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Abstract

International trade relationships are complex net-
works whose creation and evolution are influenced
by geography, history and ever-changing agreements.
Existing research focuses on trade between countries,
modeling their relationships as graphs of nodes of
the same type. We focus on trade relationships be-
tween states and territories of the Unites States of
America and other countries, modeled as a directed,
weighted bipartite graph. We propose and evaluate
two null models: (1) the Coupled Erdos-Renyi model
and (2) the Bipartite Configuration Model. We iden-
tify highly unbalanced relationships using normal-
ized weights, and extend two existing clustering al-
gorithms (BRIM and Spectral Co-Clustering) to han-
dle directed, weighted bipartite graphs. Early results
from our spectral analysis provide some insightful
clusters that seem to capture latent cultural and his-
torical properties of the corresponding nodes.

1 Introduction

Trade partnerships have been at the center of eco-
nomic discussions, eliciting reactions and proposals
from think tanks, researchers, and even presiden-
tial candidates. Globalization has increased the
interdependence among countries in complex and
oftentimes unexpected ways.

Using graph theory, researchers have investi-
gated the effects of trade by creating models that
connect partners in the world according to their
trading volume. The bulk of this research has

treated the United States as a single node in these
networks, analyzing export trade between all fifty
states combined and various other countries.

Similarly, the problem of detecting community
structure in networks has recently received a great
deal of attention in the scientific community. Many
different kinds of algorithms have been proposed to
solve this problem, ranging from hierarchical clus-
tering to modularity-based methods. The majority
of these methods make few assumptions about the
underlying structure of the network in order to be
as general as possible, but in so doing often overlook
properties specific to the particular graph.

In order to further explore the nature of trade
partnerships, we model the import and export vol-
ume data between the 50 states and other countries
around the world as a bipartite network, such that
all edges were drawn between individual states in the
US and foreign countries. Unlike past contributions,
we analyze trade between various countries and each
individual state in a bipartite framework.

The motivation for this research stems from
the authors’ perception that state-of-the-art research
on bipartite graphs was missing a key element in
network analysis: a strong null model. We launched
an investigation into null models for bipartite graphs,
specifically for the import-export weighted, directed
bipartite graph of world trade. A fundamental
contribution of this work is the creation and evalu-
ation of bipartite-specific null models that captures
the weighted trade volumes in this world trade



network, and can even be further extended to other
directed, weighted bipartite networks exhibiting
similar properties.

2 Related Work

2.1 Network Analysis on World Trade

Previous research on trade networks has tradition-
ally taken a country-based approach to capture
the properties of import and export relationships.
Studies such as [1] have made inferences on the
topological properties of the world trade web using
network models. In the scope of this paper, we
consider the most recent discoveries regarding the
trade network in [2] and [3] and evaluate the extent
to which similar results hold when studying trade
between states and countries.

In [3], Fagilio et al. study different network models
to identify the best model that would capture the
properties of trade relationships between countries.
The paper evaluates the structure and intensity of
trading among 159 countries over a period of 20 years
(from 1981 to 2000). The network is first modeled
by a directed unweighted network. This graph is
massively connected, dense and reciprocated: almost
all countries import from partners to whom they
export. In a weighted model, where node degree is
weighted by the trade intensity of each edge, the
resulting distribution is very close to a power law:
most countries have relatively weak connections,
while a few have very intense connections. The
weight of edges between partners is almost perfectly
symmetrical.

Viewed as a weighted graph, the network dis-
plays statistical properties that are significantly
different from the unweighted model: (i) the ma-
jority of existing links are associated to weak trade
relationships; (ii) the weighted web is only weakly
disassortative; (iii) countries holding more intense
trade relationships are more clustered.

Results highlight that countries with stronger

trade relationships are mostly clustered together.
Furthermore, the researchers label nodes weak or
strong nodes based on their actual trade capacities.
They develop a binary model that used thresholding
to remove “unimportant” edges and then trans-
formed the graph into an unweighted model. In
this model, a weak node had a high probability of
connecting to a strong node. However, this property
is not found in the weighted model, which shows
that stronger nodes cluster primarily together [4].

2.2 Clustering in Bipartite Networks

In the interest of our problem, we studied community
detection methods that were specifically tailored
for bipartite graphs. Two algorithms emerged in
literature: Bipartite Recursively Induced Modules
and Spectral Recursive Embedding:

Bipartite Recursively Induced Modules (BRIM),
introduced by Michael Barber, is a direct extension
of the standard modularity maximization algorithm
to bipartite networks [5]. It is an iterative algorithm
that employs a refined modularity matrix and null
model to accommodate for the bipartite structure.
At each iteration, the algorithm fixes a partition
on one side and maximizes the modularity with
respect to the other. The results show significant
improvements, demonstrating the importance of
leveraging the bipartite structure in identifying clus-
ters. A pitfall of BRIM, as acknowledged by Barber,
is that it only handles unweighted and undirected
bipartite networks. Further work can generalize the
algorithm to all bipartite graphs. Moreover, BRIM
has been evaluated only on one null model so far.
More complex null models for bipartite graphs can
improve the performance of the algorithm.

Spectral Recursive Embedding (SRE), intro-
duced by Zha, is an adaptation of the standard
spectral clustering algorithm to bipartite graphs [6].
It is an iterative algorithm that finds partitions,
where partitions are constructed to minimize the
normalized sum of edge weights between unmatched
pairs. The algorithm finds an approximate solution
to this minimization problem by employing a partial



singular value decomposition on the weight matrix
of the bipartite graph. As Zha demonstrates,
normalized cut in this case can be minimized with
left and right eigenvectors that correspond to the
second largest eigenvalues. Zha et all acknowledge
that further work is needed on developing the SRE
algorithm. Two suggestions are finding a more
principled approach on identifying cut points and
on expanding the algorithm to cover partitions with
overlaps.

3 Data

Data points represent the average import and export
volumes between United States and foreign countries,
between the years 2008 and 2015 [7]. When projected
onto a bipartite graph, the data has 291 nodes, with
54 United States and territories on one side, and 237
foreign countries on the other. Edges are weighted
(in US dollars) and directed (import/export).

The graph is almost complete: 86% of all pos-
sible edges are defined, joining 79% of all possible
node combinations that preserve the bipartite nature
of the network. It consists of 4 strongly connected
components, the largest of which contains 99% of all
nodes. All nodes belong to the same weakly con-
nected component. The degree distribution does not
follow a power law: most states trade with most coun-
tries, and vice-versa (see figure 1). As seen in 2, bi-
directional edges are mostly balanced, confirming the
observation in [3].

4 Models

4.1 Normalization

In order to capture the relative significance of trad-
ing partners regardless of their absolute size, edge
weights are normalized such that the sum of all ex-
ports (respectively, imports) for each state node sums
up to one. Let S, C be the set of state nodes
and country nodes respectively, and let wy, .. be the
weight of the outgoing edge (i.e., exports) from state
s; € S to country ¢; € C, and we, s, the weight of
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Figure 1: Trading partuner (i.e., degree) distribution
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Figure 2: Edge weights of all bi-directional relation-
ships

the corresponding incoming edge (i.e., imports). The
normalization process replaces those weights with:
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4.2 Bipartite Random Model

This random model is the unweighted, undirected in-
dustry standard for bipartite graphs described in [5].
In this null model, the probability of an edge exist-
ing between two nodes is proportional to the product
of the degree of the first node and the degree of the
second node. If the two nodes are in the same in-
dependent set, then the probability of that edge is



0. Thus, the expected degree of any node is equal to
that node’s corresponding node in the real graph.

Let m be equal to the number of edges in the orig-
inal graph. Let k; be the degree of node ¢ and d; be
the degree of node j. The probability of an edge ex-
isting between nodes ¢ and j in the null model, where
1 and jk 3re in different independent sets, is equal to
Pij = :n] .

4.3 Coupled Erdos-Renyi
Random Model

This model extends the previously described random
model to produce bipartite graphs that are weighted
and directed. It builds upon the observations ob-
tained from our data to produce a distribution of edge
weights that matches real networks.

Bipartite

1. We create undirected edges between any (state,
country) pair with probability p. The weight of
the created edge is sampled from a distribution
with parameters tuned from our bipartite net-
work (see below).

2. We calculate the strength of each node in the
graph by summing the weights of all incoming
edges to that node.

3. For each undirected edge, we reapportion the
weights of that edge into two directed edges, such
that the weight on each new edge is proportional
to the “strength” of its start node. This effec-
tively distributes the constant amount of trade
volume between partners proportionally to their
individual total imports.

The edge weight probability function used to gen-
erate this model is obtained by observing that the
empirical CDF of the edge weight distribution in the
original dataset strongly resembles a sigmoid func-
tion in lin-log space. We arbitrarily decide to fit a
logistic function to it, of the form:

1
1+ exp(a(logw — p)

P(W <

w)

Maximum likelihood estimation of parameters o
and p results in a close fit to the empirical CDF, as

seen in figure 3. Furthermore, parameter p has a
natural interpretation: it corresponds to the median
trade volume across all states and countries. This
interpretation is confirmed by our evaluation, as seen
in the following sections.
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Figure 3: Logistic fit of empirical weight distribution

4.4 Bipartite Configuration Model

For this final iteration of null model, we use the real
weight data in the graph rather than drawing weights
from the function described in 4.3. We make the
assumption that the trade volume of a node in our
graph is representative of the intrinsic trading capac-
ity of a country or state, and randomly distribute
that weight between edges in the following manner.

The input to the function that produces this null
model is the set of desired node strengths (both im-
port strength and export strength) for each state and
country.

1. Let our real graph be called G. Initialize a new
unweighted multigraph N with the same nodes
as G but with no edges yet.

2. Replace each weighted edge in G of weight w
with w/u edges in N, where u is a resolution
unit. We used u = $1000.

3. We then create edges from states into countries
in the following way:

(a) For each state node, count how many out-
going edges that state has, and initialize
that many outgoing ”stubs” for that state.



(b) For each country node, count how many
incoming edges that country has, and ini-
tialize that many incoming ”stubs” for that
country.

(¢) Randomly match in-stubs with out-stubs.

4. Lastly, we create edges from countries into states
in the same way, except we count the number
of incoming edges to states and outgoing edges
from countries.

At the end of this process, we have a null model N
with weighted, directed edges whose nodes have the
same node strength as the nodes in G. This model
matches another intuition in Fagliolo [2] that strong
nodes are likely to have strong connections with other
strong nodes. We saw in our tests of this null model
that pairs of strong nodes almost always have edges
between them with high weights.

5 Algorithms

5.1 BRIM

The BRIM algorithm recursively identifies bipartite
modules and was first developed in [5].

BRIM depends on a few matrices: A, P, B and S.
For the purposes of this experiment, we have a graph
with ns state nodes and nc country nodes, where ns+
nc = n, or total nodes.

A is an n x n adjacency matrix of the graph of n
nodes. P is an n x n probability matrix, where P;; is
the probability that an edge exists between ¢ and 7 in
the null model. B is the “modularity matrix”, given
by B= A — P. S is the assignment matrix, wherein
She = 1 if node n is in cluster ¢ and S, = 0 if node
n is not in cluster c.

We can partition S in the following way: Let R
be the ms x ¢ matrix that contains assignments for
only state nodes and let T" be the nc x ¢ matrix that
contains assignments for only country nodes.

The modularity is given by

1 ~
Q= —TrRTBT
m

B is a ns x nc matrix that represents the upper-
right corner of the B matrix. Because we only have
edges between state and country nodes, we need only
to examine that particular portion of the B matrix.

To find the best cluster given the number of clus-
ters ¢, they implement an iterative maximization
scheme. To start, they randomly assign all the nodes
to clusters and build the corresponding assignment
matrix S, from which we can extract the R and T
state and country assignment matrices.

They want to maximize the modularity, so they
want to maximize the equation Q = %T rRTBT.

They then repeat the following steps until modu-
larity stops increasing:

(1) They fix the assignment for the countries,
thereby fixing the matrix 7. Because T is fixed,
let T = BT. Then choose the R that maximizes
Q= %T’I"RTT.

(2) They then fix the assignment for the states,
thereby fixing the matrix R. Because R is fixed, let
R = RTB. Then choose the T that maximizes Q =
L1TrRT.

Once the iteration stops, S contains a complete
cluster assignment with possibly the best modularity
score for c¢ clusters. As mentioned previously, the
algorithm can get stuck in a local maxima.

In the paper, they find the optimal c using a simple
binomial search in the range of possible ¢ values: from
1 to n, where n is the number of nodes.

However, one thing we must note is that this al-
gorithm can get stuck in a local maxima and is not
guaranteed to find the globally optimal solution ev-
ery time. We also see that the modularity calculation
is depending on B, which is dependent on P, our null
model probability matrix.

5.2 Spectral Recursive Embedding

The SRE algorithm recursively identifies partitions
that minimize the normalized sum of edge weights
between unmatched pairs. At each iteration, the bi-
partite graph is split into two clusters and are treated
independently thereon.

Let’s first denote the bipartite graph as G(X,Y, E)
where X and Y represent the two sides of the bi-
partite graph. Then, V = X UY and X NY = (.



The algorithm will be computing a vertex partition
of G(X,Y, FE) denoted by II(A, B) where X = AU A°
and Y = B U B¢. The algorithm is based on the fol-
lowing proposed variant of the normalized cut equa-
tion [6]:

cut(A, B)
W(A,Y)+W(X,B)

cut(A°, B®)
"W Y) T WX, B

NCUT(A, B) =
(1)

Intuitively, this refined NCUT not only captures a
partition with small edge cut, but also forms two sub-
graphs that are as dense as possible when minimized.

To approximate this minimization, the paper
then delves into proving a series a mathematical
statements (which we have chosen to exclude for the
sake of space), showing :

min NCUT(A, B)
TI(A,B)

22T Wy (2)

=1- a
220420 2T Dxz + yT Dyy

where 27 Dxe + y? Dye = 0 [6]. Relaxing this min-
imization by doing away with the constraint, Zha et
al arrives at Algorithm 1.

Our implementation improves on this model in the
following ways: instead of using the simple strategy of
setting ¢, = 0 and ¢y = 0 which divides the network
into two subgraphs, we find a cluster that we finalize
at each step and then recurse on the remainder graph.
To do this, we order the left and right eigenvectors so
that the values that are closest to -1 and 1 are at the
two ends. Without the relaxation, the values would
have been -1 and 1, and so intuitively, those that are
closest must denote a a stronger relevance. Then,
starting at the positive end, we iterate over the sorted
eigenvectors in order to find the minimum NCUT. We
do the same thing for the negative end, and pick the
smallest value. Doing this let’s us identify a cluster
where the next edge would have increased the sum.
Notice that after this partition, one of the subgraphs
is finalized as a cluster.

Algorithm 1 Spectral Recursive Embedding (SRE)
Input: Given a weighted directed bipartite network

G = (X,Y, F) with its edge weight matrix W:
Output: Clusters (A1, B1), ..., (An, By)

1) Compute D, and Dy and form the scaled
weight matrix W = D"/*WD;/2.

2) Compute the left and right singular eigen-
vectors that correspond to the second largest
eigenvalue of W, & and g.

3) Find cut points ¢, and ¢, for z = D}lﬂfc and

y = Dy'%.

4) Form partitions A = {i|lz; > ¢} and
A¢ = {ilz; < ¢y} for vertex set X, and
B = {jly; = ¢y} and B = {jly; = ¢} for
vertex set Y.

5) Recursively partition the sub-graphs G(A, B)
and G(A¢, B°) if necessary




6 Results

6.1 Normalization

The normalized model further confirms that trade
relationships are also balanced in relative terms: over
90% of normalized bi-directional edges have weights
that are within 1% of each other (see Figure 4).
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Figure 4: Trade imbalance in normalized partner-
ships

What is even more interesting however is that the
normalized graph allow us to detect outliers, that
identify relationships in which one of the partners
(most typically, the state) imports good from the
other in a much proportion than it exports to it (see
Table 1). In addition to highlighting possible eco-
nomical dependencies, those cases oftentimes high-
light geographical or historical partnerships. Many
of them surface again in the results of the spectral
clustering results below.

6.2 Null Models
6.2.1 Coupled Erdos-Renyi Model

As seen in Figure 5 and Figure 6, the CER null model
produces graphs with similar edge weight distribu-
tions, but with radically different degree distribu-
tions. This is to be expected, because the edges were
randomly assigned and created bidirectionally.

We also see that the edge weight distribution is al-
most identical to our raw data, which means that our

Country State
Canada Wyoming
United Arab Emirates | District of Columbia
Canada Montana
Canada New Hampshire
Venezuela Virgin Islands
Switzerland Nevada
Australia Hawaii
Ireland Puerto Rico
China Nevada
Canada Vermont
Mexico Utah
China Tennessee
United Kingdom Utah
China California
China Minnesota
Germany Rhode Island
Chine Arkansas
China New Mexico
Canada Alaska
Israel New Mexico

Table 1: Most unbalanced (normalized) relationships

empirical weight distribution logistic function was
very well-fitted to the data, which means that our
reapportion step did not noticeably affect the edge
weight distributions. It is interesting that the trade
volume between countries and states can be so ac-
curately fitted with a logistic function. Our original
decision to fit the data with a logistic function was
arbitrary, but upon seeing this new distribution, we
believe there must be an underlying reason why this
is true and this is definitely something that we want
to look into further.

We see in Figure 7 that the node strength of the
nodes in the CER model was generally a bit lower
than in the real graph. This means that, in the
null model, there are fewer nodes model that are ex-
tremely strong.

6.2.2 Configuration Model

Comparatively, the CM null model has a very differ-
ent edge weight distribution, which comes from the
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Figure 5: Null Model Evaluation: Degree Distribu-
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Figure 6: Null Model Evaluation: Edge Weight Dis-
tribution

algorithm that paired the generated stubs randomly
rather than preferentially attaching them to stronger
nodes.

Unsurprisingly, we do see that the CM’s node
strength distribution matches the raw data exactly.
This is an artifact of the algorithm, which enforces
that an node in the real graph retains its node
strength in the null model.

However, what’s more important is that the degree
distribution in this null model matches the real graph
even closer than the CER model. We see from these
results that this null model is a very good candidate
to replace BRIM’s current null model. This is also
something we want to look into further, to see if we
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Figure 7: Null Model Evaluation: Node Strength Dis-
tribution

can improve the clustering results from BRIM even
further with a new null model.

6.2.3 Reflection

We learn from these comparative distributions that
the two developed null models can play two differ-
ent roles in the analysis of a network. Should a re-
searcher want to analyze the significance of the edge
weight distribution of a directed, weighted graph,
they should compare their graph with a CM null
model. If they want to analyze the significance of
their degree distributions, they should compare their
graph with a CER null model.

6.3 BRIM

We expected that running BRIM [5] on our raw
graph would produce uninteresting results because
the graph was complete. This was confirmed when
we saw a 0.06 modularity score when we ran BRIM
on the raw graph.

BRIM requires an unweighted, undirected graph.
When we transformed our raw graph into this format,
the nuanced information about partners that were
mainly encoded in the weighted, directed edges, was
lost. Thus, we set out to improve the undirected,
unweighted representation of our graph by developing
normalization and thresholding techniques that we



hoped would encode the nuances of those weighted
edges into the remaining undirected edges.

We first attempted to normalize the edges, de-
scribed under the Model section. This demonstrated
mild improvement in our modularity scores, increas-
ing the score from 0.06 to 0.1. However, with the
two versions of thresholding, once with the parame-
ter set to 0.005 and second with the set to 0.01, we
were able to double our modularity score. Though
these are marginal gains, it showed that our graph
transformations were able to remove edges that were
insignificant in the creation of communities.

As seen in Table 2, in which we report the modular-
ity scores of the various graph models, our normaliza-
tion schemes were able to remove the "unimportant”
edges from the complete graph and thus retain the
most important partners of the nodes in the undi-
rected graph. We were able to iteratively improve
the modularity scores given by BRIM on our graph.

Graph Transformation Modularity
Raw Graph 0.0610
Normalized 0.1062
Normalized with 0.5% Thresholding 0.2033
Normalized with 0.01% Thresholding 0.2075

Table 2: BRIM performance

6.4 Spectral Clustering

We apply Algorithm 1 to the directed bipartite graph
with normalized weights in order to detect clusters of
related states and countries based on trading pat-
terns alone. The goal of this experiment is two-fold:
(i) since finding the global optimum of the normalized
cut value is impractical, validating that our heuristic-
based search for a local maximum yields relevant re-
sults; (ii) empirically evaluate the relevance of the
returned clusters.

We confirm that the improvements to the SRE
algorithm discussed previously allow us to obtain
variable-size clusters. By only reaching a local op-
timum, we have indeed seen combinations of states
and countries that would have yielded higher normal-
ized cut values. A closer inspection of the returned

clusters however already provides interesting insights,
and reveal common properties that are not captured
in numbers (such as shared history, culture or lan-
guage). In fact, we have a cluster made up entirely
of islands, as seen in Table 3! The SRE algorithm was
able to unearth this unexpected cluster base solely on
trading volumes, which was quite incredible. We also
observed in the examples of obtained clusters (Ta-
ble 3) that this technique is somewhat resilient to a
possible Matthew effect, which would result in simply
clustering most nodes with their strongest partners
(i.e., China). We evaluated our clustering algorithm
explicitly by looking at the clusters:

States Countries

Virgin Island Martinique
Guadeloupe
Sint Maarten
Curacao
Antigua and Barbuda
Kiribati
Australia
Marshall Islands
Micronesia (Federated States of)
Palau
Christmas Island
Cook Islands

Hawaii

New Mexico Mexico
Israel
Nevada Switzerland
India

Table 3: Top 4 clusters obtained by Modified SRE

It is worth highlighting the interesting overlap be-
tween some of the clusters presented below and the
”outliers” in the normalized trade relationships listed
in table 1. Notice that New Mexico and Israel; Hawaii
and Australia; Nevada and Switzerland are all clus-
tered together (In fact, Israel is New Mexico’s third
largest trading partner).



7 Conclusion

We achieved our goal of utilizing our data to create
smart bipartite-specific null models for bipartite
graphs that can be used for analysis of other bipar-
tite networks. We employed variations of network
models—weighted and unweighted, directed and
undirected—to find the most optimal way to (i)
capture the relations between states and countries,
and (ii) find communities among states and coun-
tries based on import and export relationships. Our
study expands on previous work, demonstrating
that imports and exports are mostly symmetrical
in state-country trade relationships as well. In our
analysis, however, we have also identified some
outliers, which in fact surfaced within the clusters
we obtained from our algorithms. This showed that,
even though import and export data were mostly
symmetrical, considering the directed graph had
value.

Some suggestions for future work are: (i) to
incorporate our new null models into BRIM and
(ii) implement SRE with overlapping partitions.
Unfortunately, we were not able to obtain confident
results when we used our null models on BRIM.
Further mathematical analysis is required to modify
BRIM accept more complex null models. The case
is similar for SRE.
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