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ABSTRACT: Stem cell fate differentiation is a complex biological process with important applications.
Among other use cases, certain types of multipotent stem cells play a critical role in cancer treatment. Ad-
vancements in cellular assays over the past decade have provided researchers with comprehensive datasets for
single-cell gene expression analysis, where one can isolate specific cells in a heterogeneous set of stem cells and
elucidate genetic factors responsible for varying states of differentiation. Using network models, we attempt to
show optimal fate differentiation paths for stem cells by modeling each cell as a state to predict fate progression
solely through genetic markers. We successfully implemented a uniform cost search and a random walk over
the Erdos Renyi and Kleinberg network models, finding sophisticated network-based models for mapping cell

differentiation.

1 INTRODUCTION

1.1 Background

Early stem cell fate differentiation is one of the most
important and challenging questions in modern biol-
ogy. Among other applications, certain types of mul-
tipotent stem cells play a critical role in cancer treat-
ment. Hematopoietic Stem Cells (HSCs) are a critical
multipotent cell type that have the ability to differen-
tiate into both lymphoid and myeloid blood cells and
are one of the most promising candidates for clinical
stem cell therapy today.!

There are a variety of factors that influence early
stem cell fate including both environmental factors
and intracellular components, particularly gene tran-
scription factors.? The scientific community currently
uses bulk assays to learn more about cell population
characteristics. Biological assays are unfortunately
both expensive and time consuming. By definition,
assays also analyze cells in bulk. One issue with this
approach is that the bulk cells being analyzed are at
different stages in their differentiation process, which
means that important characteristics about cells in
various stages of the differentiation process can be
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Figure 1: Cell Differentiation Classifications: The above path-
way, described by Moignard et al, demonstrates three ordinal
stages of development for mouse embryonic cells: primitive
streak (PS), neural plate (NP), and head fold (HF). From HF,
cells may differentiate into 4SG, erythroid fate, or 4SFG-, en-
dothelial fate.

lost in global averages.

For the reasons outlined above, it would be ideal
to have an alternate analysis strategy to biology as-
says which would enable us to study cell fate differ-
entiation at an individual cell level.> Our aim in this
project is to apply network models to the problem of
stem cell fate declaration to infer candidate regulatory
networks from gene expression data with some level
of accuracy.



1.2 Task Definition

We will start with a single-cell gene expression
dataset of mouse HSCs that was collected and stud-
ied by Moignard et al.* The original dataset used
by Moignard et al contains 3935 mouse embryonic
stem cells belonging to five different cell classifica-
tions: 624 cells of type PS, 552 NP, 1005 HF, 983 4G,
and 770 4GF (figure 1). These classifications repre-
sent broad cell types corresponding to stages of stem
cell maturation. The normalized expression levels of
46 genes are also reported for each stem cell in the
dataset.

Moignard et. al used Boolean networks, among a
number of unsupervised statistical learning methods,
to cluster the HSCs and identify which gene transcrip-
tion factors control differentiation. For our analysis
we will attempt to expand on their work using two
different network models, the Erdos Renyi and Klein-
berg models. There is currently not a biological as-
say that enables scientists to track gene expression
changes of the course of cellular differentiation. Our
task is to model this development using these two net-
work models as a path an undifferentiated or primitive
stem cell takes to its final, differentiated state.

2 APPROACH TO PROBLEM

We approach this problem by using two different
paradigms for assigning terminal types given prim-
itive cellsUniform Cost Search and a random walk
process. We evaluate each paradigm over both the Er-
dos Renyi and Kleinberg network models. For each
of these models, we use the same framework for state
definition.

Because no temporal assay exists for tracking an in-
dividual cells genetic evolution throughout fate differ-
entiation, we instead model each of the original cells
in our dataset as a state into which a cell can enter
at a point in time during its differentiation. We con-
sider each cell in the dataset, uniquely characterized
by its gene expression levels and embryonic state, as
a node in a network or possible state in a state-based
process. As a result, every network model we test in-
volves the same set of nodes or verticesthe 3935 cells
in the Moignard et al. dataset. States have the follow-
ing form:

Si = ([91i, 921+ > Gjir -+ Gasi)> Xi)

fori=12,..,3935

gij is the expression level of the j™ gene in the ™"
cell, X;j 2 fPS,NP,HF,AG ,4AGFg. We will now
demonstrate how these states are used in our two
implementations.

2.1 Uniform Cost Search Model

The first paradigm we use to assign terminal types
given primitive cells is the Uniform Cost Search al-
gorithm (UCS). With this paradigm, we build a graph
using a given graph model, then model cell differenti-
ation as a search problem and use UCS to find shortest
paths to differentiated fates for each progenitor cell.

Through search, we deterministically explore
every single path from a progenitor cell to a terminal
fate, which involves either an erythroid or endothelial
cell fate. Although this approach is simpler from a
modeling perspective, it is computationally intensive
because UCS samples the entire state space for every
progenitor cell to find its shortest path. Additionally,
the search problem model assumes differentiation is
deterministic.

Start State: Every possible progenitor cell (PS, NP,
HF).

Successors/Actions:

Baseline Model - We construct a baseline graph
model by building a graph where every cell state
has an edge with every possible successor cell state.
Below are the mappings of current states to accessible
successors.

PS ¥ NP
NP § HF
HF ¥ 4G, 4GF

Erdos Renyi Model - The Erdos Renyi model is a
model for generating random graphs.® We construct
the Erdos Renyi graph model by assigning an edge
between a cell state and a possible successor state
with probability p = 0.1.

Kleinberg Model - The Kleinberg model is a graph
generation model that produces graphs with small
diameters and high clustering.® We are optimistic
about the possibility of using the Kleinberg model
as both of these properties could serve us well in
predicting genetic regulatory networks. Substantial
local clustering is a promising characteristic in
a predictive network as a cell is more likely to
stochastically change its gene expression profile
within a single time-step to a very similar profile than
one farther away. We seek a network model with a
limited diameter as a primitive cell must be able to
transition with a limited number of time-steps into
some terminal cell state.

We construct the Kleinberg graph model by assign-
ing an edge between a cell state v and a possible
successor state w with probability proportional to
W where d is the distance formula and « is some
coefficient.



Cell Cbfa2t3h Cdh1 Cdh5 Egfl7

HFA1_001 18.03714015 25| 13.62318312 | 15.53445242
HFA1_002 25 25 25| 19.69280303
HFA1_003 25 25 25| 21.03942464
HFA1_004 25 25 25 25
HFA1_005 19.32622431 25| 15.39946959 | 16.13481182
HFA1_007 25 25 25| 20.26317394
HFA1_008 18.95254452 25 25| 18.10729015
HFA1_009 25| 19.83847404 25 25
HFA1_010 17.05357252 25| 12.01550254 | 15.63221166

Figure 2: Single Cell Gene Expression Data: The above is a
portion of our raw data used for our cell fate differentiation mod-
eling. Each cell is mapped to a set of K genes with normalized
expression levels.

Cost: We model the cost for entering a successor
state in the search problem using a distance metric
representing genetic expression variation between the
current state and the successor state. Intuitively, the
greater variation in the gene expression profiles of a
cell A and a cell B, the higher cost this model assigns
for exploring that successor state.

Distance Metric

We use a high-dimensional Euclidean distance
for costs in the search problem. The data used by
Moignard et al* provides gene expression levels of 46
genes for each of the 3935 single cells (figure 3). By
computing the Euclidean distance across 46 dimen-
sions (genes) for a pair of cells based on normalized
expression values, we obtain a primitive metric for
cell similarity that we use to compute transition cost
(figure 4A). One downside to this approach is that
it homogeneously weighs each of the differences
across 46 genes. For instance, if gene g; were crucial
to cell function and controls differentiation from cell
type PS to NP, a change § of this individual gene
expression would be weighted equally with the same
change § of an arbitrary gene in our model that has
little to no effect on this transition. Therefore, we
weight distance contributions of individual genes
through the following method using a “Weight
Spread.”

Weight Spread

To prevent weighting all of our genes equally in our
system, we weight our distances using the standard
deviation of expression levels for a gene in each cell
in our data set (figure 4B). The intuition for this is as
follows: if the expression profile of a gene X has very
little variance amongst all single cells in our data
set, whenever we do have a change in expression for
gene X during a transition, we can assume that it has
a large effect on cell fate determination. To compute
this weight spread value, we compute the standard
deviation of our gene expression levels per gene,
and then normalize it over all values. We proceed to
incorporate this into our equation as a weight spread,
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Figure 3: Cost Function and Weight Spread: (A) This assigns
a cost to an action based on genetic similarity. In this equation,
we account for spread weights, = 1,...K. (B) This is the mathe-
matical equation we are using to compute our weight spread for
a given gene, g, over all i=1,...K genes.
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End State: We use an arbitrary termination state
(END) that an erythroid or endothelial fate state (4G,
4G F) will deterministically enter. This allows each
progenitor to find the shortest distance to a given final
state once entering our known terminal states.

2.2  Random Walk Model

The next paradigm we use to model cell differentia-
tion is a random walk model. This paradigm is fairly
straightforward. For each progenitor cell, use a sam-
pling function defined using either the Erdos Renyi or
Kleinberg model to randomly choose one cell in the
successor state to transition into. Repeat until a cell
has reached a terminal state.

Start State: Every possible progenitor cell (PS, NP,
HF).

Successors/ Actions:

Erdos Renyi Model - The Erdos Renyi model sampler
function chooses a cell state in the successor type to
return at random with equal probability.

Kleinberg Model - The Kleinberg model sampler
function differs from the Erdos Renyi sampler func-
tion in that it is not entirely random. The Kleinberg
model sampler returns a cell state in tl}e successor

type with probability proportional to oy where d

is the distance formula and « is some coefficient.

We are optimistic that the Kleinberg sampler may
return better results than the Erdos Renyi sampler,
as cells are motivated to exert the minimum amount
of energy they can in each transition.” In this case
we define energy in terms of genetic transitions and
define our distance function as the Euclidean distance
function described above, where each of the 46 gene
expression levels in each cell state is an input to the
Euclidean distance function.

End State
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