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Abstract— The venture capital landscape and the existence of
syndicated investments naturally leads to the formation of intri-
cate networks. However, little attention has been paid to early-
stage, start-up companies within these networks. In this paper,
we create a variety of networks from publicly available venture
capital data. We then perform a variety of analyses on these
networks, ranging from basic analysis to sophisticated latent
representations and network deconvolution. Qur approach can
be bucketed into the following categories: basic graph analysis
and comparison, analysis of node centrality, community detec-
tion, and network deconvolution. Finally, we find promising
results leveraging node-level latent representations as features
in supervised learning applications.

I. INTRODUCTION

The inception of the venture capital industry in the United
States dates back to the early 1950’s, following a few deals
made shortly after the end of World War II. The venture
capital industry grew slowly through the 1960’s and 1970’s,
but, by the 1980’s, the rise of a new institutional foundation
allowed for a rapid growth in transactions with respect
to volume and value. By the early 2000’s, over 103,000
venture capital investments had been recorded, and dozens
of companies had grown from early-stage, start-ups to
Fortune 500 powerhouses.

Networks feature prominently within the venture capital
industry. A given venture capital firm’s network might
include portfolio companies, investors, and other venture
capital firms. In most cases, several venture capital firms
will join together to invest in a single start-up, which allows
them to distribute investment risk over multiple parties. The
combination of investments by multiple venture capital firms
in a single start-up is regarded as syndication or a syndicated
deal. Syndicated deals lead to an interconnected network
of venture capital firms, related by their co-investments.
Although a variety of research explores the emergent
properties of venture capital networks, the literature has
paid little attention to the most prominent portion of these
networks: early-stage, start-up companies. More so, we
can derive an extensive amount of information about these
start-ups from their positions within venture capital networks.

In this paper, we first create a variety of venture
capital networks, consisting of early-stage companies,
venture capital firms, investment transactions, and other
relevant information. Second, we perform analyses on
these networks and various network projections, including
a careful evaluation of degree distributions and other
network statistics. Third, we explore node centrality for

each of the created networks, leveraging degree centrality
and eigenvector cenrality. Fourth, we perform community
detection, starting with the Louvain Algorithm and then
progressing to clustering on latent representations via
node2vec. Finally, we perform network deconvolution to
extract direct relationships among start-up companies.

II. RELATED WORKS
A. Modeling Venture Capital Networks

In the late 1980’s, William Bygrave began exploring the
underlying networks of the venture capital community. He
started by analyzing joint investments made by venture
capital firms in a sample of 1,501 portfolio companies for
the period 1966-1982 [3]. He then modeled the venture
capital industry as an explicit network, linking venture
capital firms together by their joint investments in portfolio
companies [4]. With the newly created network, Bygrave
performed a set of rudimentary analyses on node centrality
with a focus on venture capital firms that invest in “highly
innovative technology companies.” To measure node
centrality, Bygrave leveraged the following metrics:

Sum of Links = Z[d(z,j)} €))
]
Sum of Coinvestments = Z[n(z,j)} 2
J
Sum of Weighted Links = _[w(i,§)d(i,5)] (3
J

where d(i,j) represents distance, n(i,j) represents
coinvestment amount, and w(i,j) represents connection
strength between two venture capital firms, ¢ and j.

Building off of Bygrave’s early work, Podolny showed
that venture capital firms with a deal-flow network
spanning structural holes invest more often in early product
development and more successfully develop their early-stage
investments into profitable IPOs [11]. Similar to Podolony’s
work, Ljungqvist et al. discovered that better networked
venture capital firms experience significantly better fund
performance, and similarly, portfolio companies of better-
networked venture capital firms are significantly more likely
to survive to subsequent financing rounds and eventual exit
[10].

Stuart and Sorenson extended their research to focus



on the geographical distribution of venture capital firms,
demonstrating that social networks within the venture
capital community diffuse information across boundaries
and expand their spatial radii of exchange [12]. In contrast,
Kogut et al. showed the rapid emergence of a national
network of venture capital syndications by analyzing over
159,561 venture capital investment transactions over nearly
45 years [13]. More so, Kogut et al. posit that a national
venture capital investment network subsumes local networks,
and new venture capital firms, in general, reject preferential
attachment in favor of repeated ties among trusted partners.

B. From basic analysis to latent representations

To perform advanced community detection and link predic-
tion, Hamilton et al. explore node embeddings, in which
algorithms encode nodes as low-dimensional vectors, sum-
marizing their graph positions and the structure of their local
graph neighborhoods [7]. More so, their approach has three
key components:

« Encoder Function: maps nodes to vector embeddings
z; € R?, where z; corresponds to the embedding for
node v; € V.

ENC: V - R¢ 4)

o Decoder Function: decodes user-specified graph statis-
tics from node embeddings. The following exemplifies
a pairwise decoder,

DEC : R¢ x R — R*. 3)

o Loss Function: determines how the quality of the
pairwise reconstructions are evaluated in order to train
the model.

L= Y UDEC(zz%),5¢(vi,v;)), (6)
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where [ is a user-defined loss function and D is a set
of training node pairs.

Given the above framework, a variety of shallow embedding
approaches have been devised to learn node embeddings
based on random walk statistics. These approaches learn
embeddings to achieve the following:
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where pg r(vilv;) is the probability of visiting v; on a

length-T" random walk starting at v;. More formally, these

approaches seek to minimize the following cross-entropy
loss:

~ par(vilvy), (D)

L= Y —log(DEC(z,z)), (8)
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where the training set D is generated by sampling random
walks starting from each node.

In particular, node2vec allows for a flexible definition
of random walks by introducing two hyper-parameters, p

and ¢, that bias the random walk [6]. The introduction
of p and g allow the node2vec algorithm to interpolate
between pseudo breadth-first search and depth-first search
walks. Therefore, we can leverage node2vec to capture
representations of local neighborhoods for a given node,
along with more expansive structural roles.

With node embeddings, we can carry out clustering
and community detection, which has been shown effective
in a variety of applications [5]. In particular, we can apply
multiple generic clustering algorithms to our set of learned
node embeddings. We can also leverage node embeddings
to carry out link prediction (i.e. predict edges that are likely
to form in the future) [1].

III. DATA

In October 2013, Crunchbase, an online platform for find-
ing business information about private and public compa-
nies, released investment data for roughly 18,000 start-ups,
nearly 4,700 acquisitions, and over 52,000 investment events.
Crunchbase provided the data publicly in four separate data
sets: Companies, Rounds, Investments, and Acquisitions.

A. Companies

Within the Companies data set, each row corresponds to a
company, founded between 1906 and 2013, with the majority
of funding rounds occurring between 2010 and 2013. For
each company, the data set provides information about the
industry, total funding amount, number of funding rounds,
operating status, and operating location. The data set also
details several dates related to funding rounds.

B. Rounds

The Rounds data set provides information about each funding
round for the companies listed in the Companies data set.
Each row corresponds to a company and its respective
funding round (angel, venture, series-a, series-b, series-c+,
private-equity, or other). Each row provides basic company
information, along with details about funding dates and
amounts.

C. Investments

The Investments data set provides information about in-
vestments that companies in the Companies data set have
received. Each row corresponds to a specific investment and
contains information about the party receiving the invest-
ment and the party making the investment. The data set
also provides details about the size of the investment, the
corresponding funding round, and any associated dates.

D. Acquisitions

Within the Acquisitions data set, each row corresponds to an
acquisition event for companies in the Companies data set.
The data set also provides information about the acquired
company, the acquiring company, the acquisition amount,
and any relevant dates.



IV. NETWORK CREATION AND ANALYSIS

A multitude of different networks naturally arise from the
available Crunchbase data. However, since we want to an-
alyze early-stage, start-up companies and how they relate
to venture capital investors, we focus on four networks de-
rived from the Investments data set: Investors-to-Companies,
Investors-to-Investors, Companies-to-Companies, and then
an augmented version of the Companies-to-Companies net-
work. Furthermore, the networks we derive from the Invest-
ments data set implicitly include relevant information from
the Companies and Rounds data sets.

A. Network Creation

In the Investors-to-Companies network, companies represent
one set of nodes, while investors represent the other set of
nodes. Since early-stage companies rarely invest in other
early-stage companies and venture capital firms rarely invest
in other venture capital firms, the network has a bipartite
structure. Note the Investments data set includes a wide
variety of investor types outside of the standard venture
capital firms. Edges within the network represent investment
instances, linking investors to companies. The edges are
directed, with investors as the source nodes and companies
as the destination nodes. Although investors can invest in a
company multiple times through subsequent funding rounds,
we only allow for a single edge between two given nodes
for simplicity.

We derive the Companies-to-Companies and Investors-
to-Investors networks by creating network projections of
the Investors-to-Companies network. In the Companies-to-
Companies network, nodes represent companies, and two
companies are adjacent if there is at least one investor who
has invested in both companies. Formally, the Companies-
to-Companies network is a graph G'(V', E’) with V' =
the set of all companies from the Investors-to-Companies
network. There is an edge (¢, j) between companies 7 and j
if there is an investor y, such that (i,y) € G and (j,y) € G,
where G is the original Investors-to-Companies network.

Similarly, in the Investors-to-Investors network, nodes
represent investors, and two investors are adjacent if they
have invested in at least one start-up together. Formally, the
Investors-to-Investors network is a graph G'(V',E’) with
V' = the set of all investors from the Investors-to-Companies
network. There is an edge (7, j) between investors ¢ and j if
there is a company y, such that (i,y) € G and (j,y) € G,
where G is the original Investors-to-Companies network.

Finally, in order to incorporate more information into
the Companies-to-Companies network, we define the
Companies-to-Companies-Augmented network as a network
with the nodes being all of the companies we are considering
and wherein there exists an edge between two nodes if
they share an investor, or if they are in the same region or
industry.

Networks
pani Companies-to-
. Investors-to- Investors-to- )
Metrics . to- Companies
Companies Investors
Comp Aug d
Company 11572 . 11,572 15,114
Nodes
Investor 10,465 10,465
Nodes ’ ’
Edges 40,966 33,053 768,063 13,504,003
Density 0.0001 00115 0.0060 0.1182
Effective 75587 47625 33351 20841
Diameter
Clustering 6013 04853 0.5760 0.6762
Coefficient

Fig. 1: Metrics for the Investors-to-Companies network and
aforementioned network projections. Note: the Companies-
to-Companies Augmented network has comparatively more
companies, as the additional information leads to the inclu-
sion of more company nodes.

B. Preliminary Analysis

After creating the Investors-to-Companies, Investors-to-
Investors, Companies-to-Companies, and Companies-to-
Companies-Augmented networks, we computed a range of
statistics (see Fig. 1) and plotted degree distributions for
each network (See Fig. 2, Fig. 3, and Fig. 4, Fig. 5).

First, we notice that the Investors-to-Companies network
does not have a true bipartite structure. Specifically, 92
company and investor nodes overlap within the network,
meaning 92 entities that received investments also made
investments. Second, the Investors-to-Companies network
has a very low network density and clustering coefficient,
which arises from the predominantly bipartite structure.
Third, the degree distribution plot for the Investors-to-
Companies network reveals that a wide-range company and
investor types exist (See Fig. 2). A substantial number of
companies and investors will only make or receive one
investment, while another significant portion will make or
receive a multitude of investments.

In the Companies-to-Companies network, we see a
substantial increase in the number of edges. Therefore, many
companies have investors in common, which demonstrates
the extensive presence of syndicated investments. The
increase in edge count corresponds to a proportional increase
in the density of the Companies-to-Companies network.
Third, we see a significant increase in the clustering
coefficients for both the Companies-to-Companies and
Investors-to-Investors networks. In these projected networks,
the presence of prolific investors collaborating on syndicated
investments leads to the creation of highly clustered groups,
which increases the average clustering coefficient. We see
similar behavior in the Companies-to-Companies-Augmented
network.
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Fig. 2: Degree distributions for Investors-to-Companies net-
work.
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Fig. 3: Degree distributions for Investors-to-Investors net-
work.
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Fig. 4: Degree distributions for Companies-to-Companies
network.
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Fig. 5: Degree distribution for Companies-to-Companies-
Augmented network.

C. Analysis of Degree Distribution

The degree distributions for the Companies-to-Companies
and Investors-to-Investors networks indicate the possibility
of a power law relationship. In order to test this hypothesis,
we first qualitatively determine values for z,,;,, in the power
law PDF, which is given by:

p(z)=a_1( -

—
Tmin Tmin
Looking at the Investors-to-Investors distribution, we choose
ZTmin = 20 as the point at which the power law relationship
may begin to come into effect (See Fig. 3). We use the
same process to choose x,,;, = 250 for the Companies-to-
Companies network (See Fig. 4).

Now, we find the power law exponent ¢, using maximum
likelihood estimation. Specifically, let n denote our total
number of samples. We set o = apspp, wWhere apyrp 1S
given by:

(10)

n d —1
AMLE = 1+n{z (x Z_ )}

i=1

Note that in the equation above, d; denotes the degree of
node 1.

After applying the above equation, we find that
apmre = 54707 for the Companies-to-Companies
network, and &), = 2.0285 for the Investors-to-Investors
network.

Plotting the resulting exponents against the corresponding
complementary cumulative distributions on a log-log
scale, we do not find a linear fit, indicating that the
degree distributions for the Companies-to-Companies and
Investors-to-Investors networks do not follow power law
distributions.

V. CENTRALITY

Centrality measures help indicate the most “important” nodes
within a given graph. For instance within the Companies-to-
Companies network, the most important nodes, depending
on the implemented centrality measure, may be companies
with the most diverse set of investors or perhaps companies
with investments from the “best” investors. Furthermore, in
the Investors-to-Investors network, the most important nodes
may be the most prolific investors or perhaps investors with
the highest number of syndicated investments. To measure
centrality, we leverage two methods: degree centrality and
eigenvector centrality.

A. Degree Centrality

We first employ degree centrality, a simple measure of node
centrality that assigns higher centrality scores to nodes with
higher degrees. Formally, letting /N denote the number of



nodes in the graph, the degree centrality of an arbitrary node
x is defined as follows:

~—

deg(x
Cdeg(.’l:) = N_( 1

(11)

Applying degree centrality to the Investors-to-Investors, we
obtain the following top-5 nodes: SV Angel, New Enterprise
Associates, Intel Capital, First Round Capital, and Kleiner
Perkins Caufield and Byers.

All of these investors are well-known and renowned
in the venture capital community. Thus, our results are
not surprsing. Interestingly, we note that SV Angel has a
substantially higher degree centrality score compared to any
other investor (See Fig. 6).

Degree Centrality in the Investor-to-Investor network
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Fig. 6: Degree centrality scores in Investors-to-Investors

Applying degree centrality to Companies-to-Companies,
we obtain the following top-5 nodes: Path, Ark, Dropbox,
Twilio, and The Climate Corporation. We note that the the
node centrality scores for Companies-to-Companies network
scores have significantly higher variance than those for the
Investors-to-Investors network (See Fig. 7).

Degree Centrality in the Company-to-Company network

0 2000 000 6000 8000 10000 12000
Nodes sorted from highest to lowest centraiity

Fig. 7: Degree centrality scores in Companies-to-Companies

Finally, applying degree centrality to Companies-to-
Companies-Augmented, we obtain the following top-5 nodes:
Swiftype, Upstart, TrialPay, Kno, and Zaarly. Unlike in the
other networks, the degree centrality scores have a demar-
cated cutoff point at 0.25 (See Fig. 8). Also, it is interesting
to note that the incorporation of region and industry in the
Companies-to-Companies-Augmented network leads to no

overlap in the top 5 most central nodes with the Companies-
to-Companies network.

Degree Centrality in the Company-to-Company-Augmented network
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Fig. 8: Degree centrality scores in Companies-to-Companies-
Augmented

B. Eigenvector Centrality

We next employ eigenvector centrality, a spectral measure of
node centrality, where a node’s centrality corresponds to the
centrality of it’s neighbors [8]. More formally, eigenvector
centrality measures the influence of a node in a network:

Ceig@) = 5 3 ceialv):

Yy—x

(12)

where cg;; converges to the dominant eigenvector of
adjacency matrix A, while A\ converges to the dominant
eigenvalue of A. Eigenvector centrality requires a strongly
connected network, but it does not necessitate a directed
network, like most other spectral measures.

Applying eigenvector centrality to Investors-to-Investors, we
obtain the following top-5 nodes: SV Angel, First Round
Capital, Andreessen Horowitz, New Enterprise Associates,
and Ron Conway. Note that three of the five most central
nodes in this case are the same as in the degree centrality
case. More so, SV Angel has the highest score in both
instances.

Eigenvector Centrality in the Investor-to-Investor network

Node centrality
o

010 |
005 ‘

0 2000 000 000 000 10000
Nodes sorted from highest to lowest centrality

Fig. 9: Eigenvector centralities for nodes in Investors-to-
Investors

Applying eigenvector centrality to Companies-to-Companies,
we obtain the following top-5 nodes: Path, IFTTT, The



Climate Corporation, Swiftype, and CrowdMed. Again, the
distribution of eigenvector centralities closely match that of
the degree centrality scores (See Fig. 10).

Eigenvector Centrality in the Company-to-Company network
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Fig. 10: Eigenvector centralities for nodes in Companies-to-
Companies

Finally, applying eigenvector centrality to Companies-
to-Companies-Augmented, we obtain the following top-5
nodes: TrialPay, Swiftype, Kno, Upstart, and Chartbeat.
Notably, four of the five most central nodes in this case
are the same is in the degree centrality case. It is also
interesting to not that the eigenvector centralities create an
even more demarcated cutoff when compared to the degree
centrality scores (See Fig. 11). As a final note, centrality
cutoffs such as this could perhaps be used as a means of
detecting communities.

Eigenvector Centrality in the Company-to-Company-Augmented network
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Fig. 11: Eigenvector centralities for nodes in Companies-to-
Companies-Augmented

VI. COMMUNITY DETECTION

Building off of our analysis of node centrality, we explore
communities in each of the created networks. Network
communities represent sets of nodes with numerous internal
connections but few external ones. In order to detect commu-
nities, we first leverage the Louvain algorithm. Second, we
create latent representations of the nodes in each graph, using
node2vec, and then run a variety of clustering algorithms on
these embeddings.

A. Louvain Algorithm

The Louvain algorithm iteratively progresses through two
pahses: (1) greedily maximize modularity by allowing for
changes over local communities and (2) aggregate identified
communities to build a new network of communities [2]. We
define modularity as the following:

1 kik;
= — A1 el iy Cj 1
Q Qm;[ j 2m]é(c,c]), (13)
where 2m = Z” A;; is the sum of all entries in the
adjacency matrix, A;; represents the (i, 4)t" entry of the

adjacency matrix, d; represents the degree of node ¢,
0(ci,cj) is 1 when 4 and j are in the same community
(c; = ¢;) and O otherwise [9]. Note that modularity ranges
from [-1, 1].

Running the Louvain algorithm on the Companies-to-
Companies network results in the formation of 1,405
clusters with an overall modularity of 0.4305. Upon further
evaluation, we recognize that the top-10 clusters, in terms
of size, contain approximately 83% of nodes within the
network. More so, 97.5% of clusters are of size three or
smaller. Therefore, Companies-to-Companies has several
large, well-defined communities but also many small,
non-central communities. This indicates that the algorithm
has too limited a picture of the companies landscape to
make determinations on many of the companies.

Running the Louvain algorithm on the Investors-to-investors
network results in the formation of 3,840 clusters with a
modularity of 0.64755. The top-15 clusters, again in terms
of size, contain 43.8% of nodes within the network. Similar
to the Companies-to-Companies network approximately,
96% of clusters are of size three or smaller; however, it
is important to note Investors-to-Investors has significantly
higher modularity.

Realizing that Companies-to-Companies and Investors-
to-Investors omit a substantial amount of information as
they simply include an edge between companies (investors)
A and B if they share an investor (company) X. In order
to incorporate more information from our data sets, we
create weighted versions of the Companies-to-Companies
and Investors-to-Investors networks on which we run the
Louvain algorithm.

Specifically, we compute the Jaccard Index between
all pairs of companies and investors in the original bipartite
Investors-to-Companies graph. The Jaccard Index is defined
as follows:

ESIAYE
- | ULy |
As such, the weight between two companies C; and Cs is

just the number of investors they share, divided by the set
of investors that have invested in at least one of C'; and Cs.

JA(i,7) (14)
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Fig. 12: (a) and (b) respectively show egonets from the Investors-to-Investors and Companies-to-Companies networks.

The same applies for investors, as the weight between two
investors, /3 and Is, is the number of companies they share,
divided by the set of companies in which at least one of I3
or I, has invested.

Running the Louvain algorithm with Jaccard weightings
produces a much more even distribution of community
sizes in both graphs. In the weighted Companies-to-
Companies graph, the top-10 largest clusters account for
approximately 70% of the total nodes, but there are only 152
communities, as opposed to the 1,405 communities found
in the unweighted Louvain run. More so, the modularity
increases substantially from 0.4305 to 0.5639, equating to a
total increase of 0.1334.

In the weighted Investors-to-Investors graph, the top-
10 largest clusters account for approximately 34% of the
nodes, but only 700 communities remain, as opposed to the
3,840 communities found in the unweighted Louvain run.
Furthermore, the modularity increases significantly from
0.64755 to 0.9533 for a total increase of 0.3057.

The increase in modularity for both the Investors-to-
Investors and Companies-to-Companies weighted networks
further bolster the validity of our Jaccard weighting system.
Intuitively, the edge weights allow the Louvain algorithm
to discern between more and less important edges, thereby
giving it a more granular picture of the investors and
companies landscapes.

B. Node2vec Clustering

Our analysis indicates that Louvain’s modularity-optimizing
objective performs well separating more “important”
companies and investors from less important ones.
Nonetheless, Louvain doesn’t explicitly capture node-level
similarities, which could allow for a more effective means
of community detection.

In order to address this, we use node2vec as proposed
by Grover et al [6]. Specifically we perform three different
runs of node2vec on Companies-to-Companies, each time
with a different random walk strategy controlled by the
node2vec search parameters p and q. For the first run, we
perform breadth-first search by setting p = 1 and ¢ = 100.
For the second run we perform depth-first search by setting
p = 1 and ¢ = 0.01. Finally, for the third run, we set
p = q = 1, thereby using the DeepWalk random walk
strategy [15]. Finally, we note that after experiementation,
the different random walk strategies correspond to similar
results, so our discussion below uses the embeddeings
learned from the p = ¢ = 1 random walk strategy.

1) Unsupervised Learning: After obtaining the embed-
dings, namely vectors in R'?8, for each of the companies,
we apply k-means clustering to the embeddings. As a per-
formance metric, we use the Silhouette score, S, defined as:

b—a
S=—7— 15
maz(a,b) (15)
Note that in the equation above, a denotes the mean intra-
cluster distance and b the mean nearest-cluster distance.
Thus, S ranges from [—1,1], where 1 denotes the best
possible cluster and -1 the worst.

After experimenting with different values of k, we conclude
that the the optimal number of cluster k£ for k-means is 2,
since k = 2 clearly achieves the highest Silhouette score
(See Fig. 13). This differs drastically from our results from
the Louvain algorithm, which, even after adding weights
to the network, resulted in optimal numbers of clusters in
the hundreds. This make sense because Louvain begins by
assigning each node to its own cluster, whereas k-means
does not.



Silhoutte score vs number of clusters

S e

Fig. 13: Silhoutte score vs. k

2) Supervised Learning: As a final experiment, we use
the Acquisitions data set to perform a supervised experiment
designed to assess the quality of the latent representations
learned from node2vec. Specifically, for each company in the
Companies-to-Companies, we assign the company a label of
1 if it was acquired and O if it was not. Then, we randomly
assign each company to either the train or test set, ending
up with approximately 80% of the companies in the train set
and 20% in the test set. Now that we have features (i.e. the
node2vec embeddings) and labels for all of the companies,
along with a train and test set, we apply various supervised
learning algorithms, the results of which are detailed below:

Evaluation
Algorithm Train Accuracy Test Accuracy

Logistic 85.5% 84.8%

Regression
MiliLayer 920% 83.7%

Perceptron
K-Nearest 86.0% R85
Neighbors o o
Decision Tree 100.0% 75.2%
Random Forest 97.9% 85.5%

Fig. 14: Discuss Performance

From these results, we conclude that K-Nearest Neighbors,
closely followed by Random Forest, performs the best on the
given data. As a caveat, we note that many of the companies
we labeled as not acquired have likely been acquired since
Crunchbase released this data in 2013. Nonetheless, it is
fascinating that we are able to obtain such high accuracy
using latent representations of the companies. We thus con-
clude that the acquired companies share some distinguishing
characteristics captured by node2vec.

VII. NETWORK DECONVOLUTION

Throughout our analysis, we leverage the Companies-
to-Companies-Augmented ~ graph, since it incorporates
information about each company’s investors, industry, and
region. However, recall that the Companies-to-Companies-
Augmented network has 13,504,003 edges, as opposed to
the 768,063 edges present in the simpler Companies-to-
Companies network. Since both networks contain the same
nodes (i.e. the set of all companies we are considering),
it seems highly likely that the Companies-to-Companies-
Augmented network contains a great deal of spurious
edges carrying only indirect information about company
relationships.

In order to address this issue and extract direct relationships
between companies, we employ network deconvolution.
Formally, we let G, denote the adjacency matrix of the
observed Companies-to-Companies-Augmented network,
and we let G4;, denote the adjacency matrix of the “true”
network, which we seek to extract from G.,s. Next, we
model Gps as follows:

Gobs = Z Gsw == Gdir(I - Gdir)_l

(16)
k=1
Thus, in order to extract Gg;,., we consider:
Gdir == Gobs (I + Clobs)_1 (17)

In order to implement the above equation, we use Gideon
Rosenthal’s publicly available implementation of the
Network-Deconvolution algorithm originally proposed by
Soheil Feizi [14]. We use the unweighted adjacency matrix
of the Companies-to-Companies-Augmented network as
input to the Network-Deconvolution algorithm, which
outputs a weighted adjacency matrix with the same number
of edges. Crucially, the edge weights in the adjacency
matrix output by the deconvolution algorithm are all in
the range [0, 1], where higher edge weights correspond to
edges of more direct importance, and lower edge weights
correspond to indirect edges.

Therefore, we expect for there to be a considerable
number of edges with low weights after applying network
deconvolution to the Companies-to-Companies-Augmented
network, since as stated it seems highly likely that there are
many indirect relationships in the network. After applying
the network-deconvolution algorithm, we obtain the edge
weights depicted below:

Figure 15 leads us to conclude that there is a clear cutoff at
approximately w = 0.7, where w denotes edge weight. The
sharp cutoff indicates that there is indeed a considerable
amount of redundant information. Thus, in order to reduce
the amount of indirect information in the Companies-to-
Companies-Augmented network, we remove all edges below
the w = 0.7 weight threshold. Removing these edges ideally
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Fig. 15: Edge weights for
Augmented after deconvolution

Companies-to-Companies-

gives us a more “direct” network that compares to the
original network as follows:
Compared to the original network, the new Companies-to-

Networks

Companies-to- Companies-to-

Metrics Companies- Companies-Augmented
Augmented with Removed Edges
Edges 13,504,003 12,990,309
Density 0.1182 0.1239
Blfective 2.0841 20772
Diameter
Clustering 0.6762 0.6496
Coefficient ’ ’

Fig. 16: Metrics for the Companies-to-Companies-
Augmented  network and  Companies-to-Companies-
Augmented with edges removed after deconvolution.

Companies-Augmented network has 513,694 fewer edges.
Furthermore, we see a corresponding increase in network
density and a decrease in the average clustering coefficient.
We also see that the degree distribution remains relatively
unchanged (Compare Fig. 5 to Fig. 17). Thus, the w = 0.7
weight threshold may not have been large enough to
effectively remove indirect edges.

VIII. CONCLUSIONS

Recognizing the distinct network structure of the start-up
investment ecosystem, we set out to create useful network
representations of the Crunchbase 2013 data sets. Similar
analysis had been performed on investor networks, but our
focus on early-stage start-ups was unique.

We began by folding the Investors-to-Companies network
in order to analyze relationships among both start-ups and
investors. Then we assessed centrality in the folded networks,
honing in on early-stage start-ups, which we analyzed via
both the simple Companies-to-Companies network and

10~
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Fig. 17: Degree distribution for the deconvolved Companies-
to-Companies-Augmented graph with removed edges.

the more nuanced Companies-to-Companies-Augmented
network. Finding similar central nodes with different
centrality measures, along with interesting centrality cutoffs,
we decided to explore the community structure of the
networks. We first employed the Louvain algorithm to
detect communities in the Companies-to-Companies and
Investors-to-Investors networks, and ultimately found that
the algorithm was significantly more successful when
Jaccard weightings were included. Then we applied
node2vec to find embeddings for companies in Companies-
to-Companies, which led to suprisingly meaningful results,
especially with the use of the embeddings as inputs to
out-of-the-box supervised learning algorithms.

Finally, recognizing that the Companies-to-Companies-
Augmented network likely contained a great deal of indirect
information, we applied network deconvolution to extract
direct relationships among companies. We did not find an
enormous reduction in the number of edges after applying
a cutoff to the weights returned by the deconvolution
algorithm, but we were nonetheless able to reduce the size
of the network substantially.

Finally, we conclude that further work could be performed
in analyzing the results of the deconvolution and how best
to apply the resulting weightings to reduce the complexity
of the Companies-to-Companies-Augmented network.
Additionally, we emphasize that the use of embeddings
showed incredibly promising results, even when only
applied to the simple Companies-to-Companies network. As
such, we believe that the application of algorithms capable
of learning latent representations to larger, more intricate
networks is a promising avenue of exploration.
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