Outbreak Detection in Networks
Plan for Today

1. New problem: Outbreak detection
2. Develop an approximation algorithm
 - It is a submodular opt. problem!
3. Speed-up greedy hill-climbing
 - Valid for optimizing general submodular functions (i.e., also works for influence maximization)
4. Prove a new “data dependent” bound on the solution quality
 - Valid for optimizing any submodular function (i.e., also works for influence maximization)
Detecting Contamination Outbreaks

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Detect the contaminant as quickly as possible
- Problem posed by the US Environmental Protection Agency
Detecting Information Outbreaks

Which blogs should one read to detect cascades as effectively as possible?
Detecting Information Outbreaks

Detect blue & yellow soon but miss red.

Want to read things before others do.

Detect all stories but late.
Both of these two are an instance of the same underlying problem!

Given a dynamic process spreading over a network we want to select a set of nodes to detect the process effectively

Many other applications:
- Epidemics
- Influence propagation
- Network security
Utility of placing sensors:

- Water flow dynamics, demands of households, ...
- For each subset $S \subseteq V$ compute utility $f(S)$

Set V of all network junctions

High impact outbreak

Medium impact outbreak

Sensor reduces impact through early detection!

High sensing quality $f(S) = 0.9$

Low sensing quality $f(S) = 0.01$
Problem Setting: Contamination

Given:
- Graph $G(V, E)$
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time $T(u, i)$ when outbreak i contaminates node u

Water distribution network
(physical pipes and junctions)

Simulator of water consumption&flow
(built by Mech. Eng. people)
We simulate the contamination spread for every possible location.
Problem Setting: Blogosphere

Given:
- Graph $G(V, E)$
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time $T(u, i)$ when outbreak i contaminates node u
Problem Setting

Given:
- Graph $G(V, E)$
- Data on how outbreaks spread over the G:
 - For each outbreak i we know the time $T(u, i)$ when outbreak i contaminates node u

Goal: Select a subset of nodes S that maximizes the expected reward:

\[
\max_{S \subseteq V} f(S) = \sum_{i} P(i) f_i(S)
\]

subject to: $\text{cost}(S) < B$

- $P(i)$... probability of outbreak i occurring.
- $f(i)$... reward for detecting outbreak i using sensors S.

Two Parts to the Problem

- **Reward (one of the following three):**
 - (1) Minimize time to detection
 - (2) Maximize number of detected propagations
 - (3) Minimize number of infected people

- **Cost (context dependent):**
 - Reading big blogs is more time consuming
 - Placing a sensor in a remote location is expensive

Monitoring blue node saves more people than monitoring the green node

Objective functions: $f_i(S)$ is penalty reduction: $f_i(S) = \pi_i(\emptyset) - \pi_i(S)$

1) Time to detection (DT)
 - How long does it take to detect a contamination?
 - Penalty for detecting at time t: $\pi_i(t) = \min\{t, T_{max}\}$

2) Detection likelihood (DL)
 - How many contaminations do we detect?
 - Penalty for detecting at time t: $\pi_i(t) = 0, \pi_i(\infty) = 1$
 - Note, this is binary outcome: we either detect or not

3) Population affected (PA)
 - How many people drank contaminated water?
 - Penalty for detecting at time t: $\pi_i(t) = \# \text{ of infected nodes in outbreak } i \text{ by time } t$.

Observation:
In all cases detecting sooner does not hurt!
Observation: **Diminishing returns**

- Placement $S = \{s_1, s_2\}$
 - Adding s' helps a lot

- Placement $S' = \{s_1, s_2, s_3, s_4\}$
 - Adding s' helps very little
Objective functions are Submodular

- **Claim:** For all $A \subseteq B \subseteq V$ and sensors $s \in V \setminus B$
 \[f(A \cup \{s\}) - f(A) \geq f(B \cup \{s\}) - f(B) \]

- **Proof:** All our objectives are submodular
 - Fix cascade/outbreak i
 - **Show** $f_i(A) = \pi_i(\infty) - \pi_i(T(A, i))$ is submodular
 - Consider $A \subseteq B \subseteq V$ and sensor $s \in V \setminus B$
 - **When does node s detect cascade i?**
 - We analyze 3 cases based on when s detects outbreak i
 - (1) $T(s, i) \geq T(A, i)$: s detects late, nobody benefits:
 \[f_i(A \cup \{s\}) = f_i(A), \text{ also } f_i(B \cup \{s\}) = f_i(B) \text{ and so } f_i(A \cup \{s\}) - f_i(A) = 0 = f_i(B \cup \{s\}) - f_i(B) \]
Objective functions are Submodular

- Proof (contd.):
 - (2) $T(B, i) \leq T(s, i) < T(A, i)$: s detects after B but before A
 s detects sooner than any node in A but after all in B.
 So s only helps improve the solution A (but not B)
 $f_i(A \cup \{s\}) - f_i(A) \geq 0 = f_i(B \cup \{s\}) - f_i(B)$

 - (3) $T(s, i) < T(B, i)$: s detects early
 $f_i(A \cup \{s\}) - f_i(A) = \left[\pi_i(\infty) - \pi_i(T(s, i))\right] - f_i(A) \geq
 \left[\pi_i(\infty) - \pi_i(T(s, i))\right] - f_i(B) = f_i(B \cup \{s\}) - f_i(B)$
 - Inequality is due to non-decreasingness of $f_i(\cdot)$, i.e., $f_i(A) \leq f_i(B)$

 - So, $f_i(\cdot)$ is submodular!

 - So, $f(\cdot)$ is also submodular

\[
f(S) = \sum_i P(i) f_i(S)
\]
What do we know about optimizing submodular functions?

- A hill-climbing (i.e., greedy) is near optimal: \((1 - \frac{1}{e}) \cdot OPT\)

But:

1. This only works for unit cost case! (each sensor costs the same)
 - For us each sensor \(s\) has cost \(c(s)\)
2. Hill-climbing algorithm is slow
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime \(O(|V| \cdot K)\) for placing \(K\) sensors
CELF: Algorithm for optimizing submodular functions under cost constraints
Consider the following algorithm to solve the outbreak detection problem:

Hill-climbing that ignores cost
- Ignore sensor cost $c(s)$
- Repeatedly select sensor with highest marginal gain
- Do this until the budget is exhausted

Q: How well does this work?

A: It can fail arbitrarily badly! 😞
- Next we come up with an example where Hill-climbing solution is arbitrarily away from OPT
Problem 1: Ignoring Cost

- **Bad example when we ignore cost:**
 - n sensors, budget B
 - s_1: reward r, cost B, $s_2 ... s_n$: reward $r - \varepsilon$
 - All sensors have the same cost: $c(s_i) = 1$
 - Hill-climbing always prefers more expensive sensor s_1 with reward r (and exhausts the budget).
 It never selects cheaper sensors with reward $r - \varepsilon$
 → For variable cost it can fail arbitrarily badly!

- **Idea:** What if we optimize *benefit-cost ratio*?

$$s_i = \arg \max_{s \in V} \frac{f(A_{i-1} \cup \{s\}) - f(A_{i-1})}{c(s)}$$

Greedily pick sensor s_i that maximizes benefit to cost ratio.
Problem 2: Benefit-Cost

- Benefit-cost ratio can also fail arbitrarily badly!
- **Consider:** budget B:
 - 2 sensors s_1 and s_2:
 - Costs: $c(s_1) = \varepsilon$, $c(s_2) = B$
 - Only 1 cascade: $f(s_1) = 2\varepsilon$, $f(s_2) = B$
 - Then benefit-cost ratio is:
 - $B/c(s_1) = 2$ and $B/c(s_2) = 1$
 - So, we first select s_1 and then can not afford s_2
 - \rightarrow We get reward 2ε instead of B! Now send $\varepsilon \rightarrow 0$ and we get arbitrarily bad solution!

This algorithm incentivizes choosing nodes with very low cost, even when slightly more expensive ones can lead to much better global results.
Solution: CELF Algorithm

- **CELF (Cost-Effective Lazy Forward-selection)**
 A two pass greedy algorithm:
 - Set (solution) S': Use benefit-cost greedy
 - Set (solution) S'': Use unit-cost greedy
 - Final solution: $S = \arg\max(f(S'), f(S''))$

- How far is CELF from (unknown) optimal solution?

- **Theorem:** CELF is near optimal [Krause&Guestrin, ‘05]
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation!

This is surprising: We have two clearly suboptimal solutions, but taking best of the two is guaranteed to give a near-optimal solution.
Speeding-up Hill-Climbing: Lazy Evaluations
What do we know about optimizing submodular functions?

- A hill-climbing (i.e., greedy) is near optimal (that is, $(1 - \frac{1}{e}) \cdot OPT$)

But:

- (2) Hill-climbing algorithm is slow!
 - At each iteration we need to re-evaluate marginal gains of all nodes
 - Runtime $O(|V| \cdot K)$ for placing K sensors
In round $i+1$: So far we picked $S_i = \{s_1, \ldots, s_i\}$
- Now pick $s_{i+1} = \arg\max_u f(S_i \cup \{u\}) - f(S_i)$
 - This our old friend – greedy hill-climbing algorithm.
 - It maximizes the “marginal benefit”
 \[
 \delta_i(u) = f(S_i \cup \{u\}) - f(S_i)
 \]

By submodularity property:
\[
f(S_i \cup \{u\}) - f(S_i) \geq f(S_j \cup \{u\}) - f(S_j) \text{ for } i < j
\]

Observation: By submodularity:
For every u
\[
\delta_i(u) \geq \delta_j(u) \text{ for } i < j \text{ since } S_i \subseteq S_j
\]

Marginal benefits $\delta_i(u)$ only shrink!
(as i grows)
Lazy Hill Climbing

- **Idea:**
 - Use δ_i as upper-bound on δ_j ($j > i$)
 - **Lazy hill-climbing:**
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T$$
Lazy Hill Climbing

- **Idea:**
 - Use δ_i as upper-bound on δ_j ($j > i$)
 - **Lazy hill-climbing:**
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

$$f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T$$
Lazy Hill Climbing

- **Idea:**
 - Use δ_i as upper-bound on δ_j ($j > i$)

- **Lazy hill-climbing:**
 - Keep an ordered list of marginal benefits δ_i from previous iteration
 - Re-evaluate δ_i only for top node
 - Re-sort and prune

\[
f(S \cup \{u\}) - f(S) \geq f(T \cup \{u\}) - f(T) \quad S \subseteq T
\]
CELF: Scalability

CELF (using Lazy evaluation) runs 700 times faster than greedy hill-climbing algorithm.
Data Dependent Bound on the Solution Quality
Solution Quality

- Back to the solution quality!

- The \((1-1/e)\) bound for submodular functions is the worst case bound (worst over all possible inputs)

- Data dependent bound:
 - Value of the bound depends on the input data
 - On “easy” data, hill climbing may do better than 63%
 - Can we say something about the solution quality when we know the input data?
Suppose S is some solution to $f(S)$ s.t. $|S| \leq k$

- $f(S)$ is monotone & submodular

Let $OPT = \{t_1, \ldots, t_k\}$ be the OPT solution

For each u let $\delta(u) = f(S \cup \{u\}) - f(S)$

Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$

Then: $f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$

Note:

- This is a data dependent bound ($\delta(i)$ depends on input data)
- Bound holds for any algorithm
 - Makes no assumption about how S was computed
- For some inputs it can be very “loose” (worse than 63%)
Data Dependent Bound

- **Claim:**
 - For each u let $\delta(u) = f(S \cup \{u\}) - f(S)$
 - Order $\delta(u)$ so that $\delta(1) \geq \delta(2) \geq \cdots$
 - Then: $f(OPT) \leq f(S) + \sum_{i=1}^{k} \delta(i)$

- **Proof:**
 - $f(OPT) \leq f(OPT \cup S)$
 - $= f(S) + \sum_{i=1}^{k} [f(S \cup \{t_1 \ldots t_i\}) - f(S \cup \{t_1 \ldots t_{i-1}\})]$ (we proved this last time)
 - $\leq f(S) + \sum_{i=1}^{k} [f(S \cup \{t_i\}) - f(S)]$
 - $= f(S) + \sum_{i=1}^{k} \delta(t_i)$
 - $\leq f(S) + \sum_{i=1}^{k} \delta(i)$ \Rightarrow $f(T) \leq f(S) + \sum_{i=1}^{k} \delta(i)$

Instead of taking $t_i \in OPT$ (of benefit $\delta(t_i)$), we take the best possible element ($\delta(i)$).
Case Study: Water distribution network & blogs
Case Study: Water Network

- Real metropolitan area water network
 - $V = 21,000$ nodes
 - $E = 25,000$ pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (random locations, random days, random time of the day)
Data-dependent bound is much tighter (gives more accurate estimate of alg. performance)
Water: Heuristic Placement

- Placement heuristics perform much worse

<table>
<thead>
<tr>
<th>Author</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELF</td>
<td>26</td>
</tr>
<tr>
<td>Sandia</td>
<td>21</td>
</tr>
<tr>
<td>U Exter</td>
<td>20</td>
</tr>
<tr>
<td>Bentley systems</td>
<td>19</td>
</tr>
<tr>
<td>Technion (1)</td>
<td>14</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>12</td>
</tr>
<tr>
<td>U Cyprus</td>
<td>11</td>
</tr>
<tr>
<td>U Guelph</td>
<td>7</td>
</tr>
<tr>
<td>U Michigan</td>
<td>4</td>
</tr>
<tr>
<td>Michigan Tech U</td>
<td>3</td>
</tr>
<tr>
<td>Malcolm</td>
<td>2</td>
</tr>
<tr>
<td>Proteo</td>
<td>2</td>
</tr>
<tr>
<td>Technion (2)</td>
<td>1</td>
</tr>
</tbody>
</table>

Battle of Water Sensor Networks competition
Different objective functions give different sensor placements.

Population affected

Detection likelihood
CelF is **10** times faster than greedy hill-climbing!
Question...

I have 10 minutes. Which blogs should I read to be most up to date?

Who are the most influential bloggers?
Detecting information outbreaks

Want to read things before others do.

Detect blue & yellow soon but miss red.

Detect all stories but late.
Case study 2: Cascades in blogs

- Crawled 45,000 blogs for 1 year
- Obtained 10 million posts
- And identified 350,000 cascades
- Cost of a blog is the number of posts it has
Online bound turns out to be much tighter!
- Based on the plot below: 87% instead of 32.5%
Blogs: Heuristic Selection

- Heuristics perform much worse!
- One really needs to perform the optimization
Blogs: Cost of a Blog

- **CELF has 2 sub-algorithms. Which wins?**
 - **Unit cost:**
 - CELF picks large popular blogs
 - **Cost-benefit:**
 - Cost proportional to the number of posts

- **We can do much better when considering costs**
Problem: Then CELF picks **lots of small blogs** that participate in few cascades.

- We pick best solution that interpolates between the costs.
- We can get good solutions with **few blogs and few posts**.

Each curve represents a set of solutions S with the same final reward $f(S)$. The score $f(S)$ for different solutions is as follows:
- $f(S) = 0.4$
- $f(S) = 0.3$
- $f(S) = 0.2$
We want to generalize well to future (unknown) cascades
Limited selection to bigger blogs improves generalization!
Blogs: Scalability

- **CELF runs 700 times faster than simple hill-climbing algorithm**

![Diagram showing comparison of running times for different algorithms](chart)

[Leskovec et al., KDD '07]