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1 Introduction

1.1 Gene Coexpression Networks

A central problem in current biology is how to identify genes and pathways that control a pheno-
type. Using RNA sequencing, we can get relative expression levels for each gene in a given tissue of
a given subject, and a natural thing to do is to test which genes have expression levels that corre-
late with a phenotype. However, many species have more than 20,000 genes, necessitating a severe
multiple-hypothesis correction and thus potentially missing relevant genes with moderate effects
on phenotype. Furthermore, gene expression does not correlate very well with protein expression,
and many genes may be involved in a phenotype without necessarily having different expression
rates across phenotypic categories. To get around these problems, computational biologists often
construct gene coexpression networks which attempt to link co-regulated genes and thus hopefully
capture interrelationships among them.

One frequently use of gene coexpression networks is to partition the genes into a set of tightly-
correlated modules whose union covers most of the network. Trait correlations can then be com-
puted for 10-100 modules rather than 20,000 genes, allowing a more permissive multiple hypothesis
correction and thus hopefully preserving real, moderate transcriptomic effects. In theory this also
allows discovery of genes which are frequently co-regulated with significant genes, but which are
not themselves statistically significant to the phenotype. This approach has led to breakthroughs
in such disparate areas as evolution, disease, and neurobiology.

There are three obvious areas of study necessitated by this approach:

1. How should the gene coexpression network be constructed?,
2. How should genes be partitioned into modules?, and

3. How can modules, once identified, be evaluated and/or validated?



Many of these questions are addressed in the foundational gene coexpression network paper by

Horvath and Dong [5], but we will briefly discuss them here.

1.1.1 Network Construction

Our goal in constructing a meaningful gene coexpression network is to build a weighted network
where an edge’s weight corresponds with the correlation in expression between the two genes it
connects. Genes can be positively or negatively correlated; we can either construct a signed network
to capture the type of interaction, or an unsigned network to focus only on the strength without
regard for the type.

One way to construct such a network would be to create a complete graph on genes where each
edge weight is exactly the correlation between the two genes. However, it doesn’t make a lot of
sense to draw edges between genes that are very weakly correlated, since genes that are completely
uncorrelated in reality will almost always have a nonzero correlation over any finite data set. Thus
we should have some minimum threshold correlation below which no edge is drawn.

The other issue to consider is that the coexpression network should be scale-free, with connec-
tivity following a power law relationship. We infer that this should be the case by the observation
that most biological networks do follow a power-law relationship. For example, the protein-protein
interaction network, which is closely related biologically to gene coexpression and has well-defined
links representing a binary feature (interaction or noninteraction), has a scale-free topology. Thus
we should select a method of weak edge elimination and/or edge weight scaling that results in a
scale-free network.

Horvath et. al. suggest to define the adjacency a;; between genes ¢ and j with coexpression
similarity (correlation) s;; as

B
aij = S;;

for some power 3 > 1. They thusly "emphasize strong correlations and... punish weak correlations"
[5]. They have empirically demonstrated the usefulness of this approach and shown that they can
choose some {3 resulting in a scale-free network for real biological data on several biological datasets,

so we took this approach to construct a weighted network.

1.1.2 Module Partitioning
As noted in [3], the module partitioning problem is NP-hard to solve. There exist a variety of

approximate methods with good performance; we here summarize some popular approaches.

Topological Overlap Horvath and Dong suggest a hierarchical clustering procedure with a

dynamic tree cutting algorithm [5]. They compute the distance between genes (nodes) using



topological overlap, then use an average linkage hierarchical clustering to construct a tree of all

the nodes. Finally, they use the dynamic tree cutting algorithm described in [7].

Girvan-Newman Girvan and Newman propose in [4] to use betweenness centrality as a metric
to split clusters. They briefly discuss hierarchical clustering, but note several "pathologies" such
as the tendency to separate peripheral nodes from their clusters. They then propose to invert
the problem: "Rather than constructing communities by adding the strongest edges to an initially
empty vertex set, we construct them by progressively removing edges from the original graph."
In their algorithm, they iteratively compute betweenness, remove the most-between edge, then

recalculate betweenness.

1.1.3 Module Evaluation and Validation

A "good" module should be (1) biologically plausible, and (2) reasonable from a network theory
and/or mathematical perspective.

All of the above methods have been designed to optimize network-level measures of module
goodness, although the exact metrics do vary from method. Generally, one wants nodes in the
same module to be highly connected, and nodes in different modules to be weakly connected.

The question of this project is which modularization method yields modules that have biological
significance and explanatory power towards a phenotype. We planned to assess this using GO term

similarity and phenotypic correlations.

GO terms The Gene Ontology (GO) vocabulary systematizes annotation of gene functions by
defining standard terms and organizing them into a hierarchy [2]. There are three sets of vocabulary
describing biological processes, molecular functions, and cellular components. These terms can be
used to identify modules of genes that share a common pathway, function, and/or localization (and

thus are biologically plausible).

Phenotypic Correlations This is a straightforward metric: given gene expression values across
a set of subjects, you can see which ones correlate most tightly with a phenotype of interest. Hor-
vath and Dong suggest that in addition to taking the average genewise correlation for a module, to
pick or create a "representative" member of the cluster and compute its phenotypic correlation [5].
They suggest using the so-called "Eigengene" (the largest principal component of the correlation
matrix of the genes in the module). They also experiment with using a centroid or "hub" gene

with high intramodular connectivity, but found that this was less effective.



1.2 Astatotilapia burtont Transcriptional Ethomics Project

Our project was to apply these gene coexpression network methodologies to data collected from
an experiment in Astatotilapia burtoni, an African cichlid fish. A. burtoni males undergo rapid,
dramatic changes in color and more gradual changes in morphology that correspond with their
social status, either non-dominant (ND) or dominant (DOM). Males that are transitioning from a
non-dominant status to a dominant one are said to be ascending (ASC). This clear, fast effect of
behavioral and social inputs on physiology is mediated by transcriptional changes in the anterior
pituitary of these fish, but the exact mechanisms and genes controlling the ascent process are not
well understood.

We obtained data on the relative transcripts-per-million (TPM) levels of 47,807 genes in the
A. burtoni genome in the anterior pituitary of four populations of fish: stable ND males (n = 9),
stable DOM males (n = 12), ascending ASC males (n = 9), and females (n = 11), following the
ascent paradigm described in [8]. We also collected behavioral data from the first half-hour of
ascent for ascending fish or the first half-hour of the day for stable fish, and the last half-hour

before sacrifice of all fish.

1.3 Problem Statement

We wondered which network clustering method would yield the most biologically significant results
in this application. To achieve this goal, we (1) constructed a network from the transcriptional data
using methods from [5]; (2) partitioned the network into modules/clusters/communities using each
of the different methods in the introduction; (3) assessed the similarity of the clusters identified
by the different algorithms; and (4) assessed biological plausibility and explanatory power of the

clusters identified by the different algorithms.

2 Methods

2.1 Preprocessing

We wrote and ran extensive preprocessing code on the raw transcriptional dataset. We took the
log transcripts-per-million (TPM) level for each gene to normalize, then threw out genes with too
many zero-expression values, too little variance, or which were outliers. We also computed the
expression profile correlation between each pair of subjects, and did not find any outliers. We then
ran ComBat, a batch correction algorithm, to correct for different library preparation dates and
sequencing runs. After filtering, we had a dataset of 7683 genes across 41 samples, with a high

mean inter-subject correlation and a significant effect of experimental condition (phenotype) on



expression values.

2.2 Network Construction

We used the code published by Langfelder and Horvath [6] to select the parameter 5 to define
the adjacencies a;; = sfj as discussed in [5]. Different values of 5 were evaluated by the following

criteria:

e Fit to a power law degree distribution (r2? value to a linear fit on a log-log scale). We also

report an r2 value for the fit on a truncated distribution. We accept values of 72 > 0.8.

e Slope of power law degree distribution « (so that P(k) o« k~%). Based on previous gene

coexpression network analyses, we expect 1 < o < 2
e Mean connectivity (sum of a node’s edge weights). We expect this to be at least 20.

After selecting the parameter 3, we constructed the graph defined by the undirected (symmet-

ric), weighted adjacency matrix A with a;; = SZ

2.3 Graph Partitioning/Module Identification

We used the following publicly-available software packages for each algorithm:
e Topological overlap: WGCNA [6]

e Girvan-Newman: igraph [1]

2.4 Biological Feasibility Evaluation
2.4.1 GO term similarity

A Dbiologically feasible module should have genes with similar gene ontology terms. Since GO
terms form a hierarchical ontology, we can group GO terms together by their parents (more-
general terms). To ensure that we got meaningful results, we combined related GO terms by
merging them up the hierarchy until they occurred at a high enough frequency across the dataset
to meaningfully assess their prevalence in each module.

To assess GO term enrichment in a module with n genes, we created a null distribution for
each GO term by repeatedly selecting n random genes and counting how many times each GO
term occurs. We then determined which, if any, GO terms occurred significantly more often in
the module than by chance (p < 0.05 after Bonferroni multiple-hypothesis correction for number
of GO terms). In an ideal module partition, each module would be highly enriched for a couple of

conceptually related GO terms, and thus annotatable with a putative biological function.



B r? fit | r? fit (truncated) | Power o | Mean connectivity | Network density
3| 0.5987 0.9299 1.371 207.55 0.027017
4| 0.7230 0.9466 1.551 96.69 0.012586
5| 0.7796 0.9550 1.633 49.91 0.006496
6 | 0.8185 0.9625 1.654 27.84 0.003624
7| 0.8483 0.9731 1.635 16.50 0.002148
8 | 0.8679 0.9762 1.615 10.27 0.001337

Table 1: Selection of weight scaling parameter 3. Columns r? fit, Power a, and Mean connectivity
are highlighted green for values in the acceptable range.

2.4.2 Phenotype correlation

We computed the "eigengene" of each module as described in [5], and computed the correlation
of these eigengenes to the different social phenotypes. We did not expect that all, or even most,
modules would correspond with a social phenotype. In the average case, most of the largest
modules will correlate to basic cell upkeep functions. In light of this expectation, we decided to
judge networks first by the highest magnitude of correlation of any module with the phenotype,
and then by the number of dissimilar modules that have significant phenotypic correlations

(after a Bonferroni multiple-hypothesis correction for the number of modules).

3 Results

3.1 Network Construction

As described in the Methods section, we evaluated different choices of 8 with results shown in
Table 1. We found that g = 6 struck an appropriate balance between a good fit to the power
law, a reasonable exponent «, and high mean connectivity. We then constructed a network with
the adjacency matrix A with a;; = sg, which as shown in the table has a power-law connectivity

distribution for a = 1.654.

3.2 Topological Overlap Clustering

We ran topological overlap clustering using the published WGCNA code [6] and mostly default
parameters. We identified 10 proper modules; 820 genes were not assigned to a module. The
module information is summarized in Table 2. The clustering dendrogram is shown in Figure 3,
and the cluster assignments are shown in the first row.

We then computed the adjacency of each pair of eigengenes, as well as the adjacency of each
to the social status of the subjects. The result is shown in Figure 1, where the adjacency between
eigengenes F; and E; is defined as %(1 + cor(Ey, Ey)). We also computed which phenotype had
the strongest correlation (negative or positive) for each gene; the results are in Table 2. Several

modules were correlated to ASC (ascenders), as well as to ND (stable non-dominant). Notably, the



Module Color Number of genes | Strongest correlation to phenotype
unassigned (grey) 820 0.648 (female)
turquoise 1685 0.169 (female)
blue 1220 0.385 (ASC)
brown 884 0.276 (ND)
yellow 859 0.291 (ASC)
green 789 -0.190 (ASC)
red 595 -0.254 (ASC)
black 381 -0.318 (ASC)
pink 256 -0.276 (DOM)
magenta 148 -0.219 (ND)
purple 46 -0.204 (DOM)
TOTAL 7683

Table 2: Module partitioning statistics for Topological Overlap clustering (WGCNA). Modules are
assigned an arbitrary color, and are sorted from largest to smallest.
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Figure 1: Eigengene adjacency heatmap for topological overlap clustering. Blue (0) represents a
correlation of -1, while red (1) represents a correlation of 1.

strongest correlation found was the set of unassigned genes to the female phenotype; we hypothesize
that this is because the female brain has sex difference in addition to transient social phenotype
difference, so genes that are strongly sex-associated may have a lot of noise from the males and

thus have unusual graph connections, making them difficult to assign to modules.

3.3 Girvan-Newman Clustering

We had many problems running this algorithm on the graph. Since the graph is complete, albeit
with weak connections, computing the weighted betweenness of each edge is extraordinarily time
intensive, and one would need to remove at minimum 7683 edges, recomputing betweenness each
time, in order to disconnect the graph. We estimated based on small runs of the algorithm that a
run on the complete data would take decades on the hardware we were using.

We tried to eliminate weak edges and smooth out variation by rounding each edge weight
to the nearest 1/10th; this gave us an average degree of 138.7 and an estimated run time of
approximately 3.4 years. We next tried rounding to the nearest fifth (would take about a month)

and to the nearest half (would take about 8 hours). At this point, we had reduced ourselves to an



Module Color Number of genes | Strongest correlation to phenotype
unassigned (grey) 2193 0.342 (ASC)
turquoise 350 -0.224 (ND)
brown 231 0.322 (ASC)
green 181 -0.178 (ASC)
blue 180 0.161 (ASC)
yellow 40 -0.315 (DOM)
black 14 0.266 (ND)
red 11 -0.152 (female)
TOTAL 3200

Table 3: Module partitioning statistics for Girvan-Newman clustering. Modules are assigned an
arbitrary color, and are sorted from largest to smallest.
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Figure 2: Eigengene adjacency heatmap for Girvan-Newman clustering. Blue (0) represents a
correlation of -1, while red (1) represents a correlation of 1.

essentially unweighted graph; the remaining edge weights were identically 0.5.

We decided that if we were going to completely throw out edges with weights less than 0.25, we
should at least preserve the edge weight variation in heavier edges. We ended up zeroing out all
the edges with weights less than 0.15, to obtain an average node degree of 14.5. We predicted that
this would take around 2 days, so we picked a random sample of roughly half of the genes (3200)
and ran the Girvan-Newman algorithm on those only. We reasoned that this should preserve the
strongest communities because they should be characterized by many strong connections, making
it less probable that a gene would be separated from its community than that it would be separated
from a neighbor not in its community. Removal of genes from dense, large communities should
similarly not systematically impact the community structure, as long as the removals are random.

We identified 7 modules with at least ten genes assigned to them; the other 2193 genes we left
unassigned. The module information is summarized in Table 3. The module assignments are also
shown under the dendrogram from the topological overlap clustering (second row of Figure 3). As
for topological overlap, we computed the adjacency of each pair of eigengenes to each other and
to the phenotypes (Figure 2; also in Table 3). This partition also features several modules that
are weakly correlated with non-dominant phenotype, and a few more which are correlated with

ascending fish.
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Figure 3: Topological overlap dendrogram, with module assignments at the bottom. Top row:
module assignments from topological overlap clustering. Grey indicates genes that were not as-
signed to a module. Bottom row: module assignments from Girvan-Newman clustering. White
indicates genes that were excluded for time reasons; grey indicates genes that were assigned to a
module with fewer than 10 other genes.

3.4 Other Algorithms

We had initially planned to also test other community detection algorithms, but they like Girvan-
Newman proved computationally intractable. We reduced the problem to a smaller size so that
we could test the Girvan-Newman algorithm, but after getting our results and seeing the problems
inherent to such reductions we decided it was not worthwhile to test further algorithms on a

rounded-off, randomly-sampled smaller data set.

3.5 Comparison

As is clearly visible in the dendrogram in Figure 3, the module assignments from the two algorithms
are fairly well preserved. The large green module from the topological overlap clustering is highly
similar to the green module from Girvan-Newman; the turquoise module from the second algorithm
seems to reflect a merge of the red, turquoise, and black modules from the first.

Many of the genes that are in smaller modules in the topological overlap became unassigned
in Girvan-Newman. We speculate that this is because of the procedure we used to make the
Girvan-Newman algorithm computable; modules that were not dense and highly-connected could
easily become split apart by this methodology. While it is unfortunate that this relic made the
two partitions not directly comparable, the larger modules were in fact preserved, validating the
theoretical assumption that Girvan-Newman could work as a clustering tool.

We decided it was not worth it to run a computationally expensive comparison of GO term
enrichment, since the two partitions are highly similar and the Girvan-Newman algorithm used

only a subsample of the data.



4 Conclusion

Although other clustering algorithms yield highly similar results on this biological dataset, topo-
logical overlap was the only one that ran in a reasonable, tractable amount of time (in fact, on a
standard MacBook Pro, it took only 10 minutes). Most gene expression datasets are at least this
large, and the gene coexpression network construction procedure always yields a connected graph,
making it likely that the other algorithms tested would have similarly weak performance on other
gene expression data. The community partitioning problem is NP hard, but in this application the
hierarchical bottom-up clustering procedure is ideal not because it produces better results than
other algorithms, but rather because it is able to avoid computing anything costly like betweenness,

much less re-computing it, and thus is able to be orders of magnitude more efficient.
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