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1 Introduction

The technical challenges and real-world applications associated with recommendation systems are
fundamental. Recommendations can be found in social media products, eCommerce sites, publica-
tion subscriptions, streaming platforms, and etc. As a result, the sophistication of the technology
within these systems has grown enormously and researchers have attempted to develop creative
strategies to optimize recommendation for these applications. One such innovation is the possibil-
ity of recommending multiple related bundles of items. Another is to provide recommendations for
groups of users rather than individuals. One aim of our project is to combine these two ideas by
recommending bundles of video games to groups made up of video game players. Another aim of the
project is to ensure that we make recommendations to the right groups since group recommendation
is compromised when users are randomly selected. We hypothesized that group recommendation
performs better for users with similar features, and therefore we apply community detection and user
clustering in the user-video game network. We adopted various community detection approaches,
especially those working for large graph. We further implement bundle recommendation to user
groups based on obtained community information. Our results indicate that community detection
and user clustering provide insight into group recommendation.

2 Related Works

2.1 Community Detection in Networks

Video-game players generate huge amounts of data as all their actions within any games get
recorded. In the work A Machine-Learning Item Recommendation System for Video Games by
Bertens et. al[2], they propose an item recommendation system for video games by machine learn-
ing. They adapt approaches including extremely randomized trees (ERTs) and deep neural networks
(DNNSs) to build up two models respectively. In the work Generating and Personalizing Bundle Rec-
ommendations on Steam by Pathak, et.al[7], the authors generate a personalized game bundle for a
group of randomly selected users. They build upon Bayesian Personalized Ranking (BPR), which
is trained to estimate ranking of items that are likely to be interacted with. However, both papers
fail to take the community feature of network into account, and require de novo calculation for an
individual user. As the taste of users evolves over time, or when many new users are introduced to
the system, the computation required for such recommendation is not trivial. To improve efficacy
and accuracy of the video game recommendation, we proposed that pre-computation on the com-
munity structure of the game network will facilitate the recommendation process, and community
structure of the user network will enable a more robust recommendation to groups of users.



2.2 Group Recommendation Systems

Developing recommenders for groups of users has proven to be popular in research and in prod-
uct development with these systems having many interesting technical challenges and real-world
applications. Many researchers have opted to modify existing techniques developed for individual
recommendation systems (e.g. content-based, collaborative filtering etc.) by finding ways to in-
terpret a group’s rating or tastes. One common approach is average individual users’ item ratings
in order to get group ratings.[8] Others utilize rank aggregation, which first relies on a model that
predicts individual rank towards the item before aggregating those results for the group.[1] We
aim to combine both methods by averaging user ranks to determine group preference. Another
important consideration is the way in which groups are chosen. In addition to random selection
of users, researchers have considered computing similarity between users (e.g. cosine similarity)
in order to smartly select groups.[4] Ntoutsi et al. use a user clustering approach in Fast Group
Recommendations by Applying User Clustering, in which each user starts in a cluster of their own
and the algorithm updates by merging the two most similar clusters at every step.[6] Our strategy
for group formation is to analyze the network structure of the data before detecting communities
from which groups can be formed, anticipating that this will produce better recommendations than
for groups of random users.

2.3 Bundle Generation for Recommendation

Researchers have developed various ways in which bundles are generated. Mohankumar et al.
present a “GRAB” algorithm that greedily updates items in bundles and then chooses the bundle
that has the lowest ratio of total cost to the individual costs of these desired items.[9] Zhu et al.
limits the items that are allowed to appear in a bundle by calculating the “dominance” between two
items such that items in the final item set cannot be dominated by more than k other items.[11]
We combine the two by greedily selecting from a limited list of items that already exist in bundles.

3 Data Summary

The data we used for our experiments was provided by Julian McAuley, Assistant Professor in the
Computer Science Department at UC San Diego, who published several datasets for recommender
systems research on his lab’s webpage. Under the title Steam Video Game and Bundle Data[T7],
this dataset contains information taken from the Steam video game platform, including 88,310 user
profiles, 10,978 game profiles, 59,305 game reviews, and 615 game bundles. According to McAuley’s
research group, 29,634 users purchased one or more bundles, which suggests that there was a high
demand for bundles at the time. This finding is significant because it validates our objective to
not only generate appropriate bundles, but also to make bundle recommendations. The average
bundle size consists of 5.73 games and approximately 25% of games appear in at least one bundle.
Typically, the more popular games appear in the bundles, as approximately 70% of all purchases
involved games that appear in bundles.

4 Community Detection

4.1 Game/User Graph Generation

The Steam User-Game network is a bipartite network, which contains user nodes and game nodes,
and we perform one-mode projection onto user mode and game mode. Let Cj; be incidence matrix



of user-game net:

1 if user ¢ plays game k
Cir, = .
0 otherwise

One-mode network projection to form weighted user network:

B — Jwi #(games) that 7 and j play
Y10  otherwise

Similarly, weighted game network:

D - JWH #(users) that play both k and [
"7 10 otherwise

We noticed that the original Steam graph (Figure 1a) is difficult to analyze in practice, because
direct projection on the graph will induce the formation of many large cliques. Instead of performing
graph contraction, we reconstruct the graph by limiting the users that only play 100 games or less,
and games that are played by 1000 users or less (Figure 1b). We also eliminated users and games
with 0 degree. The rationale is that (1) users that play too many games may have a broad tastes
and games that are played by too many users trend to be popular game, and those users and games
may provide less community information. (2) the edge contraction algorithm combines cliques into
single “supernodes”, and a lot of information regarding individual users and games will be lost.
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Figure 1: Degree distribution of user nodes and game nodes in original, reconstructed, and projected
graph

We perform projection on the reconstructed graph, and generated the User graph and Game

graph as undirected edge-weighted graphs with the statistics shown in Table 1. and degree distri-
bution are plotted in Figure lc.

Table 1: Statistics of Original, Reconstructed and Projected Graphs

nodes | edges max WCC size | clustering coefficient
Original graph 99288 | 5153209 | 82482 0
Reconstructed graph | 44944 | 225978 44916 0
Projected User graph | 38017 | 14575526 | 38017 0.532
Projected Game graph | 6899 767095 6899 0.535




4.2 Modularity Optimization

After the Steam User and Game graph was generated, we run Louvain’s algorithm|3], which greedily
maximizes the modularity locally over all nodes. Since modularity measures the density of edges
inside communities to edges outside communities, optimizing the value results in the best possible
grouping of the nodes in the network. The modularity @@ of an undirected graph can be expressed
as follows:

1 kik;
Q=5 ; {Az‘j - Zm] d(ci ¢5)

Where 2m is the total edge weights in the graph, A;; represents the edge weight between nodes
i and j, k; and k; are the sum of edge weights for node ¢ and j respectively, ¢; and c; are the

communities of the nodes, and ¢ is an indicator function.

We use the following formula to calculate the modularity change of moving node i to community
C:

AQ( — C) =

2m 2m 2m 2m 2m 2m 2m?2

Where k;;n is the total weights of edges between node i and community C, ). is the total
weights of self-edges of community C, and ), , is the total weights of all edges of community C.

Similarly, we can derive the modularity change of moving node i out of community D as:

AQ(D — i) = — (’M ki (i —ki)>

2m 2m?2

We used the above formula to calculate modularity change when implementing Louvain’s algo-
rithm.

4.3 Graph embedding
4.3.1 Node2Vec

Another method for community detection is graph embedding. The basic idea is to embed nodes so
that the distances in the embedding space reflect node similarities in the original network. There are
many approaches for measuring node similarity, and in this work we use random walk approach by
node2vec[5]. We apply node2vec algorithm on the Steam graph with p = 1 and ¢ = 0.5,1,2. We use
the default settings for other parameters, so each node will be represented as a 128-d embedding
vector. We separate the game nodes from user nodes, and assign communities according to the
community detection results by modularity optimization. We visualize the results using t-SNE.
Figure 2 shows the community clusters for game nodes (upper panels) and user nodes (bottom
panels) with 2-d projection of node embedding by t-SNE.

In node2vec algorithm, different ratios of p/q give us flexibility to perform different tasks. A
small ¢ performs DFS, enables a macroscopic view, and is suitable for community detection, while
a large g performs BFS, and gives us a structural view. Consistently, ¢ = 0.5 and ¢ = 1 performs
better in community visualization especially for the User graph.
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Figure 2: t-SNE plot of game/user node embeddings + community assignment

4.3.2 K-Means

During the Louvain community detection, we found that the size of some user communities is
significantly larger than others, ranging from 300 to 12,000. This could be possible that the largest
community represents the general players who are only playing the most popular games, and thus
all behave similarly. In our case, since we want to choose user groups from clusters where the users
are most close to each other, and also to reduce computational cost, we would like to further break
down the large communities into smaller ones. Therefore, we apply k-means clustering separately
on these larger communities (with size > 1000) from the louvain output with node2vec ¢ = 0.5.

For each community, we want to find an optimal & value to break it down into k clusters. We
experiment with different k& values and use the silhouette score to evaluate the clustering results.
The silhouette score is calculated using mean intra-cluster distance a and the mean nearest-cluster
distance b for each sample.

b(i) — a(i)

@) = oz (al). b@)

We then find the optimal k£ value by comparing the average silhoette scores. As in Figure 3a, each
community has a different optimal £ value with the highest silhouette score. We plot the relation
between the optimal k value vs the community size in Figure 3b, and found that generally they
follow a proportional relation. This is reasonable since for larger communities, we may want to
divide it into more clusters. With this optimal k-means cluster label assignment, we are able to
break down the larger communities. Figure 3¢ visualizes an example k-mean clustering on the
largest community (p = 1, q = 0.5) when k = 10.
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Figure 3: Kmeans clusters on the largest user community embedding

5 Personalized Bundle Recommendation to a Group of Users

5.1 Problem Formulation

While in many cases recommendation systems focus on single items, recent research has been
conducted on the possibility of recommending a bundle of items. Additionally, sometimes it is in
a party’s best interest to consider recommendations for a group of users. This part of the project
combines these two concepts by generating a bundle recommendation for a group of users based on
video game data.

As it stands, there are already preexisting bundles of video games from the Steam dataset from
which recommendations can be made to groups. However, we aim to personalize the bundles we
end up recommending in order to see if we can better cater to users’ tastes. With that being said,
the overall challenge will be to make recommendations such that a group of users will prefer the
personalized bundle to the existing bundles. If we achieve this, then we can count our recommen-
dation system successful. We are also interested in how the type of group affects the quality of
the recommendation, namely the randomness and the size of the group. Thus, we will compare
recommendations for the user communities determined in section 4 of this paper to random groups
of users across different group sizes.

5.1.1 Method Summary

The overall process of generating a personalized bundle recommendation for a group of users is as
follows:

1. Train a model based on the user-game network that predicts a user’s preference towards a
game. We call this the item BPR model.

2. Learn parameters from item B P R model to then train a model that predicts a user’s preference
towards a bundle. We call this the bundle BPR model.

3. Form a group of users for which to generate a bundle recommendation.

4. Using a greedy algorithm, generate a bundle recommendation for this group of users by averag-
ing each user’s bundle preference scores as predicted by the bundle BPR model. Recommend
the bundle with the highest average preference score.

5.1.2 Data Constraints

For the item BP R model, we create a User-Game network similar to the one used in section 4.1 such
that its structure is also bipartite with edges between user nodes and game nodes indicating that



a user has positive sentiment towards (i.e. has purchased) a game; however, we will only consider
games that already exist in bundles. We do this because, as stated in our Data Summary (section 3),
bundles already contain the more popular games and account for around 70% of all item purchases.
Moreover, we evaluate our recommender against existing bundles so keeping the selection of games
consistent allows for fair comparison. For the bundleBP R model, we create a User-Bundle network,
much like the bipartite User-Game network except that game nodes are replaced by bundle nodes
from which an edge connecting a bundle node to a user means that the user has positive sentiment
towards that bundle.

The notation we use to represent our data is as follows: let U = wuy,...,uy be the set of
users who have purchased at least one bundle, I = iy,..., %7 the set of items (games) that exist in
bundles and B = by, ..., bp| the set of bundles, such that each b; C I. For our personalized bundle
recommendation system, |U| = 29634; |I| = 2819; and |B| = 615.

5.2 Item and Bundle Ranking Models

In order to determine a user’s preference towards an item (a game) and a bundle (a group of games),
we train models that will take into account a user’s tastes to produce a personalized result. These
models are based on the foundations of Bayesian Personalized Ranking (BPR), which were derived
by Rendle et al in their paper BPR: Bayesian Personalized Ranking from Implicit Feedback.[10] The
goal of BPR is to derive a personalized ranking >, over items (or bundles). To model the ranking,
we assume an estimator z : U x I — R that encodes the compatibility between a user v € U and
an item ¢ € I, which is used to define the ranking:

ip >u ZTL > i’u,ip >R i'u,in'

where 7, represents a positive item, ¢, represents a negative item, I, represents the estimate for
compatibility between the user and a positive item, and Z,,;, represents the same but for a negative
item.

The first model we implement is an item B PR model, accounting for a user’s preference towards
single items, and the second model is a bundle BP R model that applies information regarding item
preferences (taken from the item B P R model) to estimate user favor towards a bundle. Both models
are trained with respect to an optimization, BPROpt. To determine BPTOpt, we use the following
equation

BPROpt(0) =Inp(>, |0)p(0) = Y 10g (0(Fus,(0) — Fusn (0))) — A 1| (6) |17

(tsip,in)ED

where, o is the sigmoid function, 6 is the parameter vector of the compatibility function, D represents
the training set, A is the regularization hyper-parameter, #,; and Z,;, represent compatibility
estimates that the user u would purchase item p and n respectively. After deriving BPROpt, we
maximize using a gradient descent based algorithm, specifically stochastic gradient descent with
bootstrap sampling. In their paper, Rendle et al. demonstrate that stochastic gradient descent
that chooses uniformly distributed user-item triples randomly with each update performs more
efficiently than traversing the data user-wise with each update.[10]

5.2.1 Item BPR Model

This model aims to estimate a user’s preference towards an item. The training data used in this
model is a list of triplets (u,i,,14,) where u represents a user, i, denotes a positive item (purchased
by the user), and i, denotes a negative item (not purchased by the user). The test/train sets are



divided with an 80/20 ratio. In this model, the estimator function used to calculate user preference
towards an item, Z,,, is based on matrix factorization, and corresponds to the following equation

By = Bs + By Qs

where (3; is an item parameter, P, is a k-dimensional latent parameter vector for a user, and Q); is
a k-dimensional latent parameter vector for an item.

5.2.2 Bundle BPR Model

This model aims to calculate a user’s preference towards a bundle. The training data used in
this model is a list of triplets (u,b,,b,) where u represents a user, b, denotes a positive bundle
(purchased by the user), and b,, denotes a negative bundle (not purchased by the user). Similar to
in the item BPR model, the test/train sets for the bundle BPR model are divided with an 80/20
ratio. In this model, the estimator function used to calculate user preference towards a bundle,
Ty b, makes use of the parameters 3, P, and () that were learned from the item B PR model, in the
following equation

. 1
Fup = B Z (k8 + (uP;) - (wQ;i] + Cep + Ny
b
lEBb

where 1 and w are k x k dimensional matrix adjustment parameters for P and (). ¢, represents the
mean pair-wise Pearson correlation of the items in a bundle b, and N is maxz;cg|B;| that moderates
bundle sizes by rewarding or penalizing them in order to prevent generating bundles of arbitrarily
large sizes.

5.2.3 Evaluation of Models

Both the item BPR and bundle BPR models are evaluated by computing the AUC metric. This
calculates the fraction of times the model in question ranks positive items higher than negative
items correctly when applied to the test set. Formally defined,

1 ) .
AUC = = > 8(&up — Fui > 0)

(w,p,n)€T

where ¢ is the indicator function and T is the fraction of the data withheld for testing.

The models we trained for this paper produced an AUC of 0.84688 for itemBPR and 0.89798
for bundle BPR. Since both models score highly in ranking true positive items higher than true
negative items for users in our test sets, we are confident in using them to determine rankings that
will result in bundle recommendation for a group of users.

5.3 Bundle Generation and Recommendation
5.3.1 Bundle Generation Algorithm

We adopt a greedy algorithm to generate a personalized bundle of games that best serves as a
recommendation to a group of users, (G. This algorithm utilizes preference scores calculated by our
bundle BP R model to guide user tastes as new bundles are presented. For a group of users, we take
the average of preference scores calculated by our bundle BP R model for each user in the group as
the group’s preference score, and the algorithm updates based on this group rating. Taking the
average is a fairly common way of assessing group preference when no explicit group information is
available.[8]

The algorithm’s steps are as follows



1. Create an initial bundle b that contains S randomly-chosen items
2. Randomly select k items I, C I\ {i € b}

3. Form a set B, of new bundles that consist of additions or substitutions to b using items from
I, or removing items from b

4. Through our bundle BP R model, determine preference scores of every user u € GG for bundles
b' € B, relative to the initial bundle b i.e. &y — Tup

5. Let b, be the bundle that has the highest average preference score P among the users in G,
ie. by = argmazyep, (avguec(Tuy — Tup)) and P = mazyep, (AVGuec(Tuy — Tup)). I P >0,
accept b, as the new bundle; else, accept b, with diminishing probability

6. Repeat steps 2-5 until convergence where the final bundle that is returned by the algorithm
serves as the recommendation

5.3.2 Evaluation Method

To evaluate the quality of our bundle recommendations to groups of users, we will assess if a group
prefers existing bundles in the Steam dataset to a newly generated, personalized bundle. Using the
bundle BPR model, we will calculate the group’s preference score towards a bundle by averaging
individual user preferences towards the bundle. The average rank R of a recommended bundle b,
is the number of times a group G prefers an existing bundle b € B

R = |{b € Blavguec(Zup — Tup.) > O}

Intuitively, a personalized bundle b, is a successful recommendation if it maintains a low average
rank since that means we have improved upon the existing bundles by providing a group with a new
bundle its users prefer more. Quite literally, an average rank of 0 means that there are no current
bundles in the dataset that a group prefers more than the recommendation. Since the goal of this
recommendation system is to provide a more personalized approach to bundle generation, beating
any existing product is ideal.

5.3.3 Experiments and Results

For the following experiments, we implement the bundle generation algorithm outlined in section
5.3.1 using S = 3 and k = 5, where S is the size of the initial bundle and k is the number of random
candidate items chosen in each iteration. We first perform community detection on the User graph,
from which we divided the user nodes into 11 communities. We randomly draw groups out of each
community for bundle generation, and we also draw random groups from the entire dataset as a
control. We compare the performance of the algorithm by average bundle rank. The lower the rank
is, the better recommendation it provides.

We randomly pick 1, 3, 10, 30 and 100 users from our communities 10 times and aggregate
the resulting groups. We do the same random selection — this time from all possible users in the
dataset — to form 10 aggregate randomly selected groups. For each group size, we calculate the
aggregate bundle size, average bundle size, and average rank, and plot against the user group size.
Figures 4a and 4b show that the aggregated bundle size and average bundle size is not different with
or without community assignment. However, Figure 4c shows that the average ranks of bundles
generated for user groups within individual communities are lower than that from all users. To
further validate our conclusion, we randomly pick 1 and 10 users from our communities, as well as
users from the entire user dataset, 80 times for bundle generation. Consistently, we observed no



difference in average rank for single user bundle generation, but significantly better performance
for user groups from same the community vs. all users. These results demonstrate that community
detection and user clustering significantly improve group bundle recommendation.
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Figure 4: Bundle recommendation to groups of users made up from the entire graph and from
within individual communities

6 Conclusion

This piece of research demonstrates how to effectively conduct group recommendations. We first
consider the community structural properties of a dataset in order to determine how to best group
users for recommendation. Following that, we apply the principles of Bayesian Personalized Ranking
to a greedy algorithm, which generates a bundle of items according to group preference. Finally,
we make recommendations based on that bundle generation and experiment on real-life data. Our
results are clear: not only does the recommendation system perform significantly better when
community information is considered in the formation of groups, but it also presents groups with
bundles that are more preferred than those that currently exist in the system, demonstrating the
desire for personalization.

However, the recommendation for user groups from the largest user community does not perform
as well as that in other smaller communities. We have attempted to further divide the largest user
community by kMean clustering after graph embedding. We did not observe significant improvement
(data not shown). It is possible that this community does not have obvious clustering properties
and can not be further divided into smaller parts. Future work may focus on other features of the
graph via link prediction and neighborhood detection.

Github Repo

https://github.com/wxy1224/bundle_recommendation
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