Measuring Networks and the Random Graph Model
How the Class Fits Together

Measurements
- Small diameter, Edge clustering
- Patterns of signed edge creation
- Viral Marketing, Blogosphere, Memetracking
- Scale-Free
- Densification power law, Shrinking diameters
- Strength of weak ties, Core-periphery

Models
- Erdös-Renyi model, Small-world model
- Structural balance, Theory of status
- Independent cascade model, Game theoretic model
- Preferential attachment, Copying model
- Microscopic model of evolving networks
- Kronecker Graphs

Algorithms
- Decentralized search
- Models for predicting edge signs
- Influence maximization, Outbreak detection, LIM
- PageRank, Hubs and authorities
- Link prediction, Supervised random walks
- Community detection: Girvan-Newman, Modularity
Choice of the proper network representation of a given system determines our ability to use networks successfully.
Directed vs. Undirected Graphs

Undirected

- **Links**: undirected (symmetrical, reciprocal)

 - Examples:
 - Collaborations
 - Friendship on Facebook

Directed

- **Links**: directed (arcs)

 - Examples:
 - Phone calls
 - Following on Twitter
Node Degrees

Node degree, k_i: the number of edges adjacent to node i
\[k_A = 4 \]

Avg. degree: \[\bar{k} = \langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2E}{N} \]

In directed networks we define an **in-degree** and **out-degree**.
The (total) degree of a node is the sum of in- and out-degrees.
\[k_{C}^{in} = 2 \quad k_{C}^{out} = 1 \quad k_{C} = 3 \]

Source: Node with $k^{in} = 0$
Sink: Node with $k^{out} = 0$
The **maximum number of edges** in an undirected graph on N nodes is

$$E_{\text{max}} = \binom{N}{2} = \frac{N(N-1)}{2}$$

An undirected graph with the number of edges $E = E_{\text{max}}$ is called a **complete graph**, and its average degree is $N-1$.
Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.

Examples:
- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)

“Folded” networks:
- Author collaboration networks
- Movie co-rating networks
Representing Graphs: Adjacency Matrix

\[A_{ij} = 1 \] if there is a link from node \(i \) to node \(j \)
\[A_{ij} = 0 \] otherwise

\[
A = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\]

Note that for a directed graph (right) the matrix is not symmetric.
Represent graph as a set of edges:

- (2, 3)
- (2, 4)
- (3, 2)
- (3, 4)
- (4, 5)
- (5, 2)
- (5, 1)
Adjacency list:

- Easier to work with if network is **Large**
- Easier to work with if network is **Sparse**
- Allows us to quickly retrieve all neighbors of a given node
 - 1:
 - 2: 3, 4
 - 3: 2, 4
 - 4: 5
 - 5: 1, 2
Most real-world networks are **sparse**

\[E \ll E_{\text{max}} \quad \text{(or } k \ll N-1) \]

- **WWW (Stanford-Berkeley):** \(N=319,717 \) \(\langle k \rangle = 9.65 \)
- **Social networks (LinkedIn):** \(N=6,946,668 \) \(\langle k \rangle = 8.87 \)
- **Communication (MSN IM):** \(N=242,720,596 \) \(\langle k \rangle = 11.1 \)
- **Coauthorships (DBLP):** \(N=317,080 \) \(\langle k \rangle = 6.62 \)
- **Internet (AS-Skitter):** \(N=1,719,037 \) \(\langle k \rangle = 14.91 \)
- **Roads (California):** \(N=1,957,027 \) \(\langle k \rangle = 2.82 \)
- **Proteins (S. Cerevisiae):** \(N=1,870 \) \(\langle k \rangle = 2.39 \)

(Source: Leskovec et al., Internet Mathematics, 2009)

Consequence: Adjacency matrix is filled with zeros!

(Density of the matrix \(E/N^2 \): WWW = \(1.51 \times 10^{-5} \), MSN IM = \(2.27 \times 10^{-8} \))
Possible options:

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends
More Types of Graphs

- **Unweighted**
 (undirected)

- **Weighted**
 (undirected)

\[A_{ij} = \begin{pmatrix}
 0 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix} \]

\[A_{ii} = 0 \quad A_{ij} = A_{ji} \]

\[E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} \quad \bar{k} = \frac{2E}{N} \]

Examples: Friendship, Hyperlink

\[A_{ij} = \begin{pmatrix}
 0 & 2 & 0.5 & 0 \\
 2 & 0 & 1 & 4 \\
 0.5 & 1 & 0 & 0 \\
 0 & 4 & 0 & 0
\end{pmatrix} \]

\[A_{ii} = 0 \quad A_{ij} = A_{ji} \]

\[E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij}) \quad \bar{k} = \frac{2E}{N} \]

Examples: Collaboration, Internet, Roads
More Types of Graphs

- **Self-edges (self-loops)**
 (undirected)

 \[
 A_{ij} = \begin{pmatrix}
 1 & 1 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 0 & 1 & 0 & 1
 \end{pmatrix}
 \]

 \(A_{ii} \neq 0\)

 \(A_{ij} = A_{ji}\)

 \[
 E = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij} + \sum_{i=1}^{N} A_{ii}
 \]

 Examples: Proteins, Hyperlinks

- **Multigraph**
 (undirected)

 \[
 A_{ij} = \begin{pmatrix}
 0 & 2 & 1 & 0 \\
 2 & 0 & 1 & 3 \\
 1 & 1 & 0 & 0 \\
 0 & 3 & 0 & 0
 \end{pmatrix}
 \]

 \(A_{ii} = 0\)

 \(A_{ij} = A_{ji}\)

 \[
 E = \frac{1}{2} \sum_{i,j=1}^{N} \text{nonzero}(A_{ij})
 \]

 \[
 \bar{k} = \frac{2E}{N}
 \]

 Examples: Communication, Collaboration
Connectivity of Undirected Graphs

- **Connected (undirected) graph:**
 - Any two vertices can be joined by a path
 - A disconnected graph is made up by two or more connected components

![Graph](image)

Bridge edge: If we erase it, the graph becomes disconnected.

Articulation point: If we erase it, the graph becomes disconnected.
Connectivity of Directed Graphs

- **Strongly connected directed graph**
 - has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)

- **Weakly connected directed graph**
 - is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).
Network Representations

WWW \gg directed multigraph with self-edges

Facebook friendships \gg undirected, unweighted

Citation networks \gg unweighted, directed, acyclic

Collaboration networks \gg undirected multigraph or weighted graph

Mobile phone calls \gg directed, (weighted?) multigraph

Protein Interactions \gg undirected, unweighted with self-interactions
Web as a Graph
Today we will talk about observations and models for the Web graph:

1) We will take a real system: the Web
2) We will represent it as a directed graph
3) We will use the language of graph theory
 - Strongly Connected Components
4) We will design a computational experiment:
 - Find In- and Out-components of a given node v
5) We will learn something about the structure of the Web: BOWTIE!
Q: What does the Web “look like” at a global level?

- **Web as a graph:**
 - Nodes = web pages
 - Edges = hyperlinks

- **Side issue:** What is a node?
 - Dynamic pages created on the fly
 - “dark matter” – inaccessible database generated pages
I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
In early days of the Web links were navigational
Today many links are transactional
The Web as a Directed Graph

I'm a student at Univ. of X

My song lyrics

Classes

I teach at Univ. of X

Networks

Networks class blog

Blog post about Company Z

Blog post about college rankings

Uni. of X

I'm applying to college

USNews College Rankings

USNews Featured Colleges
Other Information Networks

Citations

References in an Encyclopedia
What Does the Web Look Like?

- How is the Web linked?
- What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node v, what can v reach?
- What other nodes can reach v?

$In(v) = \{w \mid w \text{ can reach } v\}$

$Out(v) = \{w \mid v \text{ can reach } w\}$

For example:
$In(A) = \{A,B,C,E,G\}$
$Out(A) = \{A,B,C,D,F\}$
Two types of directed graphs:

- **Strongly connected:**
 - Any node can reach any node via a directed path

 \[\text{In}(A) = \text{Out}(A) = \{A, B, C, D, E\} \]

- **Directed Acyclic Graph (DAG):**
 - Has no cycles: if \(u \) can reach \(v \), then \(v \) cannot reach \(u \)

Any directed graph can be expressed in terms of these two types!

A Strongly Connected Component (SCC) is a set of nodes S so that:

- Every pair of nodes in S can reach each other
- There is no larger set containing S with this property

Strongly connected components of the graph: \{A,B,C,G\}, \{D\}, \{E\}, \{F\}
Fact: Every directed graph is a DAG on its SCCs

1. SCCs partitions the nodes of G
 - That is, each node is in exactly one SCC

2. If we build a graph G' whose nodes are SCCs, and with an edge between nodes of G' if there is an edge between corresponding SCCs in G, then G' is a DAG

(1) Strongly connected components of graph G: \{A,B,C,G\}, \{D\}, \{E\}, \{F\}

(2) G' is a DAG
Claim: SCCs partition nodes of G.

- This means: Each node is member of exactly 1 SCC

Proof by contradiction:

- Suppose there exists a node v which is a member of two SCCs S and S'

But then $S \cup S'$ is one large SCC!

Contradiction: By definition SCC is a maximal set with the SCC property, so S and S' are not two SCCs.
Claim: G' (graph of SCCs) is a DAG.

- This means: G' has no cycles

Proof by contradiction:

- Assume G' is not a DAG
- Then G' has a directed cycle
- Now all nodes on the cycle are mutually reachable, and all are part of the same SCC
- But then G' is not a graph of connections between SCCs (SCCs are defined as maximal sets)
- Contradiction!

Now $\{A,B,C,G,E,F\}$ is a SCC!
Goal: Take a large snapshot of the Web and try to understand how its SCCs “fit together” as a DAG

Computational issue:

- Want to find a SCC containing node v?
- Observation:
 - $Out(v)$... nodes that can be reached from v
 - SCC containing v is: $Out(v) \cap In(v)$

 $= Out(v, G) \cap Out(v, \overline{G})$, where \overline{G} is G with all edge directions flipped
Example:

- \(\text{Out}(A) = \{A, B, D, E, F, G, H\} \)
- \(\text{In}(A) = \{A, B, C, D, E\} \)
- So, \(\text{SCC}(A) = \text{Out}(A) \cap \text{In}(A) = \{A, B, D, E\} \)
There is a single giant SCC

- That is, there won’t be two SCCs

Heuristic argument:

- It just takes 1 page from one SCC to link to the other SCC
- If the 2 SCCs have millions of pages the likelihood of this not happening is very very small
Structure of the Web

- **Broder et al., 2000:**
 - Altavista crawl from October 1999
 - 203 million URLs
 - 1.5 billion links
 - Computer: Server with 12GB of memory

- **Undirected version of the Web graph:**
 - 91% nodes in the largest weakly conn. component
 - Are hubs making the web graph connected?
 - Even if they deleted links to pages with in-degree >10
 WCC was still ≈50% of the graph
Directed version of the Web graph:

- **Largest SCC:** 28% of the nodes (56 million)
- Taking a random node v
 - $\text{Out}(v) \approx 50\%$ (100 million)
 - $\text{In}(v) \approx 50\%$ (100 million)

What does this tell us about the conceptual picture of the Web graph?
The Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]
What did we learn:
- Conceptual organization of the Web (i.e., the bowtie)

What did we not learn:
- Treats all pages as equal
 - Google’s homepage == my homepage
- What are the most important pages
 - How many pages have k in-links as a function of k?
 The degree distribution: $\sim k^{-2}$
- Internal structure inside giant SCC
 - Clusters, implicit communities?
- How far apart are nodes in the giant SCC:
 - Distance = # of edges in shortest path
 - Avg. = 16 [Broder et al.]
Network Properties: How to Measure a Network?
Plan: Key Network Properties

Degree distribution: \(P(k) \)

Path length: \(h \)

Clustering coefficient: \(C \)
(1) Degree Distribution

- Degree distribution $P(k)$: Probability that a randomly chosen node has degree k

 $N_k = \# \text{ nodes with degree } k$

- Normalized histogram:

 $P(k) = \frac{N_k}{N} \rightarrow \text{ plot}$
(2) Paths in a Graph

- A **path** is a sequence of nodes in which each node is linked to the next one

\[P_n = \{i_0, i_1, i_2, \ldots, i_n\} \quad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \ldots, (i_{n-1}, i_n)\} \]

- Path can intersect itself and pass through the same edge multiple times
 - E.g.: ACBDCDEG
 - In a directed graph a path can only follow the direction of the “arrow”
Number of Paths

- **Number of paths between nodes** u and v:
 - **Length $h=1$**: If there is a link between u and v, $A_{uv} = 1$ else $A_{uv} = 0$
 - **Length $h=2$**: If there is a path of length two between u and v then $A_{uk}A_{kv} = 1$ else $A_{uk}A_{kv} = 0$
 - **Length h**: If there is a path of length h between u and v then $A_{uk} \ldots A_{kv} = 1$ else $A_{uk} \ldots A_{kv} = 0$

So, the no. of paths of length h between u and v is

$$H_{uv}^{(h)} = [A^h]_{uv}$$

(holds for both directed and undirected graphs)
Distance in a Graph

- **Distance (shortest path, geodesic)** between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes.
 - *If the two nodes are disconnected, the distance is usually defined as infinite.*

- **In directed graphs** paths need to follow the direction of the arrows.
 - **Consequence:** Distance is **not symmetric**: $h_{A,C} \neq h_{C,A}$.
Network Diameter

- **Diameter**: the maximum (shortest path) distance between any pair of nodes in a graph

- **Average path length** for a connected graph (component) or a strongly connected (component of a) directed graph

\[
\bar{h} = \frac{1}{2E_{\text{max}}} \sum_{i,j \neq i} h_{ij}
\]

where \(h_{ij} \) is the distance from node \(i \) to node \(j \)

- Many times we compute the average only over the connected pairs of nodes (that is, we ignore “infinite” length paths)
Breadth First Search:

- Start with node u, mark it to be at distance $h_u(u) = 0$, add u to the queue
- While the queue not empty:
 - Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_u(w) = h_u(v) + 1$
(3) Clustering Coefficient

- **Clustering coefficient:**
 - What portion of \(i\)'s neighbors are connected?
 - Node \(i\) with degree \(k_i\)
 - \(C_i \in [0,1]\)

\[
C_i = \frac{2e_i}{k_i(k_i - 1)}
\]

where \(e_i\) is the number of edges between the neighbors of node \(i\)

- **Average clustering coefficient:**

\[
C = \frac{1}{N} \sum_{i}^N C_i
\]
Clustering Coefficient

- **Clustering coefficient:**
 - What portion of i’s neighbors are connected?
 - Node i with degree k_i

\[
C_i = \frac{2e_i}{k_i(k_i - 1)}
\]

where e_i is the number of edges between the neighbors of node i

- $k_B = 2$, $e_B = 1$, $C_B = \frac{2}{2} = 1$
- $k_D = 4$, $e_D = 2$, $C_D = \frac{4}{12} = \frac{1}{3}$
Summary: Key Network Properties

Degree distribution: \[P(k) \]

Path length: \[h \]

Clustering coefficient: \[C \]
Let’s measure $P(k)$, h and C on a real-world network!
MSN Messenger activity in June 2006:

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages
Communication: Geography
Network: 180M people, 1.3B edges
Messaging as a Multigraph

- Edge \((u,v)\) if users \(u\) and \(v\) exchanged at least 1 msg
- \(N=180\) million people
- \(E=1.3\) billion edges
MSN: (1) Connectivity

The graph shows the distribution of weakly connected component sizes. The x-axis represents the weakly connected component size, while the y-axis represents the count. The largest component contains 99.9% of the nodes.
MSN: (2) Degree Distribution

![Degree Distribution Graph]

- Count, $P(k)$
- Degree, k
- $3.5e+007$
- $3e+007$
- $2.5e+007$
- $2e+007$
- $1.5e+007$
- $1e+007$
- $5e+006$
- 0
Note: We plotted the same data as on the previous slide, just the axes are now logarithmic.
MSN: (3) Clustering

Avg. clustering of the MSN:
$C = 0.1140$

c (Clustering coefficient)

k (Degree)

C_k: average C_i of nodes i of degree k:

$$C_k = \frac{1}{N_k \sum_{i:k_i=k} C_i}$$
MSN: (4) Diameter

Avg. path length 6.6
90% of the nodes can be reached in < 8 hops

Number of links between pairs of nodes

<table>
<thead>
<tr>
<th>Steps</th>
<th>#Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>3,96</td>
</tr>
<tr>
<td>4</td>
<td>8,648</td>
</tr>
<tr>
<td>5</td>
<td>3,299,252</td>
</tr>
<tr>
<td>6</td>
<td>28,395,849</td>
</tr>
<tr>
<td>7</td>
<td>79,059,497</td>
</tr>
<tr>
<td>8</td>
<td>52,995,778</td>
</tr>
<tr>
<td>9</td>
<td>10,321,008</td>
</tr>
<tr>
<td>10</td>
<td>1,955,007</td>
</tr>
<tr>
<td>11</td>
<td>518,410</td>
</tr>
<tr>
<td>12</td>
<td>149,945</td>
</tr>
<tr>
<td>13</td>
<td>44,616</td>
</tr>
<tr>
<td>14</td>
<td>13,740</td>
</tr>
<tr>
<td>15</td>
<td>4,476</td>
</tr>
<tr>
<td>16</td>
<td>1,542</td>
</tr>
<tr>
<td>17</td>
<td>536</td>
</tr>
<tr>
<td>18</td>
<td>167</td>
</tr>
<tr>
<td>19</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
</tr>
</tbody>
</table>

nodes as we do BFS out of a random node
MSN: Key Network Properties

Degree distribution: Heavily skewed
avg. degree = 14.4

Path length: 6.6

Clustering coefficient: 0.11

Are these values “expected”? Are they “surprising”? To answer this we need a null-model!
Erdös-Renyi Random Graph Model
What kinds of networks does such model produce?
Random Graph Model

- n and p do not uniquely determine the graph!
 - The graph is a result of a random process
- We can have many different realizations given the same n and p

![Graph Examples]

$n = 10$
$p = 1/6$
How likely is a graph on \(E \) edges?

\(P(E) \): the probability that a given \(G_{np} \) generates a graph on exactly \(E \) edges:

\[
P(E) = \binom{E_{\text{max}}}{E} p^E (1-p)^{E_{\text{max}}-E}
\]

where \(E_{\text{max}}=n(n-1)/2 \) is the maximum possible number of edges in an undirected graph of \(n \) nodes.

\(P(E) \) is exactly the Binomial distribution

Number of successes in a sequence of \(E_{\text{max}} \) independent yes/no experiments.
What is expected degree of a node?

- Let X_v be a rnd. var. measuring the degree of node v
- We want to know: $E[X_v] = \sum_{j=0}^{n-1} j \cdot P(X_v = j)$
 - For the calculation we will need: Linearity of expectation
 - For any random variables Y_1, Y_2, \ldots, Y_k
 - If $Y = Y_1 + Y_2 + \ldots Y_k$, then $E[Y] = \sum_i E[Y_i]$

An easier way:
- Decompose X_v to $X_v = X_{v,1} + X_{v,2} + \ldots + X_{v,n-1}$
 - where $X_{v,u}$ is a $\{0, 1\}$-random variable which tells if edge (v,u) exists or not

$$E[X_v] = \sum_{u=1}^{n-1} E[X_{vu}] = (n-1)p$$

How to think about this?
- Prob. of node u linking to node v is p
- u can link (flips a coin) to all other $(n-1)$ nodes
- Thus, the expected degree of node u is: $p(n-1)$
Properties of G_{np}

Degree distribution: $P(k)$

Path length: h

Clustering coefficient: C

What are values of these properties for G_{np}?
Fact: Degree distribution of G_{np} is Binomial.

Let $P(k)$ denote a fraction of nodes with degree k:

$$P(k) = \binom{n-1}{k} p^k (1 - p)^{n-1-k}$$

Select k nodes out of $n-1$:

- Probability of having k edges
- Probability of missing the rest of the $n-1-k$ edges

Mean, variance of a binomial distribution

$$\overline{k} = p(n - 1)$$

$$\sigma^2 = p(1 - p)(n - 1)$$

By the law of large numbers, as the network size increases, the distribution becomes increasingly narrow—we are increasingly confident that the degree of a node is in the vicinity of k.

$$\sigma_k = \left[\frac{1 - p}{p} \cdot \frac{1}{n-1} \right]^{1/2} \approx \frac{1}{(n-1)^{1/2}}$$
Clustering Coefficient of G_{np}

- **Remember:** $C_i = \frac{2e_i}{k_i(k_i - 1)}$

- **Edges in G_{np} appear i.i.d. with prob. p**

- **So:** $e_i = p \frac{k_i(k_i - 1)}{2}$
 - Each pair is connected with prob. p
 - Number of distinct pairs of neighbors of node i of degree k_i

- **Then:** $C = \frac{p \cdot k_i(k_i - 1)}{k_i(k_i - 1)} = \frac{\bar{k}}{n - 1} \approx \frac{\bar{k}}{n}$
 - Clustering coefficient of a random graph is small.
 - For a fixed avg. degree (that is $p=1/n$), C decreases with the graph size n.

Where e_i is the number of edges between i's neighbors.
Network Properties of G_{np}

Degree distribution:

$$P(k) = \binom{n-1}{k} p^k (1 - p)^{n-1-k}$$

Clustering coefficient:

$$C = p = \bar{k}/n$$

Path length: next!
To prove the diameter of a G_{np} we define few concepts

Define: Random k-Regular graph

- Assume each node has k spokes (half-edges)
 - $k=1$: Graph is a set of pairs
 - $k=2$: Graph is a set of cycles
 - $k=3$: Arbitrarily complicated graphs

Randomly pair them up!
Def: Expansion

- Graph $G(V, E)$ has expansion α: if $\forall S \subseteq V$:

 $\# \text{ of edges leaving } S \geq \alpha \cdot \min(|S|, |V\setminus S|)$

- Or equivalently:

 $$\alpha = \min_{S \subseteq V} \frac{\# \text{ edges leaving } S}{\min(|S|, |V\setminus S|)}$$
Expansion: Intuition

\[\alpha = \min_{S \subseteq V} \frac{\# \text{edges leaving } S}{\min(|S|, |V \setminus S|)} \]

(A big) graph with “good” expansion
Expansion is measure of robustness:
 - To disconnect \(l \) nodes, we need to cut \(\geq \alpha \cdot l \) edges

Low expansion:

High expansion:

Social networks:
 - “Communities”

\[
\alpha = \min_{S \subseteq V} \frac{\text{edges leaving } S}{\min(|S|, |V \setminus S|)}
\]
Expansion: k-Regular Graphs

- **k-regular graph** (every node has degree \(k \)):
 - Expansion is at most \(k \) (when \(S \) is a single node)

- Is there a graph on \(n \) nodes (\(n \to \infty \)), of fixed max deg. \(k \), so that expansion \(\alpha \) remains const?

Examples:

- **n\times n** grid: \(k = 4 \): \(\alpha = 2n/(n^2/4) \to 0 \)
 (\(S = n/2 \times n/2 \) square in the center)

- **Complete binary tree:**
 \(\alpha \to 0 \) for \(|S| = (n/2) - 1 \)

- **Fact:** For a random **3-regular graph** on \(n \) nodes, there is some const \(\alpha \) (\(\alpha > 0 \), independent of \(n \)) such that w.h.p. the expansion of the graph is \(\geq \alpha \)
Fact: In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path of $O((\log n) / \alpha)$ edges connecting them.

Proof:

- Proof strategy:
 - We want to show that from any node s there is a path of length $O((\log n) / \alpha)$ to any other node t
 - Let S_j be a set of all nodes found within j steps of BFS from s.
 - How does S_j increase as a function of j?
Proof (continued):

- Let S_j be a set of all nodes found within j steps of BFS from s.

- We want to relate S_j and S_{j+1}.

\[
|S_{j+1}| \geq |S_j| + \frac{\alpha |S_j|}{k} =
\]

\[
|S_{j+1}| \geq |S_j| \left(1 + \frac{\alpha}{k}\right) = \left(1 + \frac{\alpha}{k}\right)^{j+1}
\]

At most k edges “collide” at a node.

At least $\alpha |S_j|$ edges

Each of degree k
Proof (continued):

- In how many steps of BFS do we reach \(>n/2 \) nodes?
- Need \(j \) so that: \(S_j = \left(1 + \frac{\alpha}{k}\right)^j \geq \frac{n}{2} \)
- Let’s set: \(j = \frac{k \log_2 n}{\alpha} \)
- Then:
 \[
 \left(1 + \frac{\alpha}{k}\right)^{\frac{k \log_2 n}{\alpha}} \geq 2^{\log_2 n} = n > \frac{n}{2}
 \]
- In \(2k/\alpha \cdot \log n \) steps \(|S_j| \) grows to \(\Theta(n) \).
 So, the diameter of \(G \) is \(O(\log(n)/\alpha) \)

\[
e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x
\]
Network Properties of G_{np}

Degree distribution: $P(k) = \binom{n-1}{k} p^k (1-p)^{n-1-k}$

Path length: $O(\log n)$

Clustering coefficient: $C = p = \bar{k} / n$
Degree distribution:

Path length: 6.6

Clustering coefficient: 0.11

$O(\log n)$

≈ 8.2

\bar{k}/n

$\approx 8 \cdot 10^{-8}$
Real Networks vs. G_{np}

- **Are real networks like random graphs?**
 - Giant connected component: 😊
 - Average path length: 😊
 - Clustering Coefficient: 😞
 - Degree Distribution: 😞

- **Problems with the random networks model:**
 - Degree distribution differs from that of real networks
 - Giant component in most real network does NOT emerge through a phase transition
 - No local structure – clustering coefficient is too low

- **Most important: Are real networks random?**
 - The answer is simply: NO!
If G_{np} is wrong, why did we spend time on it?

- It is the reference model for the rest of the class.
- It will help us calculate many quantities, that can then be compared to the real data.
- It will help us understand to what degree is a particular property the result of some random process.

So, while G_{np} is WRONG, it will turn out to be extremely USEFUL!
EXTRA: “Evolution” of the G_{np}

What happens to G_{np} when we vary p?
Remember, expected degree $E[X_v] = (n - 1) p$

We want $E[X_v]$ to be independent of n

So let: $p = c/(n-1)$

Observation: If we build random graph G_{np} with $p = c/(n-1)$ we have many isolated nodes

Why?

$P[\nu \text{ has degree 0}] = (1 - p)^{n-1} = \left(1 - \frac{c}{n - 1}\right)^{n-1} \xrightarrow{n \to \infty} e^{-c}$

By definition:

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$

Use substitution $\frac{1}{x} = \frac{c}{n-1}$

$$e$$
How big do we have to make p before we are likely to have no isolated nodes?

We know: $P[v \text{ has degree } 0] = e^{-c}$

Event we are asking about is:

- $I = \text{some node is isolated}$
- $I = \bigcup_{v \in N} I_v$ where I_v is the event that v is isolated

We have:

$$P(I) = P\left(\bigcup_{v \in N} I_v \right) \leq \sum_{v \in N} P(I_v) = ne^{-c}$$

Union bound

$$\left| \bigcup_{i} A_i \right| \leq \sum_{i} |A_i|$$
We just learned: $P(I) = n e^{-c}$

Let’s try:

- $c = \ln n$ then: $n e^{-c} = n e^{-\ln n} = n \cdot 1/n = 1$
- $c = 2 \ln n$ then: $n e^{-2 \ln n} = n \cdot 1/n^2 = 1/n$

So if:

- $p = \ln n$ then: $P(I) = 1$
- $p = 2 \ln n$ then: $P(I) = 1/n \to 0$ as $n \to \infty$
Graph structure of G_{np} as p changes:

- Emergence of a Giant Component:
 - Avg. degree $k = 2E/n$ or $p = k/(n-1)$
 - $k = 1-\varepsilon$: all components are of size $\Omega(\log n)$
 - $k = 1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$
G_{np} Simulation Experiment

![Graph showing the fraction of nodes in the largest component against p*(n-1)]

- G_{np}, n=100k, p(n-1) = 0.5 ... 3