of a node out of all possible edges, and is
computed as w%% for a node ¢ with degree k;
and e; edges between the neighbors of 7.

In table 1 we find the nodes, edges, density,
average minimal path length, and average clus-
tering coefficient of 10 graphs. We observe the
graph GAH4M P has a small average minimal path,
high clustering coefficient, and low density which
means it is a small world network, reaffirming the
conclusion of Sigman and Cecchi (2002) on this
current interation of Wordnet (Watts and H. Stro-
gatz, 1998). We also observe that G%MP is a
small world network, with an even larger cluster-
ing coefficient and lower average minimal path.
We deduce that word nodes are more clustered and
have a lower diameter because words adopt all the
relations of their multiple meanings, resulting in
the number of total edges being significantly larger
in the graphs with word nodes.

In Figure 2 we show the hyponymy, meronymy,
and polysemy relations between words and be-
tween meanings are scale invariant. This is typical

of self-organizing naturally occuring networks.
We investigate the relationship between hyper-
nymy and polysemy in Figure 3, which plots pairs
of meanings in the polysemy relation against the
minimal path between the meanings in the hyper-
nymy tree in Figure 1. We can see that the distri-
bution of Wordnet data is to the left of the distri-
bution of the graph with randomly generated pol-
ysemy relations. This indicates that if two mean-
ings are closer in the hypernymy tree, then they are
more likely to be in the polysemy relation. This is
the first piece of evidence we discovered support-
ing the idea that hypernymy influences polysemy.

6 Methods

6.1 Community Detection

A community in a graph is a set of highly
connected nodes and the community detection
algorithm we use is the Louvain Algorithm which
attempts to maximize the modularity of com-
munities. This algorithm considers communities
in a graph to be nodes with a high modularity,
which is a quantification of how many more edges
occur in a set of nodes than one would expect.
The modularity of a graph G with partition P is
quantified as follows:

kik;
Q(G, P) = 5--Tpe pSicpTiep(Aif — 250

Where A;; is the weight of the edge between ¢
and j, k; and k; are the degrees of 7 and j, and 2m
is the sum of all the edge weights in the graph.

We now describe the Louvain Algorithm, which
greedily maximizes modularity with local changes
in community membership (Blondel et al., 2008).
To begin, nodes are all put in their own separate
communities. Then, we repeat the following two
phases until there is no further increase in modu-
larity. The first phase loops through every node in
random order and computes the changes in mod-
ularity that would result from putting that node in
any other community. The node is then put into
the community that results in the largest positive
change in modularity. This process is repeated un-
til there is no movement that would yield a gain in
modularity. The second phase contracts the parti-
tions from the first phase into super nodes, where
two super nodes are connected if their correspond-
ing partitions contain nodes that are connected.
The weight of an edge between two super nodes
is the sum of the weights from all edges between
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Figure 2: The scale invariant distribution of relations between meanings and between words. The log-log plot
shows linear dependence between number of nodes and degrees, demonstrating power law behavior. The relations
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Figure 3: The distribution minimal paths in the hyper-
nymy tree of Figure 1 between pairs of meanings in the
polysemy relation. The data from Wordnet is compared
against a randomly generated polysemy graph with the
same number of edges.

their corresponding partitions. The output of the
second phase is this super node network.

The Louvain algorithm provides a hierarchy of
partitions. The hypernymy relation naturally sorts
meanings into a tree hierarchy, as described in sec-
tion 3 and seen in Figure 1. We run the Louvain
algorithm on the graph Gf/f to attain a different hi-
erarchy of meanings from the polysemy relation.
A priori, we do not know whether these hierar-
chies will be at all similar so in our analysis, we
compare the two.

6.2 Structural Role Discovery

We use a the RolX algorithm adapted to multi-
graphs to compute feature vectors and perform
role discovery (Henderson et al., 2012). We run
this algorithm on Gf,[M P which we treat as multi-

graphs. At a high level, the RolX algorithm recur-
sively creates node feature vectors that encode in-
formation about the structure of the graph around
the node.

We now present the RolX algorithm. We be-
gin with 9 dimensional basic feature vectors for
every node consisting of the nodes hypernymy
degree, meronymy degree, and polysemy degree,
the number of hypernymy edges, the number of
meronymy edges, and the number of polysemy
edges in the nodes egonet, and the number of hy-
pernymy edges, the number of meronymy edges,
and the number of polysemy edges connecting
from the node’s egonet to the rest of the graph.

Then these feature vectors are recursively ex-
panded. Each recursive step takes the current fea-
ture vector of a node and appends the summation
and the mean of the feature vectors of the node’s
hypernymy, meronymy, and polysemy neighbors.
This process grows the dimensional of feature vec-
tors exponentially, so at each recursive step we re-
move features with a correlation score greater than
0.9. Once this process creates rich feature vectors
for nodes, we use non-negative matrix factoriza-
tion to group nodes into structural role groups. We
limit the number of recursions based on our com-
putational resources. To determine the number of
roles, we increased the number of roles until there
were two roles that did not have obvious differ-
ences from one another. We arrived at 8 roles.

6.3 Node Embedding Analysis

A node embedding is a distributed representation
of a nodes structural role in a graph. We carry
out two series of experiments using Wordnet for



generating node embeddings. The first experiment
aims to study if there is a structural relation be-
tween graphs constructed using hypernymy rela-
tions and those constructed using polysemy rela-
tions. The second experiment aims to study if
adding information from hypernymy relations has
the potential to improve the performance of exist-
ing embeddings on certain tasks such as natural
language inference.

6.3.1 Experiment 1: Poincare Embeddings

In this experiment, we trained embeddings from
the GJ\H/I graph using the poincare technique.
Poincare embeddings are well suited for making
use of structural and heirarchical linkages in
graphs.

Poincare embeddings compute embeddings
in hyperbolic space as opposed to in Euclidean
space. Hyperbolic space has a constant negative
curvature and this can informally be equated to
a tree structure and as a result is well suited for
hierarchical structures.(Nickel and Kiela, 2017)

On a high level, poincare embeddings capture
hierarchical structures because they account for
two notions of similarity. Firstly, they aim to
place nodes that are similar to one another close
to each and nodes that are dissimilar far from each
other. Secondly, they also account for hierarchy
by trying to place nodes lower in the hierarchy
further away from the origin and nodes that are
high close to the origin.(Nickel and Kiela, 2017)
Thus, in our case when we train embeddings for
hypernymy relations, parent nodes or root nodes
such as ’entity’ should be close to the origin
and their children, nodes such as ’causal agent’,
should be nearer the edges.

The hyperbolic distance between two points is
given by -

u—vl|2
d(u, v) = arcosh(l + 2((1_”7!” )(IH—HvH )))

We use these embeddings trained on the G]\HJ
graph to then carry out link prediction and graph
reconstruction on the Gﬁ graph. We chose
poincare embeddings for this task as we are try-
ing to assess if the hierarchical nature of hyper-
nymy in particular has an impact on polysemy re-
lations. The performance of embeddings trained
solely on G]\H/I graph on link prediction and graph

reconstruction on Gﬁ graph has the potential to
give us clues as to whether there can be a struc-
tural relation between polysemy meanings and hy-
pernymy relations. Again, a priori we have no in-
dication of what results to expect since linguists
and psychologists have not yet made conclusive
claims as to how polysemy and hypernymy may
be related.

6.3.2 Experiment 2: Node2Vec Embeddings

We use the algorithm node2vec to create node
vectors using the graph G%. At a high level,
node2vec optimizes the vector representation of
a node n to have a high dot product with the
vectors of nodes that are passed through during
random walks starting at the node n. The al-
gorithm DeepWalk uses completely randomized
walks, and node2vec uses walks generated with
two parameters p and ¢. During a random walk,
the unnormalized probability of transitioning to a
node is % if that node is closer to the origin, 1 if

that node is equidistant from the origin, and % if
that node is further from the origin. When a ran-
dom walk is run, we collect the multiset of nodes
reached. It then optimizes the embeddings using
stochastic gradient descent. The algorithm for loss
function is as follows:

L.= ZuevaeNR(u)(—log(P(V | ZU))

When a graph has words for nodes, node vec-
tors can be used as word vectors in NLP tasks.
There exists a large literature on the creation of
word vectors, with the prominent word vectors be-
ing GloVe and word2vec (Pennington et al., 2014;
Mikolov et al., 2013). Tasks such as natural lan-
guage inference (NLI) rely greatly on the ability
to recognize lexical relations such as hypernymy,
so there is potential for these word net node vec-
tors to be useful in natural language understanding
tasks.

We use the embeddings we trained on the G,
graph and append them to existing GloVe vectors
to study if they impact the performance of models
on NLI tasks.

We chose to use node2vec embeddings for this
task, because as a first step, we wanted to study
if the hypernymy linkages alone- without the ad-
ditional information about the hierarchy in which
they’re organized- would be sufficient for an in-
crease in the performance on tasks such as NLI.
As a next step, other embedding technniques such
as poincare embeddings can also be tested for per-



formance.

7 Results

7.1 Structural Role Discovery

Using the RolX algorithm, we identified 8 struc-
tural roles for meanings treating the graph G’X{IP M
as a multigraph. We manually inspected 20 ran-
domly chosen nodes from each role to character-
ize it. Role 1 contains 140 meanings that are in
or closely connected to large cliques in the graph
Gﬂ, includings the various meanings of head,
line, and point that Sigman and Cecchi (2002)
identified as the traffic hubs of the network. For
example, other meanings in Role 1 are the various
meanings of mind and brain which have polyse-
mous links to the meanings of head. Role 2 con-
sists of 12 nodes that are part of highly connected
supgraphs in G%. Role 3 contains 103 meanings
with very high degrees in the graph G,. Role 4
contains 1370 meanings with high betweeness in
the graph GJ\H4. Role 5 contains 9726 meanings
disconnected from the main hypernymy tree. Role
6 contains the 12039 meanings in the strongly con-
nected component of the graph Gﬂ. Role 7 con-
tains 8331 nodes with high meronymy and hyper-
nymy degrees. Role 8 contains all other 50394
nodes.

Unfortunately, our multigraph RolX algorithm
did not capture any interactions between the re-
lations hypernymy, meronymy, and polysemy ex-
cept for role 7, which characterized nodes based
on both hypernymy and meronymy. This could
be because there are not other meaningful ways
to characterize a node across multiple relations, or
perhaps there are a different extension of RolX to
multigraphs is necessary to discover them.

7.2 Community Detection

We used the Louvain algorithm on the graph G
to create a hierarchy of meanings that we can com-
pare to the hierarchy of meanings created by the
hypernymy relation. We chose to do this analysis
on the graphs with meanings as nodes, because in
the graphs with words as nodes, the hypernymy re-
lation creates a much messier hierarchy of mean-
ings because every word has hypernyms and hy-
ponyms for each meaning it can have.

We chose the following way to compare the
hypernymy hierarchy and the polysemy hierarchy
created by the Louvain algorithm. We consider the
lowest common hypernym of a given community,

Iteration Gﬁ Configuration Graph
1 1.61 0.60
2 1.75 0.10
3 2.21 0.20
4 2.36 0.40
5 2.38 0.94
6 - 1.09

Table 2: The average minimum distance of the low-
est common hypernym across all communities in a
given iteration of the Louvain algorithm. Results are
provided for the graph G, and a configuration graph
made based on G

which is the meaning in the hypernymy tree that is
furthest from the root node and is a hypernym of
every meaning in the community. Once we have
the lowest common hypernym of a community, we
compute its minimum distance from the root node
of the hypernymy tree for meanings. The larger
this minimum distance is, the closer the nodes of
the community are in the hypernymy tree.

In Table 2, for a given iteration of the Lou-
vain algorithm we provide the average minimum
distance of the lowest common hypernym across
all communities. We additionally provide a con-
figuration graph as a control. The communities
formed in the first iteration are the cliques that
single polysemous words create, e.g. the word
head has 31 meanings and all of those meanings
are connected to one another forming a polysemy
clique of size 31. The further iterations of the algo-
rithm finds communities by grouping this cliques
together.

We can see across all iterations the polysemy
graph has a higher average minimum distance than
the configuration graph, and so we can conclude
that the community structure of polysemy is linked
to the structure of the hypernymy graph. What
is more notable is the fact that the average min-
imum distance increases across iterations in the
polysemy graph and the largest increase in average
minimum distance is between the second and third
iterations. This tells us that cliques resulting from
polysemous words are less in accordance with the
hypernymy tree than the larger community struc-
ture connecting those cliques. This evidences that
the information of hypernymy graph structure will
be worse for predicting individual polysemy rela-
tions than larger structural groupings.



Model Train | Test | Adversarial Test
LSTM encoder w/ Glove 784 | 71.2 19.1
LSTM attention w/ Glove 79.2 | 733 22.3
LSTM encoder w/ Glove + Node Vectors | 77.9 | 71.1 25.1
LSTM attention w/ Glove + Node Vectors | 79.2 | 73.6 26.3

Table 3: The accuracy of an LSTM encoder model and LSTM attention model on the SNLI dataset using only
GloVe word vectors and using both GloVe word vectors and node vectors from the graph G, We additionally
test on an adversarial test set that requires learning simple lexical relations between words.

7.3 Node Embeddings
7.3.1 Poincare Embeddings

We created node embeddings using the poincare
embeddings technique on the GAH4 graph, the Gﬂ
graph and a graph with edges between random
nodes. Unlike the G} graph, the G{; graph and
the random graph do not have a hierarchical struc-
ture. However, we still computed these embed-
dings in order to compare our results for link pre-
diction and graph reconstruction on G¥,.

We tested to see how link prediction on the GAZ
graph would work when trained using embeddings
trained from the G]I\{/[ graph. Our train set com-
prised of 14440 polysemy edges and our test set
of 182 polysemy edges.

We got a mean average precision (MAP) of
0.7113 on Gﬁ when we carried out link predic-
tion using embeddings from GAH4. This precision is
significantly lower than the precision we received
when carrying out link prediction on Gﬁ using
embeddings trained on Gﬂ. However, it is diffi-
cult to conclude from this evidence alone if there
is a relation between G and G17.

We also created a graph with links between
random nodes. We then test to see how embed-
dings trained on this random graph performed on
the link prediction task for G%;. The aim was to
study if there is a noticeable difference in the accu-
racy between embeddings trained on the random
graph and the Gﬁ graph. Surprisingly, we found
that GJ\H4 performs significantly worse than embed-
dings trained on the random graph. The random
graph gives a MAP of 0.86. Thus, this is evidence
that the structural nature of hypernymy graphs and
polysemy graphs do seem to have some relation.
While our experiments alone don’t reveal what the
nature of this relation might be, we do know that
the relation between the two is not random.

We also tested to see how graph reconstruction
would perform on the Gﬁ graph when trained on
embeddings from the G]\H/[ graph. We got a mean

| Embedding | G} MAP |
Gy 0.88397
GH 0.71138
Random Graph 0.86116
G Mean Rank
Gh 1.439
GY 2107.307
Random Graph 839.259

Table 4: Graph showing link prediction results on G%,

| Embedding | G MAP |
GF, 0.95008
GY 0.85211
Random Graph 0.92690
G¥; Mean Rank
Gh 1.714
GH 2486.322
Random Graph 820.934

Table 5: Graph showing graph reconstruction results
on G¥,

average precision of 0.852 on the Gf/f graph when
using embeddings trained on Gﬁ{/[ and a precision
of 0.95 when using embeddings trained on Gf/[.
Again, this alone is insufficient to draw a conclu-
sive relation between G, and G¥,.

When we used embeddings trained on random
graph for reconstruction, we got a precision of
0.92. This is also higher than the precision of G4}
which was 0.85. This indicates that there is some
sort of relation between hypernymy and polysemy
as the perfomance is not random. Hypernymy re-
lations are not good predictors for polysemy rela-
tions and are, in fact, worse than random. While
we don’t have a theory explaining this behavior,
this demonstrates that there is some nature of in-
teraction between the two.

Our results from the runs are demonstrated in
Table 4 and Table 5.



7.3.2 Node2Vec Embeddings

We also create node embeddings using the
node2vec algorithm. We ran 100 walks per node
with a walk size of 20 and a window size of 20.
We used a p value of 1000000 and a ¢ value of
1 so random walks will reach distant hypernyms
and hyponyms. We ran the node2vec algorithm
with these parameters on the undirected graph G{,‘{,
and two directed versions of G1{,, one where hy-
pernyms point to hyponyms and the other where
hyponyms point to hypernyms. For each word, we
got three 50 dimensional node vectors. We used
two directed versions of the graph to capture the
asymmetry of the hypernymy relation; using the
undirected graph alone, node vectors for dog and
animal would have a high dot product, but there
would be no information informing which was the
hypernym and which was the hyponym.

We chose the task of natural language inference
(NLI) to test the usefulness of these word vectors.
The three class conception of NLI involves catego-
rizing a premise and hypothesis sentence into three
categories, entailment if the premise being true
means the hypothesis is true, contradiction if the
premise being true means the hypothesis is false,
and neutral otherwise. To perform the task of NLI,
it is often necessary to recognize hypernymy and
hyponymy relations between words in the premise
and hypothesis. The dataset we use is the Stan-
ford Natural Language Inference corpus (SNLI), a
recently created large scale NLI dataset on which
neural models are state-of-the-art (Bowman et al.,
2015). The models we consider are the LSTM en-
coder model of Bowman et al. (2015) and the at-
tention LSTM model of Rocktischel et al. (2015),
which is designed to identify lexical relationships
for use in inference. We additionally test on an
adversarial test set provided by (Glockner et al.,
2018), which is specifically designed to test the
abilities of models to generalize to examples re-
quiring new lexical relations that were not seen in
training.

We provide the results of our NLI experiments
in Table 3. We test both models only using GloVe
word vectors and using GloVe word vectors con-
catenated with the three 50 dimensional node vec-
tors we created. For words that we do not have
node vectors for, such as adjectives or verbs, we
append a 150 dimensional random vector. We can
notice that the inclusion of our node vectors does
not seem to have an impact on the normal SNLI

test set, but does result in an increased perfor-
mance on the adversarial test set. This evidences
that inluding our node vectors increase the gener-
alization capabilities of neural NLI models.

We performed only a small hyperparameter
search due to our limited computational resources,
so these results are far from definite, but we can
still look to them for an indication of how viable
these vectors could be.

8 Conclusion

Here we investigated the global and mesostruc-
tural organization of nouns in the English lexicon
with the relations of hypernymy, meronymy, and
polysemy. We aimed to use graph theory to shed
light on questions surrounding how these relate to
one another, and the role they play in comprehen-
sion, which linguists and psychologists have at-
tempted to answer for decades.

We constructed two classes of graphs, one class
where words are nodes and one class where mean-
ings are nodes. We found that the graphs that in-
clude at least the hypernymy and polysemy rela-
tions are small world networks, and that the small
world networks where words are nodes have a
much smaller diameter and higher clustering coef-
ficient than the small world networks where mean-
ings are nodes. Our role discovery did not find
significant interactions across the three relations.
However, we found that the hierarchy of com-
munities created by the polysemy relation group
themselves in accordance with the hypernymy
tree, particularly when considering the larger par-
titions of the hierarchy.

Additionally, we found that node embeddings
trained on hypernymy graphs actually perform
worse than random when doing link prediction and
graph reconstruction on polysmy graphs. While
we do not have a theory or evidence for why this
happens, this is evidence that the relation between
hypernymy and polysemy is not random and that
there might be some nature of relation between the
two.

Lastly, we found evidence that node vectors
trained on a hypernymy graph can result to in-
creased generalization capabilities for neural NLI
models, however this result is tentative as we
lacked the computational resources to thoroughly
investigate the potential of this approach. While
these results are tentative, they demonstrate how
harnessing the structural relations within language



itself has the power to greatly impact progress
within NLP.
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