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Abstract— Identifying associations of known drugs
with diseases has significant impact for drug re-
purposing and can offer disease remedies much faster
than developing a new drug. This falls into the classic
problem of link prediction in networks. Already, there is
significant research into solving link prediction for social
networks [2] and a burgeoning focus on disease and drug
associations[3][4]. Based on prior work in the area, we
perform link prediction for a drug-disease network using
topological as well as molecular features. Specifically, we
hope to suggest new or re-purposed drug uses as disease
treatments. We use well-known proximity methods as
our baseline, but focus on node embeddings to improve
predictions. Other experiments include enhancements
that exploit existing knowledge about drugs to perform
better link prediction for drug-disease associations.

I. INTRODUCTION

Drug development is an expensive process with
the amount of effort needed to research and de-
velop molecular prototypes, design clinical trials,
and pass approvals. Therefore, failed clinical tri-
als are very costly for pharmaceutical companies.
However, some failed drugs may be effective can-
didates for treating diseases other than the one
originally intended due to the molecular properties
of the drug. This can save great amounts of effort
and money on R&D by modifying and reusing
the existing pipeline for a failed clinical drug
instead of starting from scratch. Thus, predicting
potential associations between drugs and diseases
is a problem of great interest.

In this paper, we attempt to predict drug-disease
associations by leveraging existing drug-disease
networks in conjunction with chemical properties
of drugs. We plan to model this as a link prediction
problem on a disease-drug network. In particular,
our work will focus on evaluating various ways
to improve link prediction algorithms applied to
the bipartite drug-disease domain. Because drugs
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have underlying molecular structures related to
their efficacy in treating diseases, we hope to
augment network features with additional molecu-
lar features to improve link prediction via binary
classification.

II. RELATED WORK

Link prediction is a well researched problem in
general. One method of approaching this is based
on similarity metrics. As documented by Liben-
Nowell and Kleinberg, metrics such as Common
Neighbors, Jaccard’s Coefficient, Adamic/Adar
Score, Preferential Attachment, and Katz method
can have good success in link prediction [6]. The
general idea is to use these similarity metrics to
score all pairs of nodes and take the highest scoring
pairs to be new links. However, these do not nec-
essary apply to bipartite graphs. These algorithms
tend to be based on several assumptions[1]:

e Triangle closing: New edges tend to form
triangles

e Clustering: Nodes tend to form well-
connected clusters in the graph

In bipartite graphs, these assumptions are not
true, since triangles and larger cliques cannot ap-
pear. Therefore, we may apply certain similarity
metrics (as we describe below), but none that rely
on common neighbors or the above assumptions.

An alternative, well-documented method of link
prediction is extracting network features and using
them in a supervised classifier [2]. In this paper
by Hasan et al, they use a combination of several
features, both from the network structure as well
as domain specific to predict future coauthorships
for academic papers. These features include: the
shortest distance between pairs, clustering index,
and keyword match count. They then used several
machine learning classification models such as
decision trees and SVM to solve the classification
problem.



Choosing features to represent nodes and pairs
of nodes can be a challenging task. In this paper,
we will examine Grover and Leskovec’s network
embedding algorithm, node2vec, which aims to
map nodes to a low-dimensional space of features
that maximizes the likelihood of preserving net-
work neighborhoods of nodes [7]. In this model
of representing nodes, distance between vectors
attempts to capture the similarity between nodes
in the original network. Once we extract these
mappings, we can use them as features for the
supervised learning problem as described in [2]
and [3] as well as in distance metrics [8].

These supervised learning approaches using net-
work properties can be applied to the biological
domain. Oh et al present methods to predict as-
sociations between drugs and diseases by using
supervised learning models [3]. The idea is that
a drug is likely to be associated with diseases that
are associated with diseases that are associated
with other similar drugs. Similar drug scores were
obtained using various biological networks, such
as protein-protein interaction, gene regulation, and
drug-disease networks, and used as features for
supervised learning.

This idea that drugs treat diseases associated
with similar drugs can motivate other feature rep-
resentations of drugs. For drugs, in addition to
biological network similarity, similarity can also
mean molecular similarity. Therefore, molecular
properties of drugs can further aid in link pre-
diction. Vilar et al attempt to predict drug-drug
interactions by representing drug features through
molecular fingerprints [4]. Molecular fingerprints
are bit vector representations of whether a chemi-
cal structure contains various molecular properties.
The properties include features such as whether the
drug has a carbon ring, etc.

II1. DATA
A. Network Data

We will analyze the DCh-Miner disease-drug
association network, provided as one of the BIOS-
NAP datasets. Drugs in the network may also
potentially include certain chemicals that are not
human drugs. In the network, we have:

e 5,535 disease nodes.
e 1,662 chemical/drugs nodes.
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Fig. 1. Degree distribution of the drug-disease network

« 466,657 edges that indicate associations be-
tween the disease and drugs

See Fig. 1 for the degree distribution.

B. Molecular fingerprints

In addition, we will use molecular finger-
print representations of the drugs in the above
mentioned network dataset, computed from drug
SMILES (simplified molecular-input line-entry
system) codes using the RDKit package. SMILES
codes are string representations of the molecular
structure of a chemical compound. For example,
the SMILES code for acetaminophen (used in
Tylenol) is:

CC(= O)NC1 = CC = C(C = C1)0

For the drugs in the network, the SMILES codes
can be obtained from DrugBank using its Drug-
Bank ID.

IV. METHODS

Our methods range from predicting links based
on proximity scoring to classification of node
embeddings. We explore the following methods:

A. Prediction based on Proximity

When using proximity, our methods define a
metric ¢(z,y) which scores the node pair x and y.
Based on these metrics, we predicted which node
pairs may have a new edge, described in Algorithm
1. Because of the bipartite graph structure, we
cannot use certain common proximity algorithms.
A disease only points to chemicals and a chemical



only points to diseases. Thus, a disease-chemical
pair will not have any common neighbors, prevent-
ing the use of metrics such as number of common
neighbors, Adamic and Adar measure, and the
Jaccard coefficent [1]. Instead we explore using the
shortest path length and preferential attachment.

It should be noted that we follow the standard
procedure and only consider edges where end-
points have degree greater than 3.

Algorithm 1 Link Prediction via Proximity
for node z €¢ V' do
for node y € V do
Compute ¢(z,y)
Append ¢(z,y) to scores
end for
end for
Sort scores by decreasing score ¢(z,y)
Predict top n pairs as new links
See which of these links actually appear in test
graph

1) Shortest Path Length

We set c(z,y) to be the shortest path length
between x and y in our network. Intuitively, short
path lengths should mean that a drug and disease
share similar neighbors. Therefore, a shorter path
would mean that the disease-chemical node pair is
more likely to have a relationship.

2) Preferential Attachment

Instead of examining path distance, we also
defined c(x,y) as the preferential attachment.

If d(z) is the number of neighbors of node z, the
preferential attachment model gives a prediction
between x and y of:

d(x)d(y)
c(z,y) = W

The factor ﬁ normalizes the sum of predictions
for a vertex to its degree.

Taking only the degree of = and y into account
for link prediction suggests that a disease or chemi-
cal with many associations will likely have another
association. Thus, nodes with higher scores based
on preferential attachment are more likely to be

linked.

B. Feature learning

In addition to examining node similarity, we
wanted to combine machine learning techniques
and network characteristics. Using node2vec em-
beddings, we can embed nodes with similar net-
work neighborhoods close in the feature space.
Using this feature vector representations, we can
then perform binary classification. Here, we dis-
cuss how we embed the nodes and different ways
we construct the feature vectors.

C. node2vec Embeddings

We take the embeddings based on [7]. It is
outlined in Algorithm 2.

Algorithm 2 The node2vec algorithm
LearnFeatures (Graph G = (V, E, W), Dimensions
d, Walks per node r, Walk length [, Context size k,
Return p, In-out q)

m = PreprocessModi fiedW eights(G, p, q)
@' = (V. E,m)
Initialize walks to Empty
for iter = 1tor do
for all nodesu € V do
walk = node2vecWalk(G', u, 1)
Append walk to walks
end for
end for
f = StochasticGradientDescent(k, d, walks)
return f

node2vecWalk (Graph G = (V, E, 7), Start node
u, Length [)
Initialize walk to [u]
for walk;ter = 1tol do
curr = walk[—1]
Vewrr = GetNeighbors(curr, G")
s = AliasSample(V,,;.., ™
Append s to walk
end for
return walk

D. Feature Combination

In addition, we can augment the node em-
beddings with additional features. These features



involve network features on the disease-drug net-
work, molecular features of drugs, and network
features derived from generated drug-drug net-
works.

1) Additional Disease-Drug Network Features

We can add additional features involving addi-
tional network properties, such as the similarity
scores we used above: i.e. degree of the disease,
degree of the chemical, shortest path, etc.

We used the structural role extraction algorithm
Rolx and its recursive feature extraction method
ReFex.

The first step was extracting basic local features
from each node, and then recursively aggregating
them along graph edges so that global features are
obtained. The basic features included: the degree
of node v and the number of edges that connects
the egonet of node v to the rest of the graph.

Once we collected the basic features for all
nodes, we then recursively generated more features
using mean and sum as aggregation steps.

Initially we have a feature vector V,, € R? for
every node u. With each iteration, we concatenate
the mean of all u’s neighbors’ features to V,, and
do the same for sum.

We run this for 3 iterations.

2) Molecular Fingerprints

Molecular fingerprints of drugs can be used
to compare similarities between drugs. Using
SMILES codes (described in the data section), we
have added information about chemical structures.
This proves additional information about underly-
ing similarities between drugs and perhaps how
they might affect diseases [4].

To generate molecular fingerprints, SMILES
codes (string representations of molecular struc-
ture) are analyzed for specific molecular proper-
ties. These properties include chemical features
that in combination uniquely define a compound
such as number of carbonyl groups, existence of
a carbon ring, etc. These features are combined
into a bit vector with 1 indicator the existence of
the feature. There exist many types of fingerprint
feature sets but we will use Morgan fingerprints
generated from RDKit.

E. Representing Edges as Feature Vectors

Edges in the bipartite, undirected disease-drug
graph consist of two nodes. Because our embed-

dings are for individual nodes, we can represent
an edge as a combination of its two corresponding
node embeddings. There are multiple ways of
combining two vectors; in our implementation, we
compare four different approaches of concatena-
tion, Hadamard product, summation, and absolute
difference of the vectors.

F. Models

To predict links, we cast our problem as a binary
classification problem where our input is a feature
representation of a disease and drug relationship
and the output is whether or not a link exists
between the disease and drug. We use various
supervised learning models, namely logistic re-
gression and random forest models.

Logistic regression is a linear model that pre-
dicts the output h(z) given an input vector = as
follows:

1
h(z) = 9(9Tﬂ7) = 11+ e 0z

where
1

- 1+e?

is the sigmoid function and 6 is a set of weights.
Because our output h(x) € {0,1} is binary ,
we want a function that maps any real value to
between 0 and 1 which the sigmoid function does.
The goal of logistic regression is to find the 6
which minimizes the cost function J(0):

9(2)

m

70) = 5 D" (hol:) — i)

=1

where m is the total number of training examples
and y; is the true value (0 or 1) of that training
example. This minimization can be done using
gradient descent over the training data.

Random forests are an ensemble model of many
decision trees, randomly initialized. Decision trees
are intuitive models for classification that attempt
to combine many rule-based splits on features
to determine the output. For example a simple
decision tree model for predicting a link between
nodes in a generic graph may be looking at the
number of common neighbors between the two
nodes and if this value is greater than a certain
threshold, we predict there is a link.



V. RESULTS

A. Evaluation Methodology

Link prediction is traditionally seen as a binary
classification task to determine if an edge exists
between two nodes at a future time. Following this
guideline, we created two versions of the same
network, one at time ¢ and another at later time
', and attempted to predict which pairs of nodes
in time ¢ will have an edge between them at time
t.

Because our network is not time dependent, we
removed n edges from the fully connected graph
and labeled this new graph to be the training graph
at time t. The fully connected one is considered
the test graph at time ¢'. This train and test graph
was used primarily for link prediction based on
proximity.

As we began looking at using binary classifica-
tion tools, we knew we also needed positive and
negative samples to train and test on. The known
drug-disease association edges were split into our
positive train/test sets. We can augment these sets
of positive associations by generating a negative
examples of random, non-associated edges be-
tween drugs and diseases to produce complete
train/test sets of positive and negative associations.
We can evaluate the performance of our models
on correctly predicting associations with standard
metrics such as accuracy, precision, recall, and F}
score.

B. Results of Proximity Methods

To better understand link prediction based on
proximity, we applied the proximity methods,
Shortest Path Length and Preferential Attachment,
directly to our bipartite graph. Both performed
very poorly. The accuracy of their predictions are
in Table I. There are several reasons why we
believe these methods did not work. Regarding
preferential attachment, our initial assumption was
that disease-chemical pairs that have many neigh-
bors are more likely to form a new link. However,
upon further reflection, this does not reflect actual
disease-drug relationships. Just because you can
apply a drug to many diseases, or a disease is
treated by many drugs, does not accurately reflect
if a new drug may treat a disease.

TABLE I
PERFORMANCE OF PROXIMITY METHODS

Method Accuracy
Shortest Path Length 0.0001
Preferential Attachment  0.0345
TABLE II
LOGISTIC REGRESSION PERFORMANCE FOR EMBEDDINGS
Feature Representation ~ Accuracy Precision  Recall F3 Score
Concatenation 0.8060 0.8485 0.7450 0.7934
Hadamard Product 0.8198 0.8429 0.7860 0.8135
Summation 0.7893 0.8252  0.7340  0.7769
Absolute Difference 0.8170 0.8292 0.7985 0.8136

Furthermore, proximity methods are based on
the idea that nodes tend to form clusters, which
is why shortest path length works well in unipar-
tite graphs. However, thinking about the bipartite
graph, we realize that its unlikely that shortest path
length will reflect true disease-drug pairings. Thus,
applying traditional proximity methods directly to
our graph did not work as planned.

C. Results of Classification Models

We trained logistic regression and random forest
models on various sets of features discussed above
and evaluated the performance on our test set.

1) Node Embedding Features

We initially trained our models on features
representing the relationship between a disease
and drug as simply the combination between
their two node embedding vectors, produced by
node2vec. We combined vectors through concate-
nation, Hadamard product, summation, and abso-
lute distance and compared the performance of
each of these feature representations with both
models, as seen in Tables II and III.

TABLE III
RANDOM FOREST PERFORMANCE FOR EMBEDDINGS
Feature Representation ~ Accuracy  Precision  Recall ~ F} Score
Concatenation 0.8333 0.9013 0.7485 0.8178
Hadamard Product 0.8315 0.8824  0.7650 0.8195
Summation 0.8270 0.8794  0.7580  0.8142
Absolute Difference 0.8158 0.8578 0.7570 0.8042




TABLE IV
LOGISTIC REGRESSION PERFORMANCE WITH ADDITIONAL

FEATURES
Feature Representation Accuracy  Precision  Recall F; Score
node2vec + Network Features 0.8464 0.8665 0.8071 0.8357
node2vec + Molecular Fingerprints 0.8114 0.8455 0.7468 0.7931
node2vec + Network + Fingerprints 0.8464 0.8665 0.8071 0.8357
TABLE V
RANDOM FOREST PERFORMANCE WITH ADDITIONAL
FEATURES
Feature Representation Accuracy Precision  Recall Fi Score
node2vec + Network Features 0.8400 0.9025 0.7507  0.8196
node2vec + Molecular Fingerprints 0.8411 0.8991 0.7567 0.8218
node2vec + Network + Fingerprints 0.8416 09034 0.7534  0.8216

2) Additional Network Features

We added network features from the original
disease-drug network to our node embeddings to
compare performance and evaluate the effect of
these features on predicting links. Based on the
findings, we see that adding these additional net-
work features increases the classification perfor-
mance as expected (see Tables IV and V and
Fig. 2 and 3). Adding more information about the
network, especially the structural roles as features,
provides a stronger understanding of relationships
between drug and disease.

3) Molecular Fingerprint Based Features

We incorporated molecular fingerprint features
capturing molecular structure as well as fea-
tures from drug-drug networks derived from these
molecular fingerprints and evaluating the effect on

Logistic Regression scores by method and metric

node2vec

node2vec+Network
node2vec+Fingerprints
node2vec+Network+Fingerprints
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Fig. 2. Results from logistic regression using various embeddings
and additional features

Random Forest scores by method and metric
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Fig. 3. Results from random forest using various embeddings and
additional features

performance of add these features.

As expected, adding the fingerprints improved
the classification performance between these fea-
tures are based on molecular structure (see Tables
IV and V and Fig. 2 and 3). Using outside infor-
mation to better predict drug-disease interactions
can only help our naive prediction.

4) Combined Network and Molecular Finger-

print Based Features

Combining these two features produced the best
performance (see Tables IV and V and Fig. 2 and
3). Individually adding these features improved
classification, so the combined additional informa-
tion should yield the highest performance gain.

5) Analysis of Selected Examples

To analyze the predictions of our models, we
looked at one case where our model correctly
predicted a positive association and one case where
our model incorrectly predicted a positive associ-
ation between a drug and disease not known to be
linked.

Our model correctly classified a positive link
between hypertrophic cardiomyopathy, a condition
in which the heart muscle becomes abnormally
thick, and the drug choline. There is a known
association between the pair as choline can be used
for cholesterol metabolism.

On the other hand, our model incorrectly pre-
dicted a link between the disease, lithiasis, and
the drug, taurine. Lithiasis is a condition charac-
terized by the formation of calculi and concretions
(colloquially described as stones) in the hollow



organs or ducts of the body. They occur most
often in the gallbladder, kidney, and lower urinary
tract. Taurine is a drug known to inhibit gallstone
formation, and thus it makes sense to assume that it
might apply to lithiasis as well given the diseases’
similar natures.

VI. CONCLUSION

We have demonstrated a comprehensive ap-
proach to predicting links in the bipartitie drug-
disease network domain. Simple proximity predic-
tion methods did not perform well on predicting
links so we attempted to use feature learning to
represent nodes as feature vectors and machine
learning methods to predict links as a classification
problem. We experimented with various feature
representations including node2vec embeddings,
recursive network features, and molecular finger-
prints. The combination of these features allowed
us to incorporate both associations between drugs
and diseases as well as the molecular and chemical
properties of drugs. Ultimately, this allowed us to
achieve high performance on predicting associa-
tions between drugs and diseases which potentially
has high impact for drug development by reduc-
ing research costs through re-purposing of known
drugs.

VII. FUTURE WORK

Potential extensions to our projects could in-
clude enhancing or trying different feature em-
beddings. For network embeddings, different em-
beddings could be experimented with rather than
using node2vec. Additional network features could
be incorporated based on node centrality or in-
fluence measures. To extend our knowledge-based
features, information about diseases could be cap-
tured in a manner similar to molecular fingerprints
for drugs. Additionally, external network features
between drugs and diseases incorporating other
biological associations such as with proteins can
be used, such as in [3]. Finally, additional models
could be used to classify nodes beyond the logistic
regression and random forest models we used.

VIII. CODE

Our code and data can be found at https:
//github.com/cvo9/CS224W-Project.
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