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Abstract—In this project, we explore the bipartite graph between recipes
and ingredients. Previous work primarily used local, count-based metrics to
explore the relationships between ingredients. We conduct a more complete
exploration of the underlying network structure of ingredients through more
rigorous graphical analysis and a novel graph analysis metric for finding
substitute ingredients from edge weights. Further, we exploit advances in
isomorphic problems in natural language processing to explore the latent
flavor space in which ingredients and recipes are embedded. These flavor
embeddings allow us to produce high quality substitute and ingredients pairs,
understand the graph at a more global scale, and automatically generate new
recipes.

I. INTRODUCTION

Ingredients and recipes form a natural bipartite graph ripe with
information about their underlying flavor combinations. For years, only
those experienced in the culinary arts had a true sense of the nature of
this structure, and even then the understanding was strictly empirical
and qualitative. In recent years, researchers have began to look into
mathematically formalizing this network, and attempted to glean insights
from it.

The tools used to gain these insights, however, are now comparatively
elementary. Advances in network analysis have allowed us to gain
a much more global view of the food network. We further present
novel approaches to identifying ingredients’ relations to each other. We
present simple and intuitive novel approaches to finding complement and
substitute metrics using purely network based approaches.

Finally, we explore structures isometric to networks to best explain the
underlying ingredient structure. In recent years, word embeddings have
come in vogue in the Natural Language Processing community. Their
ability to capture meaning based on the context has allowed linguists to
qualitatively define the meaning of words. The words themselves can be
visualized in a graph, where edges are between words in the same context
with some weight defined by how reliant they are on each other. This
is the exact structure of our folded ingredient graph, where ingredients
appear in the context of a recipe. Thus, we choose to represent our
network as a series of food embeddings. We then use these embeddings
to find complements and substitutes that more fully take into account the
ideal context of the ingredient, and propose a novel recipe generation
algorithm.

II. RELATED WORK

Because of the relationship between recipes and ingredients, network
analysis is a powerful tool to elucidate information about human tastes
and preferences, especially as they differ across different geographies.
The model of a ”Recipe Graph” using data from online recipes websites
was first introduced by Ahn et al. in 2011 in their paper Recipe
Recommendation Using Ingredient Networks.

For every recipe on a dataset from allrecipes.com, Ahn et. al first
collected the list of compounds found in each ingredient, and generated
a bipartite graph in which there was an edge between an ingredient x
and a compound y if y existed in x. They then folded their bipartite
graph for analysis, creating a new graph between different ingredients
only, where ingredients i, j have a link between them if they share an

ingredient and the edge has weight w(i, j) = the number of compounds
i and j share.

Finally, they examined five different cuisine types - North American,
Latin American, South European, West European, and East Asian - and
sought out the most authentic ingredients, ingredient pairs, and ingredient
triplets for each cuisine. To do so, they defined prevalence of each
ingredient i in a cuisine c as P c

i =
nc
i

Nc
, where nc

i is the number of
recipes that contain the particular ingredient i in the cuisine and Nc is
the total number of recipes in the cuisine. They then defined authenticity
as the relative prevalence pci = P c

i −〈P c′
i 〉c′ 6=c - the difference between

the prevalence of i in cuisine c and the average prevalence of i in all
other cuisines. They apply the same methodology for ingredient pairs
and triplets that are overrepresented in a particular cuisine relative to
other cuisines by defining relative pair and triplet prevalences.

Using this metric, they found empirical validation for “the flavor
principle,” the idea that differences between regional cuisines are due to
outsize prevalence of a few key ingredients that have distinctive flavors.
For example, East Asian cuisine is heavily features soy sauce, sesame
oil, rice and ginger, while North American cuisine relies on dairy, eggs
and wheat.

In Recipe recommendation using ingredient networks, Teng. et al
expand the notion of an ingredient network to incorporate the relationship
between recipes and ingredients. Using a different collection of online
recipes, they create a graph of ingredients ↔ recipes, with an edge
between ingredient x and recipe y if x is found in the recipe for y.
They then fold this network over to create an undirected graph where
every node is an ingredient, with an edge between ingredients a and b
if they occur in a recipe together, where the edge is weighted by the
Pointwise Mutual Information (PMI) between a and b:

PMI(a, b) = log
p(a, b)

p(a) · p(b)
where

p(a, b) =
number of recipes containing a and b

numberof recipes

p(a) =
number of recipes containing a

number of recipes

p(b) =
number of recipes containing b

number of recipes

They then visualized this network, noticing that it was segregated into
two main clusters: one of savory ingredients, the other sweet.

In parallel, the Teng et al. create a substitute network. To compile
the necessary data, they scraped allrecipes’ user comments looking
for ones that suggested a substitution. The result was a weighted,
directed network that consists of ingredients as nodes. The authors then
eliminated any suggested substitutions that occurred fewer than 5 times
and determined the weight of each edge by p(b|a), the proportion of
substitutions of ingredient a that suggest ingredient b, across all recipes.
They visualized this network using a random walk approach and found
that it was highly clustered in groups of a few ingredients, with many
substitutions leading to a healthier version of a recipe.
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While Teng et al., and Ahn et al., make significant progress towards
a quantitative analysis of culinary relationships, they focus their efforts
almost entirely on local metrics and counts rather than analyzing the
global structure of the graph. Just as PageRank and HITS use global
vector-based analysis to provide significant additional insight over local
and count based analysis, there seemed to be significant opportunity to
use global vector-based methods to better understand the structure of the
bipartite ingredients ↔ recipes graph.

Furthermore, Teng et al. had revealed that beyond just the bipartite
structure of the graph, the graph’s structure reflects a latent structure in
flavor. In particular, given that ingredients are composed of overlapping
sets of flavor chemicals in different amounts, we concluded that each
ingredient could be better modeled as a point in that flavor chemical
space. Similarly, recipes could be modeled as a weighted combination
of their ingredients.

Given those two conclusions, we recognized as an isometric prob-
lem the embeddings models used in natural language processing. The
isometry can be seen as follows:
• Word embedding models attempt to embed words in a latent mean-

ing space. They solve this unsupervised problem by constructing a
supervised one. We can interpret this task as predicting edges in a
contrived graph of words to their neighbors.

• With our flavor embedding, we seek to understand ingredients as
points in latent flavor space. We can do this by predicting edges in
the natural graph formed between recipes and ingredients.

Given the isomorphism between the problems, we wanted to see
if anyone had explored applying word embeddings to flavor spaces.
The furthest exploration online, a post entitled food2vec, is still rather
incomplete; however, it served as a good jumping off point for our
investigation.

In food2vec, Jaan Altosaar deployed fastText, Facebook’s widely used
embedding system, on a dump of recipe strings [4], [6].

His writeup mostly covers results, so details about the methodology—
including his use of fastText rather than word2vec—come from us
looking at his code. He appears to have run fastText with near default
settings: using 100 dimensional vectors, negative sampling, and a skip-
gram task. The dataset is a merging of a raw scrape of AllRecipes and
Ahn et al.’s dataset (which already includes AllRecipes).

Altosaar’s writeup steps through the standard set of word embedding
experiments:
• Projecting the embeddings into two dimensional space.
• Finding “similar” ingredients by cosine distance.
• Doing analogies of the form A : B :: C : D by finding D as the

nearest neighbor of (B −A) + C.
• Using the model to predict an additional ingredient by finding the

nearest neighbor of existing ingredients.
Altosaar makes a valuable contribution by seeing that word embed-

dings can be applied to find embeddings for recipe ingredients, and his
interactive visualizations are excellent; however, problems and oversights
in his methodology leave clear room for future exploration.

First, problems with the dataset muddy the results. As mentioned, the
dataset includes AllRecipes data twice: once uncleaned and once as part
of Ahn et al.’s data. The bias is a problem, as is the mix of cleaned and
uncleaned data. For example, “crushed,ice,twisted,lemon,peel” appears
from an uncleaned drink’s ingredient set, and again as “crushed ice,
twisted lemon peel” from the cleaned data. Different vectors end up
getting generated for the cleaned and uncleaned terms, and it is difficult
to use the results when adjectives like “twisted” show up as a standalone
ingredients. This could be fixed by only using the cleaned data, since the
uncleaned data should be subset of it (ignoring recipes that were added
since the original crawl date.), so that is what we did in our experiments.

Second, and more importantly, the choice to simply run fastText
with default parameters—rather than modify the algorithm to fit the
recipe task—causes problems in the results. For example, as expressed

in the dataset, recipes are atomic, unordered sets of ingredients, while
by default, fastText attempts to preserve positional information in text
through randomly distributed neighboring skipgrams.

Because skipgrams only capture nearby pairings, food2vec unknow-
ingly only attempts to record food pairings. This leads food2vec’s simi-
larity metric to more accurately reflect ingredients that are complements
than it does similar ingredients that could be substituted. For example,
playing with the interactive tool, the words they list as “most similar”
to ‘milk’ are (‘yolk’, ‘chocolate chips & sanding sugar’, etc.). These
neighbors of milk look like ingredients that go well together in cookies,
for example, and this pattern repeats with most other foods where the
results are reasonable.

We believe this to be a result of using the fastText skipgram model
because skip-gram models try to maximize the dot product of the
input vector of each ingredient with the output vector of all those
that appear with it. Since high co-occurrence is roughly transitive and
food2vec considers only input vectors because that is what fastText
outputs by default, we would expect co-occurring ingredients to have
similar vectors. This means that similarity in the vector space would
reflect complementarity rather than the substitutability that one would
expect of similar ingredients.

A better choice would be to modify fastText’s source to consider each
recipe as a whole and to pose supervised tasks capable of capturing
the dual complement and substitute nature of recipes that we—and the
authors of the first two papers described above—underlies the space
of ingredients. We expect to be able to mine ‘substitute similarity’
by switching from skip-grams to a bag-of-words model that captures
the whole recipe at once. Bag-of-words models attempt to predict a
single missing element of a recipe by dotting the average of other
ingredients’ input flavor vectors with the output vector of the missing
ingredient. We would thus expect the dot product between an ingredient’s
input vector and another ingredient’s output vector to reflect the two
ingredients’ complementarity, since that reflects how much the first
ingredient encourages the second ingredient to occur with it. Further,
bagging ingredients into a recipe breaks the transitivity and frees input
vector to represent the flavor space and to be similar for ingredients that
could be substitutes candidates for that missing ingredient.

Finally, the default hyperparameters for fastText were tuned to capture
the meaning of all words in English, with a vocabulary size of 100,000s
of words, so it is unlikely that that they are optimal for capturing em-
bedding flavors. food2vec does not search for better parameters because
fasttext provides no mechanism for validating a given hyperparameter
choice. However, this is likely detrimental to the quality of results
from food2vec. While we picked a good food2vec output for milk
above, many outputs are incoherent. For example, the site suggests
searching for ”cooking apples,” and the following suggestions back as
its similar ingredients: ”suet” (hard loin fat), ”self raising flour,” ”mixed
peel,” ”mincemeat,” and ”black treacle” (molasses). In our experiments
we achieve better results by holding out a validation set, and writing
GPU code to quickly evaluate embeddings by their performance on that
dataset. This allows us to sweep through choices of loss function, vector
dimension, learning rate, and training schedule to maximize the score of
the task on the validation set.

By using a modified bag-of-words model, choosing a more appropriate
embedding size, and using clean data, we hope to be able to embed
ingredients based on flavor and complementarity more effectively than
food2vec.

III. APPROACH SUMMARY

In this paper, we build on the research of Wang, Ahn, and recent
advances in natural language processing to provide a more robust analysis
of the ingredient complement network. In particular, we use Ahn’s dataset
and the complement network methodology introduced in Wang to do the
following:



3

1) We use the structure of the graph, and, in particular, our varying
edge weight definitions to elucidate more information about ingre-
dient complementarity.

2) We gain a more robust understanding of the foundational roles of
ingredients, both globally and by cuisine by applying more rigorous
network analysis tools (namely, an assortment of centrality metrics).

3) We propose a graph-based metric to measure ingredients that are
good substitutes for each other as well as build on Altosaar’s work
and FastText to create an embedding-based approach for graph
visualization, complement and substitute prediction, and recipe gen-
eration. Notably, these metrics do not rely on scraped information
of suggested substitutes, as Wang et al. do.

IV. DATASET

Our dataset (the same one used in Ahn et. al.) consists of 56,498
recipes from 11 different cuisine types scraped off of epicurious.com,
allrecipes.com, and menupan.com. Each cuisine type marks a different
continental region with relatively similar ingredients (North America,
East Asia, Southern Europe, etc). Each data point x is a recipe that
consists of a cuisine type and a list of ingredients; indistinguishable
ingredients (i.e chicken-egg and egg) have been ”merged” to clean the
data set and lead to more clear inferences. Ingredient counts run from
20951 (egg) to 1 (sturgeon caviar). Since the primary two websites used
for data collection (epicurious.com and allrecipes.com) are US based,
recipes skew towards the tastes of the American population ( 80% North
American).

V. GRAPH STRUCTURE

A. Methods

As in Wang et al, we construct the bipartite graph of ingredients to
recipes, then fold that graph to create a weighted, undirected ingredient-
to-ingredient graph. We use three different weight metrics w for any pair
of ingredients i, j:
• Raw Count. Here, w(i, j) is simply the number of recipes that i and
j co-occur in. This scales with the number of ingredients and/or
recipes.

• Pointwise Mutual Information (PMI). We use the same definition of
PMI as Wang et al.:

PMI(i, j) = log
p(i, j)

p(i) · p(j) = log
p(i|j)
p(i)

= log
p(j|i)
p(j)

Note that PMI 1) doesn’t vary with the scale of the graph, and 2)
reflects whether or not i is more likely to occur in the recipe when
j is there than in general.

• Intersection Over Union (IOU). For sets Ri and Rj (the recipes
which contain i and j, respectively) IOU is defined as:

IOU(i, j) =
|Ri ∩Rj |
|Ri ∪Rj |

IOU also is a measure of the likelihood of co-occurrence and doesn’t
scale with the number of recipes or number of ingredients, but,
unlike PMI, it is bounded between 0 and 1 (the log in PMI means
it has domain (−∞,∞))

In order to understand the underlying structure of the recipe graph,
we ran four main centrality metrics on the folded ingredient graphs:
betweenness, closeness, PageRank, and degree centrality. Through these
metrics, we hoped to get a more global view of the relationship
between ingredients. For each ingredient, we measured variance between
their rankings for each centrality metric, and examined the relationship
between rankings in each metric.

B. Results

We began by visualizing our ingredient complement network using Cy-
toscape’s force directed layout. Figure 1 below shows this visualization,

which only included ingredients that occurred in more than 500 recipes
and scaled node sized based on the number of recipes they occurred in.
Interestingly, many of the most common ingredients (egg, vegetable oil,
onion, garlic, wheat, butter, and milk) were very versatile - they were
co-occurred frequently with a very high proportion of ingredients in the
graph - and were positioned around the periphery. Internally, there are a
few distinct clusters: dessert foods in the top left; meats (chicken, pork,
sausage), fish and other food commonly found in entrees in the bottom;
and, finally, appetizers and drinks (wines, cheeses, bread) in the top
center. While offering insight into the structure of the graph, the graph’s
usefulness is limited by the density of ingredients in the center, creating
an opportunity for an embedding-based visualization to offer additional
understanding.

We also examined the overall distribution of recipe frequency, plotting
the rank of each ingredient by number of recipes it appears in vs. the
actual number of recipes it appears in. In plotting this (see Figure 2,
we notice that the number of recipes that the rank i ingredient is in [we
term this n(i)] follows a power law distribution: it is linear on a semilog
scale and concave down on a log-log scale.

We evaluated the centrality rankings for each of the four metrics
described in the methods section. We noticed that the rankings stayed
relatively constant for closeness, PageRank, and degree centrality, but
varied in betweenness centrality. Thus, we decided to visualize the
rankings in relation to one another to understand their underlying
meaning in the context of our food network.

Notice that PageRank and degree centrality, as well as PageRank
and closeness centrality, have virtually the same rankings. There is
almost a perfect relationship between them with extremely little variation.
However, the relationship between Betweenness and PageRank centrality
does have variation.

The three relatively equivalent centrality metrics have a straightforward
meaning - the higher degree the node, the higher the score. Though
this is also true of betweenness, we should look at the nodes with the
highest difference between their PageRank and Betweenness rankings
to see what Betweenness really measures. These ingredients, in order,
are rose, blackberry, malt, strawberry juice, and blueberry. First, notice
that these ingredients are all versatile: they can be used in all three
main recipe categories (dessert, drinks, and dinners). The exception here
is rose, which we think is actually a mistake in the dataset merging
algorithm. The researchers combined ”rose” and ”rosé.” Rose may be
used in some desserts and fancy dinners, whereas rosé is clustered with
drinks, which means that it should accidentally cross through distinct
clusters. Each of the berries makes sense, since berries can be used in
all three recipe clusters. Malt, as well, can be used in types of vinegar,
chocolate, and beer, meaning it ranges all three.

Given the analysis above, we find it redundant to show the top ten most
central nodes in all centrality metrics, but instead show just PageRank
and betweenness (Table 1).

TABLE I: Top Ten Most Central Nodes (Globally)

Ranking PageRank Betweenness
1 egg egg
2 wheat cream
3 butter wheat
4 cream butter
5 black pepper garlic
6 vegetable oil black pepper
7 garlic vegetable oil
8 vinegar vinegar
9 onion olive oil
10 olive oil onion

The top four ingredients for both are the same, and the next six for both
are the same. Egg, wheat, cream, and butter can move between cooking
and baking and probably lie in the shortest path of many of these nodes,
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Fig. 1: Visualization of the folded ingredient complement network. Only ingredients that appear in more than 500 recipes are shown. Node size is
proportional to the number of recipes an ingredient appears in, and edges are colored darker depending on the number of recipes the two

ingredients co-occur in.

Fig. 2: Rank of ingredient i vs. the number of recipes in which it
appears.

Fig. 3: Correlations between various centrality metrics.

making their PageRank and Betweenness scores really high. Along the
same reasoning, the last six ingredients are all extremely common in
cooking, so probably are in many shortest paths there and have high
PageRank scores.

VI. INGREDIENT COMPLEMENTS AND SUBSTITUTES USING

NETWORK ALGORITHMS

A. Methods

We first sought to define complements of ingredients - both on a
cuisine-level basis and globally - using graph-based methods rather than
the count based approaches used in Ahn et al. Additionally, we sought
to generate substitutes directly from the graph without relying on outside
information about substitutes

Complements: We defined the complementarity between two ingredi-
ents i, j using the three different edge weight metrics discussed above:
Count(i, j), IoU(i, j), and PMI(i, j). We were particularly excited
about the predictive effect of PMI because it can be interpreted as a
monotonic transformation of the conditional probability of one ingredient
occurring given the other relative to its baseline probability (that is,
p(i|j)
p(i)

= p(j|i)
p(j)

). However, since PMI is not as robust to ingredients
that occur very infrequently, we also attempted thresholding by recipe
count to avoid ingredients that only occurred once or twice.

Substitutes: We began the substitute task by attempting to define a
graph-based metric that relied on recipe-level information. Following the
intuition that for an ingredient a, the set of complementary and substitute
ingredients to a are nearly disjoint, we wanted to penalize for a high
complementarity. Furthermore, we want to ensure that for any ingredient
b that could be a substitute, recipes in the set of recipes that contain a and
not b (which we will call X) are similar to recipes in the set of recipes
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that contain b and not a (which we will call Y ). Thus, we proposed the
following metric and aim to check the hypothesis that good substitutes
can be defined this way:

suba,b =

∑
i maxj IoU(Xi, Yj) +

∑
j maxi IoU(Xi, Yj)

|A ∩B|+ 1

where Xi is recipe i in X , and Yj is recipe j in Y . This selects the
best matching recipe from X for every recipe in Y and vice versa, and
scores the similarities of the sets according to the similarities of their
matches.

Due to the nature of the definition of our initial substitution metric,
we had to run large computations on the unfolded recipe graph. For
each pair of ingredients, we were effectively exploring all paths of
length 4 between them: we were finding adjacent all recipes adjacent
to each, and then generating a score based on the ingredient overlaps
between a matching of those sets. Because the number of paths increases
exponentially with the path length and has a high branching factor, this
algorithm was computationally infeasible. Our optimized program would
have taken nearly 5 CPU years to run over the recipe graph, so we
continued in search of a more efficient metric.

For our second metric, we began with our intuition that substitutes
appear in similar contexts, and we can construct an efficient metric for
two ingredients appearing in similar contexts by combining our folded
graph weightings. Intuitively, two ingredients appear in similar contexts
if the distributions of ingredients that co-occur with them are similar.
One good metric of similarity between two observed distributions is the
Bhattacharyya distance,

DB(p, q) = − log
∑
x∈X

√
p(x)q(x)

which measures the amount of overlap between two probability density
functions over all samples. We also selected it because it stays constant
if each discrete value of x–ingredient nodes in our case–is subdivided
into multiple identical nodes. Such scale invariance is a good property
for graph metrics, as we argued for PMI and intersection over union.

For our ingredient co-occurence distributions, we define

p(x) =
Rp,x∑
y∈I Rp,y

where Rp,x = the number of recipes that ingredients p and x co-occur
in and I is the set of all ingredients in our dataset. Therefore, our
Bhattacharyya distance metric for the ”distance” between two ingredients
p, q is:

DB(p, q) = − log
∑
x∈I

√
Rp,x∑
y∈I Rp,y

Rq,x∑
z∈I Rq,z

= − log
1√(∑

y∈I Rp,y

)(∑
z∈I Rq,z

) ∑
x∈I

√
Rp,xRq,x

We then computed this metric for all pairs of ingredients and generated
the best highest-ranked substitutes for several ingredients. Rather than
taking several years of CPU power to compute, this metric took 10
seconds to compute for all pairs of ingredients.

B. Results

Complements: We generated the top ten most complementary pairs of
ingredients across all cuisines and weight metrics (See Appendix at the
end of the document for full results). The raw counts across cuisines
show an increased reliance on egg, wheat, dairy products, and vanilla
in North America and Western Europe; olive oil, tomato, and onion in
Southern Europe; cayenne in Latin America; and scallions, cayenne, and
sesame oil in East Asia. Notably, there were some interesting similarities
between South American cuisine and East Asian in their pairings of
cayenne with onion and scallion, respectively.

The PMI and IoU metrics were initially noisier because they are
tainted by the relative infrequence of certain ingredients: if an ingredient
appeared a small number of times, and it occurred with another ingredient
in each of those instances, it would have a very high PMI. This yielded
strange and uninformative complements: in North American cuisine, the
top two complements by PMI were geranium with pelargonium and
fenugreek with turmeric.

To combat this, we sought a blend of the raw count metric with
PMI/IOU to generate more relevant complements. We thresholded to only
include ingredients that appeared in more than n = 25 recipes, which
left ∼ 250 of the original 371 ingredients. With this modified algorithm,
we generated some interesting insights about common food pairings by
region: in North America, traditionally Asian foods and spices had very
high PMI but not as high IoU (katsuobushi and seaweed, katsuobushi and
sake, and a few other pairs were in the top 10); in Southern Europe, these
yielded intuitive pairings (Mango and Papaya, oatmeal and berry, fennel
and pork sausage) as well as one nonintuitive one (Chinese Cabbage
and Salmon); in Latin America, a similarly nonintuitive pairing of blue
cheese and blueberries was suggested.

In general, PMI placed heavier weight on pairs where a single one of
those ingredients occurred very infrequently, leading to more interesting
and less intuitive - but still valuable - results that had lesser alignment
with raw count than IoU did (there is less of a probabilistic meaning of
IoU, so ingredients with low count had less of an effect).

Substitutes: We computed the Bhattacharya Distance (DB(i, j), de-
scribed above) between every pair of ingredients, and ranked them
based on whether they were substitutes. Since we we’re searching
for substitutes and took a negative log of the overlap between the
distributions in our DB calculation, we sorted for ingredients with the
smallest Bhattacharya distance between them. The results can be seen in
the table below.

TABLE II: Top 25 Substitute Pairs by Bhattacharyya Distance

Ingredient 1 Ingredient 2 DB(i1, i2)

pecan walnut 0.0206
black pepper pepper 0.0254

bacon ham 0.0309
romano cheese parmesan cheese 0.0345

green bell pepper bean 0.0348
bell pepper bean 0.0359

red wine white wine 0.0361
chicken turkey 0.0366

pork beef 0.0395
meat beef 0.0403

bell pepper pepper 0.0404
oregano olive 0.0409

fish shrimp 0.0409
meat pork 0.0411

white wine sherry 0.0411
chicken pea 0.0412
tomato bell pepper 0.0417
celery meat 0.0417
wine sherry 0.0424

chicken bell pepper 0.0426
black pepper bell pepper 0.0427

yeast buttermilk 0.0429
white bread bread 0.0431

green bell pepper bell pepper 0.0433
buttermilk cream cheese 0.0435

Notice that, with the exception of the pairings between beans and two
types of bell peppers, the list of the top substitute pairs includes some
of the most intuitive substitutes that are conceivable: pecans for walnuts,
black pepper for pepper, bacon for ham, chicken for turkey, pork for
beef, beef for meat, meat for pork, red wine for white wine, and green
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bell peppers for bell peppers.
Our domain knowledge helps explain why many of our other ”best”

substitutes may be flawed. Some pairings (e.g. bell pepper and pepper)
are ambiguous because pepper could be a different form of the vegetable
or ground black pepper - this is an artifact of the data cleaning
methodology used by Ahn et al. Additionally, it offers insight into the
limitations of our Bhattachryya metric. Consider bell peppers and beans:
they are both staples of Latin American food, and they appear in many
Latin American recipes. So, they have highly overlapping distributions
with other ingredients, even though they are actually complements and
co-occur in many recipes.

Patterns like this manifest themselves in the ingredient-level substitutes
in Table VI: the top 1-2 ingredients listed by score are excellent
substitutes, then the algorithm begins to conflate complements with
substitutes for lower down the list. This is one shortcoming of the
algorithm; while utilizing the graph structure, it is solely edge weight-
based and doesn’t take into effect recipe-level information.

VII. MODELING THE GRAPH WITH FOOD EMBEDDINGS

We have good reason to believe that ingredients are embedded in a
latent space of flavors. Recall that Teng et al. revealed that ingredients are
composed of overlapping sets of flavor chemicals in different amounts.
Thus, each ingredient could be naturally modeled as a point in that flavor
chemical space. Similarly, since recipes are an amalgamation of their
ingredients, recipes can be naturally modeled as a weighted combination
of their ingredients.

This is an even stronger story for using embedding models than in
natural language processing (NLP), where they were originally used and
have had the most impact to date. In NLP, embedding points in meaning
space feels natural, but creating the supervised task often feels forced.
The most popular supervised tasks, skipgram and continuous bag of
words (cbow), arbitrarily and randomly cut streams of words into groups,
slicing mid-sentence and spanning across sentence boundaries. Among
these choices, in NLP skipgram is often chosen, not least because it can
be easily accelerated for large corpora [7].

By contrast, asking a model to predict the ingredient missing from a
recipe is a natural task that would require the model to learn about
ingredient pairings. This maps roughly onto the “bag-of-words” task
from NLP, but solves the issue of having arbitrary boundaries in text.
Recipes—at least in the graph formulation—are sets of ingredients with
clearly defined boundaries.

We modified the source code of fastText to adapt it to this task:
sampling complete recipes, removing an ingredient, and asking the model
to predict the missing ingredient. Formally, we take the mean µ of the
input vectors for the ingredients that remain in the recipe and predict an
output based on µ’s dot product with the output vector of each ingredient.
Both the input and output vectors are parameters to be learned. Further,
we experiment with carrying over fastText’s ability to use sub-word
information from the name of each ingredient to encourage (but not
require) the model to put together ingredients with common substrings
in their names (e.g. “wheat bread” and “rye bread”). This can be done by
modeling ingredient vectors as a mean of a word vector and the vectors
of their constituent n-grams.

A. Hyperparameter Search

Having adapted fastText’s embedding learner to work on the somewhat
isomorphic problem of ingredient understanding, and being cognizant
of the previously described problems resulting from food2vec’s less
thorough approach, we undertook a rigorous hyperparameter search when
training our embeddings.

Note that embedding models are often trained without any validation–
so much so that fastText provides no tooling for validating its vectors
or hyperparameter choices. To address this, we built our own cross-
validation tools: we randomly shuffled the recipe set and held out 10%
of recipes as a validation set. We then implemented a cross-entropy loss

on GPU with PyTorch to be able to evaluate models on the validation
set.

Since the space of possible combinations in an embedding model is
so large, we did mostly pairwise coordinate descent to avoid exploding
the space of possible combinations, starting with those that seemed most
likely to affect future training. All heat maps below use the same low
point on the color scale to enable visual comparisons of progress across
graphs.

Fig. 4: Softmax performs far better than negative sampling with
minimal slowdown. Softmax was therefore used for all future

experiments.

We began by comparing two different loss functions: negative sam-
pling and ordinary softmax loss across a variety of learning rates for
a fixed dimensionality and number of epochs. Negative sampling is
an approximation often used to speed up training on a large output
vocabulary. Since our output vocabulary is small compared to English,
we can feasibly train using full softmax. Since softmax performed far
better with minimal slowdown (see Figure 4), we chose softmax as our
loss function for subsequent experiments.

Fig. 5: To determine embedding size: Sweeping across all embedding
dimensions between 2 and 200, and then until 500 by 20s. We also

varied learning rates. Note asymptotic rather than quadratic-bowl-like
behavior.

We then needed to determine the embedding dimensionality (see
Figure 5). We had expected the model to overfit at large embedding sizes,
but our experiments revealed the opposite. Instead, larger embedding
sizes lowered validation loss asymptotically (see Figure 6). This is
surprising because it indicates complex interactions and contradicts the
idea of a simple flavor compound space advanced in other papers.

To ensure that substitute quality (our ultimate task) also improved
for larger dimensionality, we checked for improvement by dimension
qualitatively. To accomplish this, we found the best substitute for a
constant ingredient over dimension size. For example, we viewed top
substitutes for salmon over several dimension sizes. We find that before
dimensionality of 50, many of the top substitutes are actually vegetables
that pair well with salmon, but as dimensionality grows, top substitutes
fill with other types of fish (e.g. tuna). We therefore chose the embedding
size to be 175, approximately where the the loss hits its asymptote (see
Figure 6).

We then examined the number of epochs we trained for. We sought
to keep runtime manageable for the first sweeps and only trained for
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Fig. 6: Vertical cross section of Figure 5 at the best learning rate.
Approximate asymptote drawn in grey. Embedding size chosen to be

175 which is approximately where the smoothed loss and the grey line
intersect.

20 epochs—4x the fastText default. However, we noticed that there
was significant opportunity for improvement with further training, which
enabled further loss descent and information flow through longer paths
in the graph (see Figure 7).

Fig. 7: Rank of ingredient i vs. the number of recipes in which it
appears.

To reach convergence, we trained the models for 5,000 epochs
(overnight). We validated a variety of learning rates and tested with
and without subword information (see Figure 8). The difference will
be discussed more in the next section.

Fig. 8: Rank of ingredient i vs. the number of recipes in which it
appears.

After cross-validating, we retrained on full dataset to get the best
possible input and output embeddings since futher tasks are generative
and unsupervised in nature.

B. Subword Information and Graphical Structure

Through our hyperparameter search, we found that the loss differed
only slightly between models with subword information and models
without. Models with subword information are trained both using the
continuous bag of words cost function, and according to the character-
level ngrams that exist within them. Thus, the two ingredients ”parmesan
cheese” and ”romano cheese” are more likely to be similar since they

both contain the 6-gram ”cheese”, and carry all semantic meaning that
exists within ”cheese.” In theory, this should lead to a radically better
model of the ingredient space, since words with similar names often
have similar roles in the kitchen. However, the small differences in losses
indicated that the model without subword information had learned most
of this information on its own.

In order to understand why our loss differed from our expectation, we
used t-SNE to graph ingredient input vectors with and without subword
information in two dimensions. By default, to model probabilities of
closeness between nearest neighbors, most t-SNE packages follow the
original paper [8] and use euclidean distance. To better fit our task,
we changed the distance function for t-SNE to use cosine distance,
and plotted the subword and non subword models. Since the full plots
have 382 ingredients, we instead zoom in on subsections of the plot to
highlight the true meaning of ingredients as well as the differences in
embeddings caused by using subword models. We leave the full plots
for the interested reader in the appendix.

Fig. 9: Positive Effects of Subword Information

First, we consider the cluster from Figure 9, a small subsection of the
full plot. Notice that different wines and sherry (similar to cooking wine)
are clustered together on the right, cheeses at the top, mushrooms and
leeks at the bottom, and key Latin American ingredients on the right.
Each of these clusters has a clear, explainable, flavor meaning. Further,
subword information helps cheeses stay clustered together, as well as
with wines.

Fig. 10: Negative Effects of Subword Information

However, including subword information negatively impacts other
clustering (see Figure 10). On the left of the figure, beef broth clustered
with roasted beef and meat because of the shared subword “beef.”
Further, roasted meat clustered with a group of roasted nuts in the middle
because of the shared subword “roasted.” This also moved the nut cluster
in the middle near the meat cluster on the left, even though they serve
different functions in a recipe and rarely co-occur with the exception
of charcuterie. This explains part of why models excluding subword
information performed almost as well.

Examining Figure 11, we observe both the positive and negative effects
of removing subwords. We can still generate high quality clusters (here,
Italian spices are in the bottom right), and an ingredient like lima bean
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Fig. 11: Positive and Negative Effects of No Subwords

(top left) is entirely separate from other beans used in different contexts.
However, this also reveals clear issues. Our ingredient list contains both
“green bell peppers” and “bell peppers,” which in practice are identical
in every way except color. However, this model does not put bell peppers
near green bell peppers, a gaping flaw. Subword information easily
corrected this.

Though there are tradeoffs to using the subword information-based
model, we decided to use it for the remainder of our tasks for 2 reasons.
First, it had lower loss on the validation set, and, second, it had a greater
ability to capture similar words in similar contexts.

VIII. COMPLEMENTS AND SUBSTITUTES WITH FOOD EMBEDDINGS

A. Methods

Complements: Two ingredients are complements if the first ingredient
makes the appearance of the second more likely. In the continuous bag of
words cost function, the “missing” word is found by taking an average
of input vectors for the given bag of ingredients, and finding the dot
product with each other ingredient’s output vector. The maximum dot
product corresponds to the guessed word.

Cbow causes the model to train an input vector of one ingredient to
have a high dot product with the output vector of another ingredient
if the presence of the first ingredient predicts/increases the likelihood
of the presence of the second. Thus, cbow trains output vectors to be
complements of input vectors.

To find the best complement for a given ingredient i with input vector
xi, we find the maximum cosine similarity as follows:

argmaxj

xi · oj
||xi||2||oj ||2

(1)

where oj is the output vector of ingredient j.
Even though the cbow algorithm explicitly maximizes dot product,

we choose to use cosine distance since it does not take into account
the scale of input and output vectors, and thus does not discriminate
against less frequently seen ingredients. Further, we ensured that only
ingredients present in the dataset at least 50 times were considered as
top complements.

Substitutes:
Ingredients can substitute for each other if they play similar roles in

the flavor of a recipe. Since recipe flavor is determined by the input
vectors of its constituent ingredients, ingredients with similar flavor
vectors ought to be substitutes. This aligns with our intuition behind our
Bhattacharyya-distance based metric: that substitute ingredients should
be complements with a similar distribution of other ingredients. In our
embedding approach, ingredients that appear in similar contexts will have
similar values because they will recieve similar gradient updates. Note
that as long as we use cosine similarity, this is true even if one ingredient
is far more popular than the other, and thus has a larger magnitude from
more gradient updates. However, unlike with Bhattacharyya-distance, the
embeddings model can still learn that two ingredients are substitutes if
they occur with different ingredients that are themselves complements.

Equipped with this intuition, for an ingredient i with input vector xi,
we say its best substitute (represented by index j and input vector xj)
is:

argmaxj

xi · xj
||xi||2||xj ||2

(2)

Again, we use cosine similarity instead of dot product to make sure
that we do not discriminate against less frequent ingredients, and have a
frequency cutoff to make sure extremely rare ingredients do not appear
as substitutes.

B. Results

Complements: In order to fully assess the validity of our embedding
based complement metric, we need to do an in depth qualitative analysis
of the top complements globally and for a select group of ingredients.

TABLE III: Top 25 Complement Pairs with Embedding Model

Ingredient 1 Ingredient 2 S(i1, i2)

cured pork mozzarella cheese 0.1814
cured pork provolone cheese 0.1706
cured pork parmesan cheese 0.1417
black bean cheddar cheese 0.1416

berry cranberry 0.1390
pimento cheddar cheese 0.1338
rye flour whole grain wheat flour 0.1294

veal romano cheese 0.1233
egg noodle cottage cheese 0.1231
cured pork macaroni 0.1224

romano cheese mozzarella cheese 0.1222
corn grit cheddar cheese 0.1222

berry blackberry 0.1219
provolone cheese mozzarella cheese 0.1219

artichoke parmesan cheese 0.1202
egg noodle cheddar cheese 0.1168

porcini parmesan cheese 0.1167
sauerkraut swiss cheese 0.1167
brassica chinese cabbage 0.1164

cured pork romano cheese 0.1158
romano cheese macaroni 0.1155

peanut peanut butter 0.1153
blueberry blackberry 0.1139

roasted peanut peanut butter 0.1137
broccoli cheddar cheese 0.1123

Notice that the top three best complements are cured pork with
cheeses. These make perfect sense, cheese and charcuterie are known
in the culinary world as perfect complements. Most pairs further down
the list are also commonplace complements. Anecdotally, we were at
first concerned to see egg noodles paired with cottage cheese, but, after
further research, we found that epicurious users are quite fond of Polish
Noodles - the recipe currently has 4.5 stars on allrecipes [9].

Additionally, our complement metric is not symmetric, since we
compare the input vector for ingredient 1 and the output vector of
ingredient 2. In plain terms, we can interpret the first ingredient as the
“base,” and the second as the complement that adds to the flavor of the
first. We believe that inherently ”complementary” ingredients may appear
more frequently with high complement scores. Cheese is rarely eaten by
itself, but is known to be a good addition to many foods, which is why
it appears so many times in the top 25 as the second ingredient (but not
the first).

Given this understanding of top complements for our embeddings
based model, we dive deeper into the comparison between the embed-
dings model and the graphical analysis model.

On the whole, both metrics provide high-quality, intuitive results.
The top complements for walnuts are other nuts and dried fruits. The
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TABLE IV: Top 5 complements for select ingredients by both the
graph- and embedding-based models

Ingredient Metric Top 5 Complements
walnut Embedding date, banana, berry, fig, coconut

PMI date, raisin, oat, fig, banana
salmon Embedding wasabi, dill, clam, horseradish, cognac

PMI wasabi, dill, cognac, smoked salmon, horseradish
bread Embedding romano cheese, provolone cheese, swiss cheese, veal, cured pork

PMI provolone cheese, swiss cheese, mozzarella cheese, lovage, veal
wine Embedding cured pork, peanut oil, star anise, porcini, veal

PMI okra, peanut oil, star anise, cured pork, pork sausage
onion Embedding black bean, kidney bean, cured pork, avocado, egg noodle

PMI tamarind, red kidney bean, kidney bean, green bell pepper, lentil
clam Embedding mussel, lobster, squid, enokidake, saffron

PMI mussel, squid, enokidake, kelp, scallop
parmesan cheese Embedding cured pork, artichoke, porcini, mozzarella cheese, provolone cheese

PMI macaroni, mozzarella cheese, porcini, artichoke, provolone cheese
lime juice Embedding lime peel oil, tequila, avocado, lemongrass, roasted peanut

PMI lime peel oil, tequila, lemongrass, thai pepper, mango
cod Embedding enokidake, pimento, saffron, beer, mussel

PMI mussel, enokidake, lobster, beer, saffron
sesame oil Embedding roasted sesame seed, peanut oil, chinese cabbage, seaweed, shiitake

PMI roasted sesame seed, matsutake, chinese cabbage, nira, seaweed

complements for sesame oil are other East Asian ingredients. The
complements for parmesan chesese are all things that go nicely with
cheese on top. Since the results for the embedding metric and the graph
metric both are fairly obvious options, it is hard to evaluate which is
truly ”better.”

Given our understanding of the underlying graph and definition
of complements, this makes sense. Complements are defined by two
ingredients that go well together. This is not a global task, but instead a
local task. Since both graphical analysis and embeddings capture local
structure, they should have relatively similar performance. This differs
from substitutes, which cannot be gleaned from purely local structure.

Substitutes:
We performed the same analysis with substitutes, where we measured

the top 25 best substitutes according to our input-input similarity metric.

TABLE V: Top 25 Substitute Pairs with Embedding Model

Ingredient 1 Ingredient 2 D(i1, i2)

romano cheese parmesan cheese 0.7583
peanut oil peanut 0.7431

lime lime juice 0.7403
bell pepper green bell pepper 0.7345
strawberry raspberry 0.7341
sesame oil soy sauce 0.7065

pecan walnut 0.7025
pepper bell pepper 0.6723

strawberry blueberry 0.6716
orange peel orange 0.6698

bread white bread 0.6664
peanut peanut butter 0.6648

bell pepper garlic 0.6629
sesame seed roasted sesame seed 0.6559

blueberry raspberry 0.6424
soybean soy sauce 0.6313
scallion sesame oil 0.6279

bean black bean 0.6274
pepper green bell pepper 0.6221

black pepper bell pepper 0.6168
vanilla cocoa 0.6153
cilantro lime juice 0.6144

soy sauce scallion 0.6132
strawberry peach 0.6111
blueberry peach 0.6045

In Table V, notice the top substitute pair is romano and parmesan
cheese. These two cheeses are so similar that people often buy the wrong
type at the store. At first glance, it seems like a large majority of the
substitutes are due our subword information model. This helps with pairs

like bell pepper and green bell pepper, or sesame seed and roasted sesame
seed. However, looking closer, we see many substitutes that are more
nuanced. Sesame oil and soy sauce are both used to create a base of flavor
for East Asian cuisine. Walnut and Pecan are used in similar contexts for
desserts and salads. Vanilla and Cocoa are the defining flavor behind a
dessert. Garlic and Peppers server as base aromatics. These are all well
known, complex substitutes that give insight into the way recipes are
created.

Now that we have calculated substitute metrics from our graph based
and embeddings based models, we can compare their results on an
ingredient-level basis. In Table VI, we see the top five substitutes for ten
popular ingredients. At a high level, the results are similar and impressive
for both metrics. For each ingredient and metric, the top substitute, along
with the majority of the top five substitute, makes qualitative sense. Lime
juice is substituted for other Latin flavors; clam is substituted for other
shellfish.

The difference is more apparent when looking at the errors in the sug-
gested top 5 substitutes. As described earlier in the paper, Bhattacharyya
distance can conflate substitutes and complements. While the embedding-
based model picks other aromatics and spices at the top four substitutes
for onion, the graphical model chooses meat and bread along with pepper.
Onion pairs with meat and bread to make burgers and sandwiches, but is
by no means a substitute. In the same vein, both models pick pecan and
almond as the top substitute for walnut. However, while the embedding-
based model finds other nuts and fruits as substitutes (hazelnut, apple,
nut), the graph based model finds strange results (lard, nutmeg). It is
worth noting that even though nutmeg has the subword nut in it, the
embedding model is powerful enough that it understands walnut is a
nut and nutmeg is a spice even though the two share this information.
The early drop off in substitute quality is easily seen in most of the
Bhattacharya based predictions in the table.

TABLE VI: Top 5 substitutes for select ingredients by both the graph-
and embedding-based models

Ingredient Method Top 5 Substitutes
walnut Embeddings pecan, almond, hazelnut, apple, nut

Bhattacharyya pecan, almond, lard, cherry, nutmeg
salmon Embeddings smoked salmon, tuna, crab, chervil, lobster

Bhattacharyya chicken, fish, tuna, asparagus, shrimp
bread Embeddings white bread, rye bread, wheat bread, artichoke, macaroni

Bhattacharyya white bread, parsley, bacon, potato, cheese
wine Embeddings sherry, red wine, white wine, grape juice, shallot

Bhattacharyya sherry, white wine, rice, red wine, pork
onion Embeddings green bell pepper, black pepper, bell pepper, garlic, kidney bean

Bhattacharyya bell pepper, meat, black pepper, bread, pepper
clam Embeddings shrimp, crab, oyster, mussel, lobster

Bhattacharyya shrimp, fish, mussel, cod, scallop
parmesan cheese Embeddings romano cheese, mozzarella cheese, cheese, olive oil, cured pork

Bhattacharyya romano cheese, cheese, mushroom, mozzarella cheese, basil
lime juice Embeddings lime, cilantro, mango, peanut oil, coconut

Bhattacharyya lime, cilantro, mango, cumin, avocado
cod Embeddings crab, pea, squid, catfish, clam

Bhattacharyya shrimp, chicken, clam, pea, scallop
sesame oil Embeddings soy sauce, scallion, soybean, chinese cabbage, roasted sesame seed

Bhattacharyya sake, soybean, radish, soy sauce, shiitake

There are two results in the table that require a more in depth focus.
First, a discerning reader may postulate that subword information drives
input vector similarity, and causes high performance on ingredients like
bread. To further understand the effect of subword information, we
ran the same substitution test on embeddings trained without subword
information, and found that the top 3 substitutes remained the same. This
suggests that embeddings hold similar roles in the absence of subword
information. Second, consider substitutes 4 and 5 for lime juice and the
role of peanut oil in Asian cuisine, as well as coconut milk (which is
considered as the same as coconut by our embeddings) in Southeast
Asian cuisine. These are liquids that add flavors to bastes and marinades
the same way lime juice works for Latin American food. This suggests
that due to the more global nature of our embeddings, we are able to
capture substitutes from radically different cuisine types. The results for
Bhattacharya substitutes, cumin and avocado, do not show the same
breadth. We believe that given these results, we may be able to use
embeddings to gain new insights into the roles of ingredients.
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IX. AUTOMATIC RECIPE GENERATION

Given the success of embeddings in predicting complement and
substitute ingredients, we were excited to explore their effectiveness
in automatically generating recipes. The recipe generation problem is
defined as follows: seed in a list of current ingredients, and produce the
best recipe possible by only adding ingredients to the list.

In our first generation algorithm, we used a model nearly identical to
finding complements. A recipe was defined as the mean of its ingredients,
and we computed the average cosine similarity between the recipe input
vector and all output vectors. We treated the resulting score vector as a
probability distribution by performing softmax over it, then sampling at
random from said distribution. We did this iteratively until the selected
ingredient was the stop token.

This algorithm, though good in theory, was ultimately unsuccessful.
Since cosine similarity is normalized between -1 and 1, the proba-
bility distribution created by softmax was nearly uniform. Thus, we
found extremely long recipes (because the stop token was not correctly
guessed), and extremely nonsensical recipes (because ingredients were
picked nearly uniformly at random).

In a second attempt, which we will refer to as the “dot product
method,” we replaced cosine distance with dot product before taking
the softmax and creating a probability distribution. The dot product
increased the likelihood of guessing the stop token since it has a high
prior, and by adding a temperature multiple to adjust the entropy of the
distribution, we created a non-uniform probability distribution. As seen
in Table VII, recipes start to make sense. However, as in the case for
the third and fourth seed ingredients in the table, we still have the issue
of long recipes. Referring back to the t-SNE graph, certain types of
ingredients are clustered together. Every ingredient from a cluster added
to the recipe moves the recipe input vector closer to the centroid of the
cluster. If an input vector is close to the centroid of said cluster, it will
just spit out predictions from that cluster. In Table VII, both the third
and fourth recipe started out in the heart of the East Asian cluster, and
even though they may have found a good fit, rolled through that fit, and
predicted 20+ ingredient recipes.

TABLE VII: Recipe Generation Results

Seed Ingredients Method Generated New Ingredients
onion, lamb DP bread, garlic, olive oil

IC bread, marjoram, feta cheese
tuna, rice DP mushroom, green bell pepper, onion, tomato,

pea, cayenne, garlic, thyme, pepper
IC seaweed, wasabi, sesame seed, sake, radish

squid, kelp DP clam, soybean, enokidake, sake, radish, shiitake,
chinese cabbage, roasted sesame seed, (15 more)

IC wasabi, sake, seaweed, radish, enokidake
soy sauce, sesame oil DP roasted sesame seed, sake, scallion, soybean,

ginger, chinese cabbage, fish, (12 more)
IC sake, squid, shiitake, chinese cabbage, oyster,

roasted sesame seed, enokidake, radish, clam
cocoa, butter, egg DP vanilla, wheat, coffee, milk, pecan

IC banana, rum, coconut, macadamia nut

Our revised and final recipe generation strategy, “Intersection of
Complements,” works as follows. As in the initial algorithm, at every
iteration, we take the mean recipe input vector and use cosine similarity
to find the best matching output vectors. We then select the top h1 best
matches by cosine similarity, and form a set of potential next ingredients.
In parallel, for each of the individual ingredients currently in the recipe,
we form a set from their h2 best complements where h2 > h1. We then
perform a set intersection on all of the generated sets to find the set of
potential ingredients, and select from it uniformly at random. We end
iteration when either the stop token is predicted, or no ingredients are
in the set intersection.

To understand why this algorithm works so well, we dive further into
our constants h1, h2. To ensure that our recipe as a whole generates the
best possible match for its flavor profile, we set h1 to be low (in our
case, around 5), since it says we can only select a new ingredient if it
works well with the overall flavor profile of our recipe. We set h2 to

be relatively larger (in our case, around 40). This constant ensures that
for every ingredient currently in the recipe, it loosely goes well with
the new ingredient. By enforcing this constraint, we ensure that no two
ingredients that interact poorly will be added to our recipe.

Inspecting the results, we see clear improvements with this algorithm.
Notice that recipes no longer become unrealistically long. This suggests
that our h2 constant is effective in eliminating poorly matching ingredi-
ents.

Consider the first recipe starting with onion and lamb. Since dot
product relies on priors, it adds all common ingredients: bread, garlic,
and olive oil. However, when running IC, we optimize for good fits
with each ingredient. Here, the recipe created includes bread again, but
then makes sure to find ingredients that still go well with lamb. This
is why marjoram and feta cheese, two Mediterranean / Middle Eastern
ingredients, are paired with lamb, which is common in those cultures.
These same effects can be seen at play in the recipe seeded by tuna and
rice. For DP, we see common ingredients that do not necessarily all go
well together. Mushrooms, tuna, peas, and cayenne don’t individually
go well together. Inspecting IC, we see that it predicts our tuna and rice
should have seaweed, wasabi, sesame seed, sake, and radish. These are
the exact ingredients to an ahi sushi plate with a cup of sake and little, cut
radishes. Finally, compare the two recipes seeded by cocoa, butter, and
egg. DP produces a recipe that also has vanilla, coffee, and wheat in it.
The flavors appear to conflict instead of complement each other, though
on a whole they are in the dessert cluster. IC, on the other hand, creates
what appears to be mixture of chocolate cake and rum-banana-coconut
pie, which may delight those with a sweet tooth.

X. CONCLUSION

Here, we successfully build upon previous research into both the
graphical structure of recipes and natural language processing to develop
a deeper understanding of food and recipe construction. First, we use
graphical tools, including PageRank and other centrality metrics, to
understand the pillar ingredients of various cuisines. We also evalu-
ate the most complementary ingredients using various edge weighting
metrics (Raw Count, PMI, and IoU) to elucidate the best substitutes
by cuisine type. Next, we created a novel graph-based metric that
leverages Bhattachryya Distance to mine ingredient substitutes from
network structure without relying on recipe comments or substitution
tables. Finally, we used a modified version of the fastText algorithm
to train food embeddings, then utilized these embeddings to determine
ingredient complements and substitutes as well as to generate substitutes.

On complements, substitutes, and recipe generation, we achieved
great success with both our graphical and embedding-based models: the
ingredient pairings and recipes generated were highly intuitive and in
line with staples of American or Asian food. Notably, our embeddings
are able to capture more of the structure of the ”flavor space,” as seen by
their superior performance on the complement and substitute tasks and
the more robust clustering offered by their corresponding visualization.
This is a result of incorporating data at the level of an individual recipe
rather than in aggregate.

Our data also suggests natural future directions: first, using a neural
network-based training model. We trained for 5,000 epochs on our dataset
without loss converging to 0, suggesting complex non-linearities in our
dataset that aren’t captured by the simplicity of the fastText model. To
that end, we would like to explore a feed-forward neural network over the
embedding’s outer product to train embeddings. Additionally, our recipe
generation was highly biased towards North American and East Asian
food as a result of the recipes we trained on being over 80% American
or Korean; we’re excited by our model’s capability to generate recipes
in other cuisines as well given training data from them.
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APPENDIX A
FULL T-SNE VISUALIZATIONS
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Fig. 12: Visualizing Embeddings with Subword Information in in 2D via cosine-distance t-SNE.
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Fig. 13: Visualizing Embeddings without Subword Information in 2D via cosine-distance t-SNE.
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APPENDIX B
GRAPH COMPLEMENTS BY CUISINE AND METRIC

Figure: Most complementary ingredients by cuisine type and edge weight metric, only considering ingredients that appear in> 25 recipes

Ingredient 1 Ingredient 2 Raw Count Ingredient 1 Ingredient 2 IOU Ingredient 1 Ingredient 2 PMI
egg wheat 11456 fenugreek turmeric 0.81410256 katsuobushi seaweed 8.37701116
butter wheat 10940 coriander fenugreek 0.71026723 galanga lemongrass 7.31761959
butter egg 9304 coriander turmeric 0.63793103 black_mustard_seed_oilquince 7.27839887
milk wheat 7355 egg wheat 0.52516732 bone_oil veal 6.48374475
egg milk 6942 butter wheat 0.48236332 citrus katsuobushi 6.44215085
butter milk 6621 coriander cumin 0.40182055 katsuobushi peanut_oil 6.33679033
vanilla wheat 6142 butter egg 0.3794144 flower lavender 6.25982929
egg vanilla 6114 milk wheat 0.36459624 black_mustard_seed_oilstar_anise 6.23243032
garlic onion 5858 garlic onion 0.35387218 katsuobushi sake 6.03668574
butter vanilla 5545 cumin fenugreek 0.35034483 galanga thai_pepper 5.96522678

Ingredient 1 Ingredient 2 Raw Count Ingredient 1 Ingredient 2 IOU Ingredient 1 Ingredient 2 PMI
garlic olive_oil 1760 chinese_cabbagenira 1 chinese_cabbagenira 10.9419605
olive_oil tomato 1250 garlic olive_oil 0.58028355 chinese_cabbagekiwi 10.2488133
garlic tomato 1196 fenugreek turmeric 0.54545455 kiwi nira 10.2488133
olive_oil onion 1063 chinese_cabbagekiwi 0.5 kiwi papaya 10.2488133
garlic onion 962 kiwi nira 0.5 bourbon_whiskeywhiskey 9.55566616
onion tomato 866 kiwi papaya 0.5 seaweed sweet_potato 9.55566616
basil olive_oil 831 garlic tomato 0.46392552 cassava seaweed 8.99605037
basil garlic 830 basil tomato 0.4296496 mango papaya 8.99605037
basil tomato 797 olive_oil tomato 0.42301184 berry oatmeal 8.54406525
olive_oil parsley 786 fennel pork_sausage 0.41561713 chinese_cabbagesalmon 8.45705387

Ingredient 1 Ingredient 2 Raw Count Ingredient 1 Ingredient 2 IOU Ingredient 1 Ingredient 2 PMI
cayenne onion 1496 bourbon_whiskeywhiskey 1 bourbon_whiskeywhiskey 10.9419605
garlic onion 1456 garlic onion 0.66121708 cashew fig 9.55566616
cayenne garlic 1413 cayenne onion 0.63497453 kale okra 9.55566616
onion tomato 1338 onion tomato 0.62319516 fig lemon_peel 9.33252261
cayenne tomato 1278 cayenne garlic 0.61838074 roasted_sesame_seedsesame_oil 9.33252261
garlic tomato 1231 garlic tomato 0.58619048 blue_cheese blueberry 9.15020105
cumin garlic 715 cayenne tomato 0.56875834 cauliflower wasabi 9.15020105
cayenne cumin 709 fenugreek turmeric 0.5 fig orange_peel 8.99605037
cumin onion 688 cumin garlic 0.38235294 leek turnip 8.86251898
cayenne corn 678 black_pepper oregano 0.37952559 porcini shiitake 8.86251898

Ingredient 1 Ingredient 2 Raw Count Ingredient 1 Ingredient 2 IOU Ingredient 1 Ingredient 2 PMI
butter wheat 947 fenugreek turmeric 0.94444444 chinese_cabbagenira 10.2488133
egg wheat 932 cumin fenugreek 0.72340426 octopus papaya 10.2488133
butter egg 817 cumin turmeric 0.72340426 gin tequila 9.55566616
egg milk 509 coriander fenugreek 0.60714286 matsutake wasabi 9.55566616
milk wheat 503 coriander turmeric 0.60714286 brassica kale 9.55566616
butter milk 463 lavender savory 0.5862069 lemongrass octopus 9.33252261
cream egg 403 egg wheat 0.56519102 nira roasted_sesame_seed9.33252261
butter cream 384 coriander cumin 0.55384615 black_bean peanut_oil 8.99605037
butter onion 332 butter wheat 0.54866744 red_bean sesame_seed 8.86251898
cream wheat 328 chinese_cabbagenira 0.5 shellfish squid 8.86251898

Ingredient 1 Ingredient 2 Raw Count Ingredient 1 Ingredient 2 IOU Ingredient 1 Ingredient 2 PMI
garlic scallion 889 cumin fenugreek 1 caraway cauliflower 10.9419605
garlic soy_sauce 847 cumin turmeric 1 bitter_orange kumquat 10.9419605
cayenne garlic 778 fenugreek turmeric 1 cognac fig 10.2488133
scallion soy_sauce 754 caraway cauliflower 1 champagne_winepalm 10.2488133
cayenne scallion 693 bitter_orange kumquat 1 oatmeal raspberry 10.2488133
garlic sesame_oil 676 grape lima_bean 1 lobster rosemary 10.2488133
sesame_oil soy_sauce 674 coriander cumin 0.63333333 bitter_orange brandy 10.2488133
scallion sesame_oil 618 coriander fenugreek 0.63333333 brandy kumquat 10.2488133
garlic ginger 609 coriander turmeric 0.63333333 gruyere_cheesemilk_fat 10.2488133
cayenne soy_sauce 578 garlic scallion 0.55527795 mace turkey 10.2488133
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