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ABSTRACT

In this work we explore how modern graph-based recom-
mender systems react under the presence of white and black-
box adversarial manipulation. We implement a graph-based
recommendation system based on a system deployed at Pin-
terest [6] and evaluate the efficacy of adversarial agents
whose goal is to boost the popularity of a target item - such
attacks are known in the literature as “shilling” attacks. Un-
like previous studies that focus solely on white-box attackers
who have visibility into the recommendation algorithm, we
also lean into the more realistic scenario of black-box at-
tackers. We find that 1) keeping the number of fake item
reviews low is of paramount importance to the efficacy of an
adversary, that 2) a black-box attacker we construct performs
as well as a principled white-box attacker, and that 3) even
principled attackers (white-box or black-box) seem to per-
form no better than baseline approaches, suggesting strong
robustness properties in the graph-based recommendation
mechanisms we employ.

1 INTRODUCTION

Modern content discovery applications such as Amazon, Net-
flix, YouTube, Twitter, and Pinterest rely on recommender
systems to provide content to users and increase engage-
ment. Many of these systems leverage information from the
graph of users and content in order to make better recom-
mendations [3, 6, 10].

Such graph-based recommendation systems work well in
the presence of honest existing relationships between users
and content (e.g. a user’s ratings for a piece of content or a
user’s choice to interact with some content). However, most
modern applications with user-based recommendations suf-
fer from fraudulent activity. In the case of Amazon, for ex-
ample, a fraudulent user could create multiple fake accounts,
give fake reviews to some set of items, and influence the
recommender system. A study from 2015 estimated that 16%
of Yelp reviews were fake or suspicious [16].

In this work we study how graph-based recommender
systems react under shilling attacks where a malicious user
creates fake profiles and adds fake reviews to boost the pop-
ularity of an item. We implement a modern graph-based

recommendation system based on Pixie, a real-time recom-
mendation system deployed at Pinterest. Unlike other works
which implement only white-box attackers that have in-depth
knowledge of a recommender system, we focus also on the
more realistic scenario of black-box or low-knowledge at-
tackers.

Scope. We do not aim to explore the problem of fake user
detection — there is a rich history of research in this problem
already, as we describe in the related work section. We do not
consider the case of more traditional collaborative filtering
recommender systems either — we only consider graph-based
recommendation systems, most of which involve random
walks.

Contributions. We contribute three observations. First,
keeping the number of fake item reviews low is of para-
mount importance to the efficacy of an adversary. Second, a
black-box attacker we construct performs as well as a prin-
cipled white-box attacker suggesting that in practice the
gap between white-box and black-box attackers may not be
too significant. Third, we find that even principled attack-
ers (white-box or black-box) seem to perform no better than
baseline approaches, suggesting strong robustness properties
in the graph-based recommendation system we employ.

Overview. In the next section we briefly discuss previous
work in recommender systems, attacks and defenses against
recommender systems, and the specific landscape of graph-
based recommender systems. We also provide the necessary
background for the rest of the article. After that we present
our threat model, where we describe the powers and goals
of the shilling attacker we consider. In the next two sections
we discuss our methods for constructing recommenders, at-
tackers, and showcase the results of several experiments. We
then suggest future work and conclude.

Code. All of our code is public on GitHub .

2 BACKGROUND AND RELATED WORK
2.1 Recommender Systems

Recommender systems have a strong history of research dat-
ing back to the early 1990s. Several textbooks have emerged
in recent years that systematize this knowledge [1, 12, 13, 19].
Recommender systems are usually built upon collaborative
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filtering or content-based approaches. In the former approach,
user-item interactions in the past are used to predict (i.e. rec-
ommend) new user-item interactions in the future. In the
latter approach, specific attributes of users or items are used
to generate recommendations. Hybrid approaches that com-
bine both recommendation paradigms are also actively used
[1]. Recent years have seen the rise of Deep Learning ap-
proaches for the recommendation task, with good promise
[22].

2.2 Graph-based Recommender Systems

In this work we focus on graph-based recommendation sys-
tems. Graph-based recommender systems [2, 3, 6, 8, 21] use
a bipartite user-item graph to represent how a given user
rates an item. An edge exists between a user and an item
only if that user has rated that item and its weight is the
rating. Graph-based recommendation systems are based on
random walks. To recommend an item to a user, the recom-
mender system initiates a random walk starting from the
user, following links in the graph according to some specified
rule. Recommendations are then based on the nodes seen
the most in their random walks.

2.3 Adversaries in Recommender Systems

There has been a substantial body of work regarding adver-
sarial behavior against recommender systems [4, 5, 14, 17,
18]. Most works describe both shilling attacks and defenses
against those attacks in traditional collaborative filtering
recommender systems. Two survey papers outline the field
as a whole [9, 20], providing a good overview of the types
and techniques behind most shilling attackers proposed in
the literature. The efficacy of attackers varies significantly
depending on the dataset and algorithm in question.

Less work has focused solely on studying attackers for
strictly graph-based recommender systems. Fang et al pro-
vide the what seems to be the first systematic work in poi-
soning attacks to graph-based recommender systems [7].
The authors claim to construct an optimizing attacker that,
because of its unique design targeting graph-based recom-
menders, outperforms more general attackers. However, the
optimizing method Fang et al concoct involves knowledge
of the entire bipartite graph. We extend this line of work by
broadening our scope to more realistic attackers that may
only have pieces of knowledge about the recommender and
its underlying network, and thus may only approximate a
principled white-box approach.

2.4 Terminology

For the rest of this report, we use the term entity-item net-
work to refer to a typical user-item bipartite graph (because
in some cases the entities to which we “recommend” items
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are not users). We treat an entity-item network G = (E, I, E’)
as an undirected, weighted bipartite graph. The weight of an
edge (e,i) € E’ corresponds to the rating that entity e € E
assigned to item i € I. Throughout the rest of the paper, we
interchange user with entity, review with edge, and network-
specific items names such as beer or movie with item.

3 THREAT MODEL

We consider shilling attackers on graph-based recommender
systems.

Goals. The ultimate goal of a shilling attacker is to push
some target item i* or have it be the top recommendation for
all e € E. The success of our shilling attackers is measured by
the hit-ratio of i*, which is the percentage of users to which
the target item is recommended. A successful attack would
see the hit-ratio of i* rise significantly relative to its original
value.

Powers Our attacker can inject N entities and M edges
coming from each of the N entities. Besides the M edges,
each entity also adds an edge to the target item i*. In our
experiments we choose modest values for N and M, since a
real-world attacker incurs the high cost of being caught if the
graph is disturbed substantially. As we will see, it benefits
the attacker to keep the value of M low.

Knowledge We separate our attackers into two classes,
white-box and black-box, according to the prior variables
they use to conduct the attack. Our white-box attackers have
total access to the recommender graph while the black-box
attacker does not have any more insight into the internals
of the recommender algorithm than what is immediately
obvious from public data on a popular e-commerce site, e.g.,
the average rating of an item, the number and identity of
users that have rated an item, and the recommendations
that a recommender gives to attacker-made profiles. The
white-box attackers offer a benchmark against which we can
measure the efficacy of our black-box attacks.

4 METHODS

In this section we describe our datasets, our recommender,
and our attackers. We justify the quality of our recommender
as well as our choices of white-box and black-box attackers.

4.1 Datasets

We use three publicly available datasets, MovieLens100k,
MovieLens1M [11], and BeerAdvocate data. The MovieLens
datasets are standard datasets for recommender systems
which contains users (entities) that review movies (items),
with each rating between 1 and 5. The BeerAdvocate dataset
is composed of users that rate beers on a scale of 0 to 5.
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MovieLens100k MovieLens1M BeerAdv.

Entities 943 6,040 33,387
Items 1,682 3,952 66,051
Edges 100,000 1,000,209 1,571,251

Fill 0.0145 0.010 0.0002
Diameter 5 5 8
Cluster Coef. 0 0 0

Figure 1: The three datasets we use and some network
characteristics.

We include statistics from these three networks in Figure
1. Note that

#edges

~ #total possible edges W

The diameter is sampled from 500 nodes in the graph,
meaning it is a lower bound on the true diameter of the graph.
The clustering coefficient is always 0 for bipartite graphs,
because no triangles exist.

We use MovieLens1M and BeerAdvocate to evaluate our
recommender system and MovieLens100k to evaluate our
attackers. In order to provide a null-model for our recom-
mender, we also evaluate it on Erdos-Renyi graphs with the
same number of entities, items, edges (chosen uniformly at
random) as the MovieLens1M and BeerAdvocate datasets.
We constructed the weights of the Erdos-Renyi graphs by
sampling from the distribution of edge weights of their cor-
responding "source" datasets.

4.2 Recommender System

Algorithm 1 MiniPixie Random Walk

1: procedure MINIPIXIE( e, G, a, N, np, ny, )

2 totSteps = 0,V = {}

3 nHighVisited = 0

4 while totSteps < N and nHighVisited < n, do
5: entity = e

6 steps = SampleWalkLength(x)

7 for i = [1: steps] do

8

9

if i # 0 then
: entity = item.randWeightedNeighbor()
10: item = currEntity.randWeightedNeighbor()
11: V[item]++
12: if V[item] == n,, then
13: nHighVisited++

totSteps += steps

14: return V

The recommender system we use to test adversaries is
based on Pixie, a random-walk based algorithm deployed at
Pinterest [6]. The idea of the algorithm is quite simple. When
given an entity e to recommend items for, the algorithm
carries out random walks on the graph beginning from e -
the items with the highest visit count on these random walks
are returned as recommendations to e. We refer the reader
to the original Pixie paper for more detail on the algorithm.

MiniPixie vs. Pixie. There are several differences between
Algorithm 1 and algorithm presented in [6].

e MiniPixie uses a custom SampleWalkLength function
since the authors of Pixie do not disclose their method.
We describe our approach for this function below.

e MiniPixie chooses a weighted edge at random in its
random walk, unlike Pixie which chooses a personal-
ized neighbor at each step.

o Pixie considers recommending to a set of entities — we
do not consider that approach.

e Pixie first prunes the graph before carrying out recom-
mendations on it. We leave the graph as is.

Sampling Walk Length. MiniPixie recommends items to an
entity by carrying out weighted random walks with restarts
starting at that entity. Before starting each random walk, we
need to choose what its length will be (i.e. the number of
steps before restarting). The authors of Pixie do not disclose
their method for parameterizing this choice based on the
value a, so we do the following.

currSteps ~ N(u, o°) (2)
u=aN 3)
o=p (4)

We round each sample to the nearest integer and use that
as our current walk length. The motivation is that « € [0, 1]
functions as a knob that tunes the length of individual ran-
dom walks, while still preserving variability in those choices.
Choosing a close to 0 means that the random walks will be
very small compared to N. Choosing « close to 1 means that
random walks will be very close to N, and thus maybe only
one or two restarts may occur. We keep the variance f§ a
tunable parameter (see Section 5 for details).

Evaluating the Recommender. Despite having key dif-
ferences from the original Pixie algorithm, we argue that
MiniPixie is a reasonable algorithm with which to study
adversaries. We evaluate MiniPixie against two baseline rec-
ommenders: a random recommender that returns items uni-
formly at random from the set of items in the graph, and a
popular item recommender that selects items at random from
the most popular items, where an item’s popularity is its

weighted degree.



Parameter Settings. We set the popular item recom-
mender to recommend from the top 1000 most popular items.
For MiniPixie, we set n, = 30, n, = 4. We use a random
walk of length 1000 with & = 0.01 and f = 20. We chose n,
and n,, based on parameters shown to work well in [6]. The
total number of steps in our random walks is 1,000 because
in [6] the ideal walk lengths are in the 100,000s of steps, but
our graphs are orders of magnitude smaller. We choose «
and f so that each individual random walk has length 10 on
average, with a standard deviation of 20 steps. Note from
Figure 1 that the diameters of these graphs are less than 10,
so each random walk has a non-zero probability of reaching
any item.

Evaluation Metric. We evaluate the recommenders using a
recommendation metric we call the prediction ratio:

1 1 . .
p= e ;5 e Z 1{i e RG\ {e > i}, e,k)} (5)

ieNy(e)

E is the set of entities in the graph, N,,(e) is the set of neigh-
bors of that entity that have an edge of weight w or more, k
is the number of items that the recommendation routine R
returns, and the notation G\ {e — i} means that we consider
the graph G without the edge that connects e and i. Because
computing the prediction ratio over the entire set of entities
is computationally expensive, we calculate prediction ratios
over a subset of entities. We were able to calculate prediction
ratios for 150 randomly sampled entities by running experi-
ments on a Google Cloud n1-standard-16 VM instance (16
cores and 60 GB of memory) over a couple of days.

Results. The results of 36 experiments are shown in Fig-
ure 2. We only consider predicting links in the graph that
have weight 4 or more. MiniPixie dominates among the Top
10 recommendation setting and considerably surpasses the
Popular recommender for MovieLens1M. The Popular rec-
ommender dominates the Top 1000 recommendation setting.
This suggests MiniPixie is able to give more targeted rec-
ommendations to users than the other recommenders. Note
it is expected that the Popular recommender will achieve a
higher success the more recommendations are given, since
popular items are most often rated highly and with high
frequency. Note also that all three recommenders fare about
the same in the corresponding Erdos-Renyi graphs. This im-
plies that MiniPixie takes advantage of the graph structure
of the underlying Entity-Item graph for making informed
recommendations.

From this discussion we conclude that the MiniPixie al-
gorithm is suitable enough for us to utilize in our attacking
experiments. We insist that our purpose here is not to provide
a state-of-the-art recommender system, only to construct a
suitable one with which to carry out adversarial analysis.
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Top 10 Top 100 Top 1000 Dataset
3.80 %* 5.15% 6.09% BeerAdvocate
Random  3.36%" 3.40% 4.17% ER-BeerAdvocate
2.40 % 3.90% 25.87% MovieLens1M
1.17% 3.08 % 25.86% ER-MovieLens1M
4.40% 11.65% 64.80% BeerAdvocate
Popular  3.29%  3.50% 4.84%  ER-BeerAdvocate
2.61% 10.07% 86.84% MovieLens1M
1.25% 3.18% 29.06% ER-MovieLens1M
6.41% 5.52% 36.03% BeerAdvocate
MiniPixie 3.44%* 3.42% 4.04% ER-BeerAdvocate
6.83% 22.66 % 55.83% MovieLens1M
1.14% 3.02% 21.26%  ER-MovieLens1M

Figure 2: Evaluation of recommenders. Given an en-
tity with a missing entity-item link, measure how well
each recommender includes that missing link in the
top k recommendations. Results are shown for 150
randomly sampled entities. Those marked with an as-
terisk used slightly fewer samples.

4.3 Attackers

We now describe our white-box attackers and our proposed
black-box attacker. Note that the sole metric that our attack-
ers aim to maximize is the hit-ratio of the target item after
the attack; that is, the percent of real users in the graph who
receive the target item among their list of recommendations.
Each attacker is configured to create N fake users and M
fake reviews per fake user.

Random Attacker (black-box). Each reviewed item is
uniformly chosen at random. Each fake review rating is sam-
pled from a normal distribution fitted to the real ratings.
Every fake user gives the target item the maximum possible
rating. A similar baseline was implemented in prior litera-
ture [7, 15]. The random attacker is not perfectly “black-box”,
but only requires knowledge of which items exist and the
maximum rating - that is, it does not require any knowledge
of the network structure.

Average Attacker (black-box). Each reviewed item is uni-
formly chosen at random. Each fake review rating is sampled
from a normal distribution with mean equal to the average
rating for that item and a standard deviation of 1.1 (roughly
rating range/5). Every fake user also gave the target item a
max rating review. A similar baseline was implemented in
prior literature [7, 15]. The average attacker is suitable for
the black-box setting since it only assumes knowledge of
the average review rating, which is likely accessible to every
user.
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High-Degree Attacker (black/white-box). The high-degree
attacker sorts all the items by degree, which is equal to the
number of reviews for each item. The top N(M — 1) highest-
degree items are given a fake review with the max rating.
The reviews are assigned to the N fake users in round-robin
fashion. Every fake user also gave the target item a max rat-
ing review. This attacker may be considered either a white
box or a black box attacker (since knowledge of item degree
is often provided openly on platforms, i.e. number of reviews
an item has).

Neighbor Attacker (white-box). The neighbor attacker
chooses an item to review by sampling uniformly from the
set of items that are neighbors of the target item in the
folded item graph. Every fake user also gives the target item
a max rating review. This baseline presumes that recommen-
dations are the product of random walks in the graph. The
hypothesis behind this baseline was that installing edges that
create more paths between the target item and its “neigh-
bors” would increase the stationary probability of the target
item to users overall, especially those who have reviewed
the neighbors of the target but not the target item.

Hill-Climbing Attacker (white-box). The hill-climbing
attacker follows the standard greedy hill climbing algorithm
as appropriate for a bipartite graph. At the i-th step, the
attacker greedily adds the item that maximizes its total influ-
ence set, which is the set of users that are neighboring the set
of i — 1 previously chosen items. The attacker sorts the items
in the order that the items are added. The top N(M —1) items
are given a fake review with the max rating. The reviews
are assigned to the N fake users in round-robin fashion. Ev-
ery fake user also gave the target item a max rating review.
The intuition behind this scheme is that the attacker seeks
to optimize her allocation of fake users and fake reviews to
those items that have the most influence in the recommender

graph.

Random-Walk-Reachability (RWR) Attacker (white-
box). The RWR attacker computes a reachability score for
each item in the recommender graph. Because the recom-
mendation list is generated via random walks, the reachabil-
ity score attempts to correlate with the likelihood that the
item appears in a user’s recommendation list. The reachabil-
ity score of item I is calculated in a Pixie-like fashion: it is
the number of unique users reached via MiniPixie weighted
random walks from I. However, instead of determining the
length of each walk via sampling, we use an exponential
decay function e(P) to anneal the influence of the item and
stop the walk when it falls below a threshold:

e(P) = exp (_fWPPlen) (6)

where

RWR Score vs. Recommended Item Frequency
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Figure 3: RWR Score is positively correlated with rec-
ommendation frequency, so it is an appropriate ap-
proximation.
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Figure 4: Most recommendations come from low de-
gree nodes in the local subgraph of the user as in-
dicated by the dense cluster in the lower left. The
highest-degree nodes have relatively low influence on
recommendations in aggregate.

Wp = " Fimax — Weight(i, ) (7)
(i,))eP

In these equations, Py, is the number of steps taken in the
current random walk P, rmay is the highest rating allowed in
the recommender (5 in our case), and f is a scaling factor.
The random walk is halted when e(P) < T, where T is a

stopping threshold.



We modified the MiniPixie algorithm in this way to turn it
into a measure of reachability. Pixie’s walk length sampling
is appropriate for discovering item similarity. To measure
reachability, however, we want to measure to what extent
an item’s influence flows out to the graph. The exponen-
tial decay function e(P) approximates this magnitude, which
decays as the path increases in length or encounters weak
edges. Thus, the algorithm measures how many users are con-
nected to an item in its local subgraph via high-rating edges.
Those users are likely to receive the item in their recom-
mendation list. Figure 3 illustrates the log-linear relationship
between our RWR reachability score and the recommenda-
tion frequency. The choice of an exponential decay function
is further corroborated by Figure 4, which illustrates the fact
that recommendations are not a product of global factors
like degree, but rather by local structure.

The attacker sorts the items by their reachability score.
The top N(M — 1) items are given a fake review with the
max rating. The reviews are assigned to the N fake users
in round-robin fashion. Every fake user also gave the target
item a max rating review. This is a white-box attacker.

Degree-Weighted RWR (DRWR) Attacker (white-box).

In order to suppress the effect that degree has on inflating the
RWR score and favor local structure, this attacker normalizes
the RWR score by dividing by the item’s degree.

RWR score

DRWR Score =
degree

The attacker sorts the items by their DRWR score. The top
N(M — 1) items are given a fake review with the max rating.
The reviews are assigned to the N fake users in round-robin
fashion. Every fake user also gave the target item a max
rating review. Items with a high DRWR score spread their in-
fluence among a concentrated subgraph of high edge weight,
indicating that they are more susceptible to poisoning. Items
with high degree will dilute influence across many edges
during the Pixie random walk. Therefore, poisoning will be
less effective. This is a white-box attacker.

RWR Approximator (RWR-A) Attacker (black-box).
The RWR approximator attacker is our most sophisticated
black-box attacker. It leverages M fake user nodes and one
scout user. For each of the top 100 items by rating-weighted
degree, the scout 1) adds a single edge to that item, 2) requests
10 recommendations from the recommender, 3) computes
the sum of the degree of all the recommendations and uses
the sum as a proxy value for RWR. The other M fake user
nodes use the ordering generated by the scout to add edges
like the High-Degree Attacker.
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Figure 5: A simple Entity-Item graph, including an at-
tacker and a target item.

Item Set | Hit-ratio
2 0.50
L,L 0.49
L,I; 0.45
L, 15 0.41
L 0.36
L, I; 0.32
I 0.29
%} 0

Figure 6: Hit ratios for illustrative example.

5 ILLUSTRATIVE EXAMPLE

We provide a small example of an attacker in a hand-crafted
network in order to illustrate the key concepts introduced
so far in this paper and to highlight some of the interesting
key phenomena that we later describe in more detail.

Consider the entity-item graph displayed in Figure 5. There
are 4 normal users (E;_4), one Attacker (A), 3 normal items
(I1=3), and one target item (i*). Recall, the goal of A is to add
one or more edges to other items such that i* is recommended
to the largest fraction of entities — that is, to maximize the
hit-ratio. We run 8 trials, one for each of the 23 possible sets
of the three items that A can add an edge to. In order to ac-
count for randomness and for variability in the effect of walk
length, we run these trials across 33 different walk lengths
averaging at length 20. The table below illustrates the hit
rate for each set of items that A adds an edge to:

As expected the hit-ratio for adding no edges is 0 - this is
because the random walks in MiniPixie will only ever reach
nodes connected to the a given user, and every E is discon-
nected from i*. Next, observe that it is better to add an edge
to I; that not — this makes sense given I;’s high connectiv-
ity to E;_4. However, what is quite surprising is that once
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Attacker /M | 1 2 3 5 10

Random 0.0494 | 0.0668 | 0.0537 | 0.0373 | 0.0280
Average 0.0539 | 0.0734 | 0.0617 | 0.0367 | 0.0322
Neighbor 0.0503 | 0.0655 | 0.0496 | 0.0356 | 0.0248
High Degree | 0.0543 | 0.0382 | 0.0348 | 0.0297 | 0.0242
Hill Climbing | 0.0564 | 0.0430 | 0.0397 | 0.0278 | 0.0257
RWR 0.0539 | 0.0478 | 0.0356 | 0.0314 | 0.0248
DRWR 0.0594 | 0.0433 | 0.0356 | 0.0337 | 0.0240

Figure 7: Average hit-ratio from 5 attacks with M fake
reviews per user and 10% of the users being fake on
the MovieLens dataset

you have a good edge, adding edges to less connected items
decreases the effectiveness of the attack! This is one of the es-
sential properties of attacks on graph-based recommenders,
and one that we observe consistently in our experiments.

6 EXPERIMENTS

6.1 The Effect of the Number of Fake
Reviews

Our empirical testing confirmed a strong positive correlation
between the number of fake users N and hit-ratio. But the
more crucial parameter in each attacker is M, the number of
fake reviews created per fake user. To investigate the effect
that this parameter has on the efficacy of the attackers, we
calculated the post-attack hit-ratio for each attacker under
different values of M.

Parameter Settings. We let M = {1, 2, 3,5, 10}. In each
trial, we fixed the number of fake users N to be 10% of all
users in the MovieLens100k dataset. The MiniPixie recom-
mender was configured to return 10 items in its recommen-
dation list using the parameters from the sections above.

Evaluation Metric.The aggregate hit-ratio of a trial, uniquely

identified by the tuple (Attacker, M), was an average of 5
hit-ratios from attacks on 5 different target items which were
the same across all the trials. We calculated the hit-ratio for 5
different items to minimize the variability of the results due
to the choice of item. We do not report the hit-ratio before
the attack because it was always zero or negligible.

Results. The results of the experiment are in Table 1. We
see that all of the attackers performed roughly the same
and there were no extreme outliers. All of the attackers per-
formed optimally with either M = 1 or M = 2 fake reviews
per fake user and the data suggest that adding more reviews
beyond that degrades performance. The Average Attacker
achieved the highest hit-ratio among all the attackers. None
of our novel attackers (Hill Climbing, RWR, DRWR) out-
performed any our baseline attackers (Random, Average,
Neighbor, High Degree).

Attacker / N% | 1% 5% 10% 20%

Random 0.0083 | 0.0350 | 0.0668 | 0.1474
Average 0.0079 | 0.0322 | 0.0734 | 0.1548
Neighbor 0.0108 | 0.0305 | 0.0655 | 0.1410
High Degree | 0.0044 | 0.0220 | 0.0543 | 0.1457
Hill Climbing | 0.0044 | 0.0299 | 0.0564 | 0.1412
RWR 0.0053 | 0.0229 | 0.0539 | 0.1474
DRWR 0.0047 | 0.0346 | 0.0594 | 0.1438
RWR-A 0.0036 | 0.0250 | 0.0564 | 0.1459

Figure 8: The average hit-ratio from 5 attacks with
with N as a percent of the total users on the Movie-
Lens dataset (maximum across M)

6.2 Evaluating Attackers

Having found the optimal range of M, we evaluated our
white-box and black-box attackers against one another on
the MovieLens100k dataset by measuring the hit-ratio after
the attacks as we vary N. The results are in Table 2.

Parameter Settings. Each attacker adds N% fake users to
the MovieLens100k dataset, where N is a percent of the total
number of users in the graph. We configure the recommender
to return 10 recommended items to each user. The attacks
were conducted on the MiniPixie recommender, configured
using the parameters described in the sections above.

Evaluation Metric. As mentioned earlier, the sole metric
we use to measure attackers is the hit-ratio after the attack
is conducted. Our independent variable is N, the number
of fake users added (as a percent). We are interested in the
maximum possible hit-ratio given N across all M. Our prior
experiment revealed that the optimal M is usually very low.

Results. The results in Table 2 mirror those in Table 1.
Namely, our novel attackers perform worse than the baseline
attackers for every N. That isn’t to say, however, that our
novel attackers perform poorly; they are well within range
of the maximum value. There does not appear to be a uni-
versally best attacker, though the Average Attacker is the
closest to being it.

6.3 Discussion

How many fake reviews should | add? From our experiment
in Section 6.1, it is clear that there is a globally optimum num-
ber of fake reviews to create per fake user. Every attacker
performed optimally when it created 1 or 2 fake reviews per
fake user. An intuitive informal explanation for this phenom-
enon is that the optimal role for a fake user is to serve as
a sink that directs random walks that reach it toward the
target item. If the fake user reviews many other items, then
random walks that reach the fake user will walk toward the
target item with a lower probability than before, effectively



diluting the target item’s influence. This phenomenon has
been mentioned in prior literature, as well [7].

How well do the attackers do, and how does the black-box
attacker compare to white-box approaches? It appears that
the graph structure may be too complex for the assumptions
in our novel attackers to be true. The Random Attacker and
Average Attacker are black-box attackers yet perform better
than our principled white-box attackers. This fact suggests
that the graph is home to a variety of different local struc-
tures, which could be explored further via motif-matching.

Because our empirical results suggested that a high M
degrades the hit-ratio, we were surprised to see the High
Degree Attacker perform so well. We expected that the high
degree would cause random walks that reached the target
item to occur with very low probability as there are many
other edges connected to each poisoned item. Its perfor-
mance suggests, however, that decreasing the shortest path
length to the target item for a large number of users (by poi-
soning the highest degree items) is a great enough boon for
the attacker. It is also difficult to say that our DRWR attacker
out-performed our RWR attacker. The adequate performance
of the High Degree Attacker suggests that high degree is not
as significant of a downside as we imagined, so it follows that
DRWR does not perform much better than RWR. It remains
to be seen why exactly the Average Attacker out-performs
the other attackers as we increase N.

One very compelling result to note is that our black-box
approximation of the RWR attacker (RWR-A) matches the
performance of its white-box counterpart (RWR). We were
quite surprised to see that a simple approach to approximat-
ing RWR could produce a similarly performant attacker —
again suggesting that full knowledge of the recommendation
system is not necessary to devise a powerful attacker.

7 LIMITATIONS AND FUTURE WORK

Limitations. There are a handful of limitations with the
presented work. First, we only evaluate our attackers on the
MovieLens 100k dataset, which is both small and may not
capture the structure of a wider variety of deployed graphs
(e.g. Amazon or Pinterest recommendation graphs). Second,
we don’t have access to realistic numbers for attackers and
for recommenders. How many fake profiles can a shilling
attacker create on a site like Yelp, Amazon, or TripAdvi-
sor without being blocked? How many fake reviews can an
attacker add without raising suspicion? Insight into these
questions can help researchers construct realistic attackers
in their studies. Thirdly, we don’t have access to massive
computation power.

Future Work. Future work could also benefit from un-
derstanding more deeply how the particular characteristics
and motif profile of a network affect both recommender and
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attacker performance. Is there anything specific to a recom-
mendation graph that may let us claim a priori how success-
ful a black-box attacker may be? Such a study could shed
light into why the Average Attacker out-performs our other
attackers. We also note that we don’t claim to have produced
an optimal white-box attacker. Future work could adopt the
same approach of approximating a white-box approach with
a black-box attacker but with a provably optimal white-box
attacker. Similarly, future work could consider many more
classes of black-box attackers as have been presented in ex-
tensive surveys [9, 20].

8 CONCLUSION

In this report we have explored how black-box shilling attack-
ers can push a target item in a graph-based recommender. We
implemented MiniPixie, a slimmed-down version of the Pixie
recommender system deployed at Pinterest, and we com-
pared its performance against two baseline recommenders
on four datasets to corroborate its fitness to study attackers.
We then subjected the MiniPixie recommender to abuse by
different classes of attackers: several baseline white-box and
black-box attackers, a more principled degree-weighted RWR
attacker, and a black-box approximation of it.

We find that the effectiveness of shilling attackers is de-
termined more by the expressiveness of the edges that are
added rather than their volume. We present experiments that
corroborate this argument - it seems a shilling attacker that
adds to many fake reviews acts as a bridge for random walks
that pass through it, instead of as a sink that directs ran-
dom walks to the target item. Additionally, we find that our
approximate black-box attacker does about as well as princi-
pled white-box attackers, and that even principled white-box
attackers fare no better than baseline white-box approaches,
suggesting a characteristic robustness in the recommendation
system we utilize.
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