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Abstract

In this paper, we analyze various link pre-
diction algorithms on the Amazon product co-
purchasing dataset. We formulate the problem
as an instance of information retrieval where we
are given some query node q representing a prod-
uct, and we want to retrieve a ranked list of the
top products likely to be co-purchased with q.
Although the Amazon dataset contains a lot of
metadata relevant to machine learning for each
product, this paper will focus primarily on rec-
ommendations based on inherent properties of the
network structure. Furthermore, we will analyze
how the performance of each approach degrades
when less co-purchasing information is available.

1 Introduction

Recommendation systems are important in on-
line marketing to both sellers and consumers. On
the one hand, for sellers, recommendation sys-
tems are used to maintain high levels of user en-
gagement. On the other hand, for consumers,
recommendation systems help efficiently identify
items they are looking for. For example, Ama-
zon recommends products to users based on their
purchasing history to encourage future purchases,
and news websites recommend related articles to
readers to maximize ad revenue.

However, recommendation systems usually
face cold-start problems. For example, Ama-
zon uses the co-purchasing information to recom-
mend products, but if a product is new, there is
little co-purchasing information available. Fur-
thermore, it is often not computationally feasi-
ble to track co-purchase statistics for all pairs of
products, and therefore only estimations of the
top co-purchased products may be available for
each product. The question is, how much co-
purchasing information is needed to make good
recommendations?

Suppose you are an online retailer, and when
a user adds an item to their shopping cart, you
have real-estate to display k recommended prod-
ucts, for some value k dependent on the size of
the user’s device. You, however, only have re-
sources to track the top m < k co-purchases for
each product. How well can we predict the top k
co-purchases given the top m? This differs from
work in [6]] where the authors want to predict a
variable number of links that form in a given time
step by learning a metric with some threshold.

We propose several ranking measures to iden-
tify potential co-purchased product pairs, and an-
alyze their performance with various levels of
prior co-purchase information. We show recom-
mendation quality generally increases with more
prior information, but decent recommendations
are obtainable even without any co-purchase in-
formation.



2 Related Work

Grover and Leskovec [6] propose a new algo-
rithm, node2vec, which generates feature embed-
dings for nodes of a graph. The algorithm uses
biased random walks to learn the neighborhood
and structural role of each node in the graph and
encode it in a low dimensional euclidean feature
space. For link prediction, the authors composed
node embeddings into edge embeddings and fed
the edge embeddings into a logistic classifier. The
authors achieved state of the art results using this
method for link prediction in undirected social
networks.

Given our initial analysis of the network, we
suspect that the community embeddings learned
by node2vec will be useful for predicting co-
purchases. However, our graph is directed and
sparser than the networks in this paper. For our di-
rected graph, we will experiment with composing
node embeddings with asymmetric functions to
encode the directionality of each proposed edge.

Liu et al[4] use several machine learning ap-
proaches to predict co-purchase links in the Ama-
zon product co-purchase dataset. The authors
treat link prediction as an instance of binary clas-
sification, where given some proposed edge, they
classify whether the edge looks like a co-purchase
relationship base on product ratings, titles, time of
first review, etc. The authors report their 0-1 accu-
racy on a test set with an equal number of positive
and negative examples.

For our purposes, we can use any binary clas-
sifier to solve the ranking task by simply order-
ing nodes by the score outputted by the classifer.
However, our results show that a high accuracy
in this binary classification formulation does not
necessarily translate to high performance in the
ranking task. In[5] we will describe an evaluation
procedure which addresses the short comings of
this approach.

3 Dataset and Data Prepro-
cessing

3.1 Raw Dataset

We use Amazon
purchasing network
(http://snap.stanford.edu/data/amazon-
meta.html) to find similar products for rec-
ommendations.

product co-
metadata

The data was collected by crawling Amazon
website and contains product metadata and re-
view information. It contains 548,552 differ-
ent products (Books, music CDs, DVDs and
VHS video tapes) and 1,788,725 product-product
edges. Each product description contains most of
the following information (See example[9.1]in ap-
pendix):

e Id: Product id (number O,
unique for each item

..., 548551),

e ASIN: Amazon Standard Identification
Number, unique identifier for each item

e Title: Name/title of the product

e sales rank: sales rank[8] is the rank of the
sale of this product among all the items. The
smaller the number is, the better the sale of
this product is.

e List of ’similar’ products (that get co-
purchased with the current product)

e product categorization

e Product reviews: time, customer, rating,
number of votes, number of people that
found the review helpful

3.2 Data Preprocessing

Since nodes differ in popularity, co-purchase re-
lationships are not necessarily symmetric. In



fact, only 27.23% of co-purchase links are bi-
directional. We represent the dataset as a directed
graph with a node for every product and a node
for every category. There is a directed edge from
product node p; to po if po appears in top co-
purchase list of p;. There is an edge from a prod-
uct node p to a category node c if product p is a
member of category c.

From this original graph G, we create 6 di-
rected subgraphs. First, we define G,, for 0 <
n < 5 by repeating the process of creating G but
only including up to n co-purchase links per node.
For each graph G,,, we will attempt to predict co-
purchase edges that appear in G but not GG,,. Note
that GGy contains only category information and no
co-purchase information, we will therefore also
refer to this as the category graph. We also define
the co-purchasing network as the graph created by
removing all category nodes from G so that only
product nodes and co-purchase edges remain.

3.3 Training and Test set

Most of the products (more than 300,000) have
five outgoing co-purchase edges. For the training
set and the test set, we only choose the products
among these 5-out-degree products. We randomly
select 200,000 product-product edges as our train-
ing set for machine learning method and 1,000
products as our test set.

We run our algorithms on Gy, Gy, Ga, G3, and
G4, separately. Due to the large number of nodes
in the network, we only consider nodes that share
at least one category with the query node. This
greatly reduces the computational power required
for our task while still enabling us to predict co-
purchases on up to 96% of nodes, as illustrated in

4 Network Structure

Our intuition is that similar products should be
purchased together, but initially we cannot be
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Figure 1. This figure shows for each products, how
many of its co-purchased products are in the same cat-
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Figure 2. Common category distribution.

sure if co-purchasing relationships represent sub-
stitutes, complements, or unrelated related prod-
ucts. We can gain insight on these relationships
by analyzing the structure of the network.

Fig 2 shows that most co-purchases have mul-
tiple categories in common as opposed to ran-
domly sampled nodes which have disjoint cate-
gories 99.4% of the time.

As shown in[3] when we include categories and
other known co-purchases in the nearest neigh-
bor calculation, we see an even greater discrep-
ancy between co-purchases and randomly sam-
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Figure 3. The upper plot shows the one-level common
neighbor distribution, while the lower one shows the
two-level common neighbor distribution.

pled node pairs. Furthermore, we measured a
clustering coefficient of ~ .3 on the co-purchase
network. These properties suggest that similar
products are in fact likely to be co-purchased.

S Methodology

5.1 Metrics

Previous work on this dataset [4] used 0-1 ac-
curacy on classification of proposed edges. We
found this metric to be misleading, so we instead

propose two alternative relevant metrics: mean
AUC and Recall@K averaged over each query
node.

Recall@K

Recall@K is the ratio of the number of relevant
products that appear in our top K results to the
total number of relevant products. For instance,
suppose we have room to display K recommended
products to a customer. We’re not too concerned
about the order in which they are laid out or how
many false negatives we get, as long as all the rel-
evant products can be displayed.

AUC

AUC summarizes the expected number of nega-
tive examples that are ranked higher than positive
examples. A score of 1 indicates that all positive
examples are always at the top of the list, a score
of .5 is the expected measure of a random ranking
algorithm, and a score of 0 indicates the algorithm
produces an inverted ranking. AUC is more rele-
vant than recall when the order of our ranking is
important, or when we care about more than the
top K results.

6 Approaches

6.1 Proximity Measures

We define several score functions S(q, p) that rep-
resent relevance of product p to a query node q un-
der various models. Let I';(u) be the set of nodes
within i undirected hops of u.

Preferential Attachment Model

In the preferential attachment model, the proba-
bility of an edge (q, p) forming is proportional to
the product of degree of q and p [6]]. Since our
graph is directed, we modify this definition to be



the product of the outdegree of q and the indegree
of p.
S(a,p) o< deg'p)

Common Neighbors (CN)

Our initial data exploration suggests there is a
strong correlation between common neighbors
and co-purchases, therefore we suggest:

S(q,p) = |T'1(q) NT1(p)|

Resource Allocation (RA) Model

The resource allocation model gives each node
one unit of influence, which divides evenly among
its neighbors [7]. Intuitively, this augments the
common neighbors measure by recognizing that
finding a common category that has size 2 is far
more informative than finding a common category
that, for example, has size 1,000.

1
2

zel'1(¢)NT'1(p) deg(z)

S(q,p) =

Jaccard Index

A similarity metric based on common neighbors

(4].
_ IT1(q) NT1(p)|
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S(q,p)

Common Two-level Neighbors

Number of common nodes within 2 hops of both
p and q.

S(q,p) = [T2(q) N Ta(p)]

Common Two-level Neighbors Weighted by
RA

Sum of reciprocal degrees of all nodes within 2
hops of q and p.
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S(q,p) =

6.2 Logistic Regression Trained Fea-
ture Vector

This approach generates a feature vector based on
the relationship between the two products whose
edge probability we want to predict on. Our goal
is to train the weight vector on the edge features
such that the dot product of the weight vector and
edge features of two products will be high for pos-
itive edges (if they are co-products) and low for
negative edges (if they are not co-products).

6.2.1 Choice of Feature Vector

We picked the following as our edge features:

Jaccard of common categories (JacCategory).
From the graph analysis, we know many products
share the same categories.

Destination sales rank score (SalesScore) cal-
culated from the sales rank r5: 1/(1+4In(rs)). We
assumed that if an item has a higher sales rank,
it sells more than any other items and will more
likely to have more incoming edges in the co-
product graph. Because sales rank ranges from
1 to 100,000s, we choose to take 1/(1 + In(rs))
as our feature so that the sales rank score falls be-
tween 0 and 1 and for large sales rank value, the
sales rank score wont get too small.

Title similarity (TitleSim). We assumed peo-
ple are likely to buy books with similar titles to-
gether. We utilized nltks wordnet to calculate sen-
tence similarity from word similarities. We uti-
lized corpus-based measure [1] and some of its
implementation codes for the calculation[2]]. The
similarity score ranges from O to 1, with 0 mean-
ing no similarity at all and 1 meaning the same
title.

Jaccard of common reviewers (JacReview).
We assumed that more common reviewers be-
tween two products mean more potential common
buyers and they are more likely to be co-products.

For graphs with at least one co-product infor-
mation, we also used the following features: Jac-
card of co-product neighbors (JacNeighbor).



We assumed that two products having same co-
products are likely to become co-products as well.

Jaccard of co-product neighbors total cat-
egories (JacNeighborCat). We assumed if the
neighbors categories are similar for two products,
they are likely to become co-products as well.

Jaccard of co-product neighbors reviewer
set (JacNeighborRev). We assumed that if the
neighbors reviewers are similar, they are likely to
share common buyers as well.

Each of the features chosen is on a range be-
tween 0 to 1 so that its easier for training and eas-
ier for us to compare the weight between different
features.

6.2.2 Parameter Choice

We chose logistic regression as our model be-
cause it produces continuous output which is in-
terpretable as a probability estimation of an edge
being positive. Using this probability, we can
rank other nodes from high to low probability
given a specific query node, representing how
likely they are to be similar products.

We also need to balance the positive and nega-
tive samples [3]. This is because for each node,
we only have at most five co-products in the
ground-truth data of over 500,000 nodes. Positive
edges are exceptionally rare. If we dont balance
the samples, the logistic regression result will
tend to predict every edge as a negative example,
which yields nearly 100% accuracy when sam-
pling edges between two random nodes. This re-
sult is useless when we try to predict links. There-
fore, we balanced positive and negative samples
by putting more weight on the positive samples
during the training so that a mis-categorization of
the positive sample will receive more penalty. The
weight is equal to the ratio of the positive to neg-
ative edges so that the positive edges in total has
the same impact as the negative edges.

7 Evaluation

7.1 Baseline Results

We define three baseline algorithms. Our first
baseline is to rank products randomly. Second,
we recommend products according to their popu-
larity (salesrank). Unfortuntely, salesrank data is
missing for many nodes, but we hypothesize that
the indegree of a product is inversely correlated
to its salesrank. Figure (4| verifies this intuition,
so we include scoring for the preferential attach-
ment model in our baselines as a popularity met-
ric which can be directly inferred from the graph
structure and is more robust to missing data. The
baseline results are shown in tables [I] and
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Figure 4. log mean salesrank per indegree.

In tables[T]and 2] we see that the preferential at-
tachment model seems to quickly approximate the
performance of using a node’s popularity, even
with little available co-purchase information and
does significantly better than randomized rank-
ings. However, it cannot discriminate between
nodes in the (G case, so it does not address the
cold-start problem.

7.2 Network-Structure Approaches

Since many of our proximity measures take on
discrete values, we always break ties in the re-



Random | SalesRank | P.A. Random | SalesRank | P.A.
Go | 0.504 0.703 0.501 Go | 0.012 0.038 0.008
Gy | 0.502 0.702 0.674 G | 0.006 0.036 0.040
Go | 0477 0.705 0.712 G5 | 0.009 0.040 0.053
G5 | 0.491 0.714 0.748 G | 0.008 0.038 0.057
G4 | 0.496 0.714 0.772 G4 | 0.008 0.029 0.062

Table 1. Baseline AUC Results

Table 2. Baseline Recall@ 10 Results

R.A | Node2vec | CN | Jaccard | 2-level CN | 2-Level CN with R.A.
Go | 0.82 | 0.60 0.74 | 0.74 0.74 0.82
G | 0.86 | 0.60 0.84 | 0.84 0.90 0.92
Go | 0.90 | 0.62 091 | 091 0.94 0.95
Gz | 0.93|0.64 094 | 0.94 0.96 0.97
G4 1095 |0.68 0.96 | 0.96 0.97 0.98

Table 3. Proximity AUC Results

R.A | Node2vec | CN | Jaccard | 2-level CN | 2-Level CN with R.A.
Go | 0.17 | 0.02 0.13 | 0.13 0.13 0.17
Gy | 0.3210.02 0.24 | 0.24 0.40 0.47
Go | 0.52 | 0.02 0.40 | 0.40 0.54 0.63
G3 | 0.60 | 0.02 0.52 | 0.52 0.60 0.66
G4 | 0.68 | 0.02 0.60 | 0.60 0.61 0.74

Table 4. Proximity Recall@ 10 Results

maining measures by computing the nodes’ P.A.
scores.

Of all the proximity measures we tested, we
summarize results of interest in tables [3| and
Clearly, common neighbor based approaches
work well when we have sufficient co-purchasing
information, but perform poorly in the cold-start
scenario. Conversely, the resource allocation
model makes good predictions in the cold-start
scenario, but doesn’t benefit as much from the ad-
dition of more co-purchasing data. Therefore, we
decided to try weighing our second-level common
neighbors in a similar fashion to the resource al-
location model and found the resulting measure
dominates others in both in terms of AUC and re-
call.

Interestingly, most of the above measures other
than P.A consider edges to be undirected. We
found that Jaccard, common neighbors, and
2-Level common neighbors following directed
edges performs slightly worse their undirected

variants. This is probably because if node u is
a top co-purchase of v, then v is likely a common
co-purchase of u even if it does not make u’s top
5. In this case, considering both incoming and

Additionally, we found that performance of
these proximity based measures increase nearly
monotonically as we include more prior co-
purchasing information.

We also ran node2vec on each subgraph to ob-
tain 128 dimensional embeddings for each prod-
uct node. We experimented with various func-
tions to create edge embeddings from node em-
beddings including subtraction, the Hadamard
product, and absolute value of the difference be-
tween two node embeddings. We trained a logis-
tic model to recognize whether edges represent
co-purchases or not by sampling from a popula-
tion with 50% positive and 50% negative exam-
ples. On most graphs, we were able to achieve
a validation accuracy around 85% by defining
edge embeddings as the difference between the



Graph Goo | Gt | Goma | Gz | Gona Metrics | Mean AUC | Recall@10

JacCat 0.37 | 0.04 | -0.19 | -0.29 | -0.34 Go 0.82 0.23

SalesScore | 0.20 | 0.18 | 0.16 | 0.16 | 0.15 G, 0.83 0.34

TitleSim 149 | 1.34 | 1.22 | 1.10 | 1.03 Go 0.88 0.42

JacReview | 0.43 | 0.31 | 0.23 | 0.17 | 0.16 G 0.91 0.46

JacNbr - 072 | 1.28 | 1.57 | 1.72 Gy 0.94 0.48

JacNbrCat | - 1.50 | 1.94 | 2.19 | 2.37 Table 6. Logistic Regression Link Prediction Results
JacNbrRev | - 022 1 0.65 | 0.92 | 1.06

Table 5. Weight vector trained on each graph

embeddings of its source and destination node.
This accuracy is comparable to that found in [4]].
When ranking edges by the score from our logis-
tic model, however, ranking performance failed to
even match our P.A. baseline. This demonstrates
that high accuracy on the recognition task doesn’t
necessitate high performance on the ranking task.

7.3 Logistic Regression Trained Fea-
ture Vector

Table [5|shows the weight vector trained from each
graph. From the table, we can learn the relative
importance for each feature. We find that the non-
neighbor features (first four) become less impor-
tant when we get to know more co-product neigh-
bors. Also, neighbor’s common categories (Jac-
NeighborCat), common neighbors (JacNeighbor)
and title similarities (TitleSim) have been impor-
tant factors for co-product prediction. As we
know more co-product neighbors, the common
reviewers of neighbors (JacNeighborRev) have
also become important. The evaluation result also
keeps improving as more co-product information
is added to the graph.

8 Time Complexity

For simplicity, we assume that the number of cat-
egories to which a product can belong is bounded
by some constant. To create a ranked recommen-
dation list for a node q in graph G with n nodes,
we have to iterate over all product nodes in G and

for each node compute a proximity measure. For
our best measure, second level common neigh-
bors with resource allocation, we must explore up
to O(k?) nodes. Finally, we must sort the nodes
by their score which can be done in O(nlogn)
time. The complexity of ranking potential co-
purchases of a node is therefore O(nk?+ nlogn)
time.

9 Conclusions

We found that proximity measures are a good
indicator of whether products are likely to be co-
purchased. We also found that network proper-
ties alone can produce recommendation rankings
comparable to machine learning applied to fea-
tures extracted from product metadata. Moreover,
we demonstrated that the more co-purchasing in-
formation we have, the better our predictions are.

Despite modeling the data as a directed graph,
we found our metrics usually benefit from consid-
ering all edges to be undirected. We suspect this
may explain the poor performance of node2vec
since it was run on the directed graph. We would
have liked to include results using node2vec em-
beddings from the undirected graph, but found
that node2vec required far more computational
resources to run on the undirected graph than we
had available.
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Appendix
Example 9.1 Raw data for one product.

Id: 1
ASIN: 0827229534
title: Patterns of Preaching:
A Sermon Sampler
group: Book
salesrank: 396585
similar: 5 0804215715
156101074X 0687023955
0687074231 082721619X
categories: 2
|Books [283155] | Subjects[1000] |
Religion &
Spirituality[22] |
Christianity[12290] |
Clergy[12360] |Preaching[12368]
|Books [283155] | Subjects[1000] |
Religion &
Spirituality[22] ]
Christianity[12290] |
Clergy[12360] |Sermons[12370]
reviews: total: 2 downloaded:
avg rating: 5

2000-7-28
customer: A2JW670YB8U6HHK
rating: 5
votes: 10 helpful: 9
2003-12-14
customer: A2VE83MZF98ITY
rating: 5

votes: 6 helpful: 5
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