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Introduction

The legislative branch of the United States government plays a central role in the health and operations of
the country. Of all the powers and duties vested in Congress, the most important is the power to create
and pass national legislation. However, though the legislation proposed in Congress affects every single
United States citizen, it’s often slow to pass, if at all. Oftentimes, it’s difficult to tell whether or not crucial
legislation will pass one or both chambers, which can cause major obstacles and uncertainty for policy and
legislators. If there were a way to successfully predict whether or not a bill will pass, it would be
groundbreaking for many people involved in government.

In the United States Congress, social networks play a major role in the production and passing of
legislation. Congressmen and women can co-sponsor legislation, or publicly declare their support for a
piece of legislation proposed by a colleague. Congressmen and women spend a significant amount of time
and energy building these co-sponsorship relations. Furthermore, co-sponsorships on legislation are
frequently brought up during sessions of Congress as well as to constituents and other parties. In
summary, co-sponsorships play a major role in the legislative process. These co-sponsorships create a
social network that may be telling of legislation success or failure -- each sponsor on a bill can be defined in
terms of his/her place in the network. How connected is he/she? Who is he/she most closely associated
with? What network characteristics best summarize him/her? What network characteristics determine the
outcome of the legislation that this person chooses to sponsor?

In our project, we investigate the importance of these social networks on legislation outcome by (1)
identifying network characteristics of successful and unsuccessful bills, (2) using the features we identify to
try and predict legislation success based on co-sponsorship social networks, and (3) predicting future
co-sponsorships.

Literature Review

Legislative co-sponsorship Networks in the U.S. House and Senate by James Fowler

To the best of our knowledge, no work has been done to use the features of co-sponsorship networks in
Congress to predict whether or not legislation is successfully passed. We will be building off of previous
work related to the congressional network itself by James Fowler and separate work surrounding using
subgraph features in prediction. Fowler does an extremely thorough analysis summary statistics and
comparisons between the different years of both the house and senate. He then uses that information to
come up with a metric of “Connectedness” of the legislators. Where Fowler focuses on the connectedness
and then the success of the most connected legislators by becoming party leaders in following years, we
will be focusing on predicting the chances of a bill passing the house or even becoming law. This type of
prediction speaks to very different measures of success. Whereas Fowler defines success to be entering
party leadership, we will be focusing on passing legislation. Furthermore, Fowler constructs his graph
based on “distance” between legislators, rather than using the directed edge co-sponsorships based
directly on bills.

The Link Prediction Problem for Social Networks by David Liben-Nowell and Jon Kleinberg



This paper describes methods for the structural analysis of graphs based solely on topology. It sets aside
the use of node or edge features[3]. Specifically it focuses on different algorithms for link prediction and
their greater use in measuring larger scale graph characteristics. The overarching question is, to “what
extent can the evolution of a social network be modeled using features intrinsic to the network itself?” The
paper offers a robust explanation and description of the algorithms used, including preferential
attachment. However, the paper fails to take a strong stance on which link prediction models are best
suited for different graph structures. Instead it just offers general statistics. Nonetheless, it still provided us
a strong perspective and argument for why there is much to learn about a graph from link prediction
methods alone. This encouraged us to continue exploring link prediction for our use case.

Overview

We model the co-sponsorship network of the House as a directed graph, where each node represents a
single legislator, and a directed edge from legislator A to legislator B indicates that legislator A
co-sponsored some piece of legislation proposed by legislator B. Our approach to this project consisted of
three main components: (1) Feature extraction from successful bill “subgraphs,” (2) Bill success prediction
based on said feature extraction, and (3) link prediction within the co-sponsorship network graph.

In this project, we chose to focus on the House networks exclusively. We do not consider the bill’s status in
the Senate or at the Presidential level. Before trying to capture the extra complexity of the interplay
between the House and Senate networks, we wanted to focus on a more basic network to see what salient
features stood out to us. We chose the House network because it is larger, and based on Fowler’s findings,
the network is less dense, so it might allow us to see a wider variety of network interactions [1]. We define
success of a bill as a binary variable, where a bill is successful if it passed in the House, and a bill is
unsuccessful if it did not pass in the House.

Prior to the 96th Congress (1979), House rules prohibited more than 25 total sponsors on any bill. During
the 96th Congress, this co-sponsorship cap was lifted and to this day, there does not exist a co-sponsorship
cap on bills. We hypothesize that the presence or absence of this co-sponsorship cap may significantly
influence the co-sponsorship network structure, because if a cap is present, legislators may put more
weight into their decision to co-sponsor a bill. Thus, in our analysis, we focus on two separate sets of
Congressional sessions: the 93rd-95th Congresses (co-sponsorship cap), and the 97th-109th Congresses
(no co-sponsorship cap). We leave out the 96th Congress because the co-sponsorship cap rules changed
during this session of Congress, and we cannot place it neatly into either set. Each session of Congress
contains around 10-20,000 bills in total.

We use a combination of a dataset created by James Fowler of the co-sponsorship networks from the 93rd
Congress (1973) through the 109th Congress (2007), and a GitHub dataset containing metadata for all
United States legislators from 1789 to the present. We used the Fowler data to create the directed graph.
We used the GitHub data to store information about each legislator in the 93rd-109th Congresses. The
datasets had many unexpected inconsistencies that we had to work around. First, we expected that every
bill in the dataset would have a sponsor, but there were bills without marked sponsors. We chose to
ignore these bills since they didn’t contribute information about co-sponsorship. Second, we found that



approximately 15 representatives per session had no political party affiliation recorded in the GitHub data.
We chose to treat party missing as its own political party class, because we feel that the case where a
legislator chose not to disclose his or her political party is equally as informative as the case where a
legislator did choose to disclose his or her political party. Finally, there are 435 total seats in the United
States House of Representatives. However, every graph has more than 435 nodes because during each
session of Congress, some representatives left and their spots were filled by new representatives. Each
representative played a unique role in the co-sponsorship network, so we chose to include every one of
them.

Feature Extraction

Methodology

We attempt feature extraction by comparing the “subgraphs” of successful bills with the “subgraphs” of
unsuccessful bills. These aren’t subgraphs in the strict sense of the term, because we don’t isolate nodes
into a separate subgraph -- rather, for each bill, we look at all nodes that sponsored or co-sponsored that
bill, and compute statistics for those nodes within the context of the entire graph. We chose to do this
because it gives us a better sense of how nodes that participate in a certain bill interact with the entire
House network as a whole. We hypothesized that there may be certain network features within bill
subgraphs that indicate bill success or failure.

We chose to look at the 93rd and 103rd Houses in our initial feature exploration. We randomly chose each
of these sessions from the sessions with and without a co-sponsorship cap, and we expect that the findings
will generalize to other sessions of Congress. After constructing the directed co-sponsorship graphs for
each session, we computed a variety of network structure statistics using SNAP for subgraphs of each
unsuccessful and successful bill in each of the 93rd and 103rd sessions of the House. For each statistic, we
computed the mean value for all nodes in the given subgraph and then compared the mean of means
using the Mann-Whitney significance test. We also computed statistics based on intrinsic characteristics of
each node’s party, gender, and states with the highest representation in the House. We chose these
particular features based on our domain knowledge of how relationships in Congress develop.

Results and Findings

The results of the features we considered are summarized in Tables 1 of the Appendix. We used the
Mann-Whitney test to compare the means for each statistic between successful and unsuccessful network
subgraphs. We defined potential predictive features as features that had a statistically significant
difference in means across all successful and unsuccessful bills in a particular session of Congress, where
statistical significance was determined by a significance level of 0.05. The 93rd Congress network has 446
total nodes and 31,660 edges and the 103rd Congress has 447 nodes and 65,072 edges. There is total of
28,6486 bill subgraphs between these two sessions. From this alone, we can see that the absence of the
co-sponsorship cap significantly increased the density of the co-sponsorship network. We were surprised
to find that in the 93rd Congress, almost every metric we examined appeared to be statistically significant
in terms of differentiating successful bill subgraphs from unsuccessful bill subgraphs, while only a handful
of features were significant in the 103rd Congress. This is a strong indication that the co-sponsorship cap



had a significant effect on the significant of co-sponsorship networks in Congress, as we hypothesized
earlier.

Interestingly, most the graph structure metrics we used didn’t show a significant difference in both
Congresses, with the exception of mean number of sponsors and mean betweenness centrality. Mean
number of sponsors indicates that having a larger number of sponsors on a bill means that the bill is more
likely to pass. This corroborates the amount of time and effort Congressmen and women spend on their
co-sponsorship relationships. Qualitatively, betweenness centrality of a node indicates the number of
shortest paths between all vertices in the graph that pass through that node. The fact that betweenness
centrality is significant here indicates that in order for a bill to pass, it might be helpful if on average,
sponsors of the bill are on shortest paths within the network. In the context of Congress, this indicates that
it may be important for a bill to get support from legislators that form bridges between clusters, where
clusters may be by political party, by committee, by state, or any other number of factors. We also found
that several node-based statistics seem to be significantly different, indicating that characteristics of
legislators themselves may be indicative of co-sponsorship relationships that will form, and ultimately bill
success.

Bill Success Prediction

In this phase of the project, we wanted to investigate the predictive power of these features to see
whether or not we could actually use them to predict the success or failure of a bill in a particular session
of the House.

Methodology

Define significant features as those features from the previous part which were significantly different
between successful and unsuccessful bill subgraphs within each set. In order to focus on the predictive
power of each potentially significant feature, for each set of sessions, we first computed the mutual
information of all significant features. We then used a Naive Bayes classifier to predict bill success or
failure within each set of sessions. We chose to use this relatively simple classifier in order to focus on the
predictive power of features rather than the overall performance of the classifier. For each session, we
computed a feature vector and corresponding label for each bill in the session based on the significantly
different features from the previous part. We do a binary classification where a label/prediction of 0
indicates bill failure and a label/prediction of 1 indicates bill success. We used
leave-one-out-cross-validation on each set of sessions and ran the predictor three times for each set, using
a different feature vector for each run (once using all significant features, and once each using top three
and top five features as determined by mutual information.

Results and Findings

The most predictive features in the capped sessions were the graph-based features, while the most
predictive features in the uncapped sessions were mostly node-based features. This indicates that as the
network becomes more dense, the overall structure of the graph is less important than the features of the
individual nodes in overall bill success. Using the features with highest mutual information increased the
overall accuracy, but actually decreased the proportion of correct successful bill predictions. On the whole,
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about 95% of bills are unsuccessful and about 5% of bills are successful in any given session, meaning the
expected true positive rate is 0.05 if the classifier were guessing at random. Our predictor shows a
consistent true positive rate of around 0.08 when we predict using all significant features, which is higher
than our chance estimate. Because we’ve run several cross-validations on the true positive rate and it’s
still higher than 0.05, we believe that this increased true positive rate is not due to chance. While our
classifier is far from perfect, these results lead us to believe that it is possible to use network features of
the Congressional co-sponsorship graph to get some idea of bill success.

Link Prediction

In this section we explored two different approaches to the classic link prediction problem. The first is the
Supervised Random Walks algorithm proposed by Backstrom and Leskovec, in which random walks of
PageRank are combined with learned node and edge features[4]. While Backstrom and Leskovec
developed the algorithm to address the issues of link prediction in sparse networks, we still felt that there
could be something gained in our dense network by using their combined supervised random walks
approach. The second is a modified Network Evolution algorithm proposed by Leskovec, Backstrom,
Kumar, and Tomkins[5]. Again, while this algorithm was developed for sparse networks we felt that it
could be applied to our dense network since the backbone of the algorithm is based on completing
triangles which work even in dense graphs.

General Link Prediction Methodology

The formal link prediction task is: given a training interval [t,, tJ.] and a test interval [t,, t] where t<t we
want to create a ranked list of edges that are predicted to appear in the interval [t,, t] but don’t appear in
[t,, t;]. We use a variety of algorithms to accomplish the link prediction task.

Methodology - Random Walks

Let LP be the link prediction algorithm which outputs the ranked list referenced above. In our use case we
want to predict co-sponsorship networks for successful bills. More formally, we want to predict edges that
appear in a co-sponsorship network of successful bills and but do not appear in either . More details follow
below.

Our formal methodology specific to our co-sponsorship data is as follows:

1. Model the data as a directed graph with bill sponsors as nodes. Primary bill sponsors have inbound
directed edges from co-sponsors.

2. Create three co-sponsorship networks. (1) The first co-sponsorship network is the entire network
of all bills proposed, successful or not. (2) The second network is made using only successful bills in
the training interval [t,, t]. (3) The final network is made using only successful bills in the test
interval [t,, t]. We calculate intervals [t;, t] using timestamps when the bill was co-sponsored.

3. Use LP on the second network from step 2.

4. Evaluate prediction performance using networks 1 and 3 from step 2. We test whether the
predicted edges appear in graph 3 and not in graph 1.



Algorithms

Personalized Pagerank and Supervised Random Walks

We run a personalized pagerank on nodes labeled sponsors to calculate the node “closest” to them. Here
we aim to extend the notion of consistent triads, “a friend of my friend is my friend”, to the main bill
sponsors.

The Supervised Random Walks algorithm employs an approach similar to Personalized Pagerank with the
added component of edge strengths. The formal optimization problem is as follows:

min F(w) = [wl* +A Y h(p — pa)
deD,leL
The optimization problem is modeled as a random walk where we aim to visit nodes in D but not nodes in
L. p, and p,above are the pagerank scores for nodes in D and L respectively. We are minimizing the cost
function h, which is taken over the difference over p,and p,. To solve this optimization problem we use
simple gradient descent.

Feature Selection: In selecting features we are looking for edge features that are relevant to both edge
creation and the success of a bill being passed. We were limited in the features available largely due to
incomplete datasets. However, we explored details of nodes including party affiliation, gender, and state.
Additionally, since each edge in the graph is created for a co-sponsorship on a bill, we tried to add features
relating to bills such as the bill topics. To learn the weights for these features we used two variants of h:
the Wilcoxon-Mann-Whitney loss function and the Squared Loss function.

Triads
In the algorithm developed by Leskovec et al., we see:

1. Modes arrive using the node arrival function Ni;:).

2. Wode u arrives and samples its lifetime a from the exponential distribution pla) = A expi-Aa).
3. Mode u adds the first edge to node v with probability proportional ta its degree

4. & node u with degree d samples a time gap & from the distribution pg{d|d; 0, B) = (1/Z}F-a
axp|—[da) and goes to sleep for & time steps.

5. When a node wakes up, if its lifetime has not expired yet, it creates a two-hop edge using the
random-random trianghe chosing model

Due to the nature of congress, there is not a significant number of nodes arriving once a session has
started and nodes don’t wake up for periods of time since legislators are continuously active during
sessions of Congress. Finally since a representative’s “lifetime” is simply the amount of time they are in
office, the we simply run one round of two-hop edge creation or triadic closure for each node. For a given
node, we would choose a neighbor, n, using one of four methods and then choose a neighbor of n using
the same method. We ran four different types of triangle closure, random-random, degree-degree,
random-random within party, and finally degree-degree within party. In our baseline, random-random, we
randomly pick a neighbor, n, and then randomly pick a neighbor of n, m and finally create edge (node, m).
For degree-degree, we picked the first neighbor proportionally to its degree and the same for its second
neighbor. Random-random within party simply runs random random only choosing among members of
the same party as the original node, while degree degree within party runs degree-degree choosing
proportionally by degree among the node’s neighbors within the same party.



Results and Findings

Personalized Pagerank and Supervised Random Walks
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Fig 1 Out-degree distribution of one House session

Unfortunately, our Supervised Random Walks weight vector w, saw very little deviation from the 0 vector.
Furthermore, we found the predicted pagerank scores on our test data, as described in our methodology
above, to be uniform across all nodes. This is largely due to the inadequate data features available that led
to a faulty training set. We could not adequately split the data into a training and test set because the
granularity of times between co-sponsorships was not fine enough. This is because many legislators
co-sponsor legislation right when it is introduced. Additionally, the Supervised Random Walks algorithm
did not perform well with our co-sponsorship network’s degree distribution shown. The degree
distribution is fairly isomorphic and high in relation to the number of nodes (see Figure 1).

The results for the Personalized PageRank did not show promising results when evaluated on the test set.
Unlike in Supervised Random Walks, we discovered non uniform pagerank scores. However, the notable
variance in these scores was limited to the existing edges. The derived PageRank scores using Personalized
PageRank did not provide meaningful signals to predict future co-sponsorships, with largely random
PageRank scores.

We were unable to predict any successful bill co-sponsorships with a significant degree of accuracy using
either Personalized PageRank or Supervised Random Walks.

Triads

We ran triads on the congressional sessions with-out the co-sponsor cap or sessions 97-109. We found the
average accuracy of our added edges by calculating the percentage of our predicted edges that existed in
the original graph. As shown in our results summarized in Table 4, we received a 4% bump in accuracy
when only choosing edges within the original node’s party but did not receive better results from choosing
proportionally by degree. This makes sense since there node out degree is a highly right skewed
distribution and while most representatives have out degree > 100, there are a representatives that have
much lower out degree. Essentially choosing proportionally based on out degree is mostly the same as our
random-random triadic baseline. To calculate the statistical significance of the triadic accuracies, we
compared our results for each congressional session to the accuracy of looping through every node in the



graph and creating a new edge to a random destination. Via the Mann-Whitney test, we found that every
single triadic closure approach we tested was statistically significant.

Summary

In this project, we explored the notion of predicting bill success in one chamber of Congress using two
main methods: binary classification using network features, and link prediction within the graph. We were
able to find some potentially predictive features of bill subgraphs that indicate that certain network and
node features of the Congressional co-sponsorship network may be indicative of bill success or failure.
While we found moderate accuracy with Triadic closure, the Personalized PageRank and Supervised
Random Walks were largely plagued by isomorphic degree distribution and dense graph structure. Given
the nature of Congress, there are many things that play into the success or failure of a bill, including public
perception, special interest groups, and the political climate of Washington. The co-sponsorship network is
just one of several factors, and it’s not enough to tell the full story of a bill. However, our results indicate
that the cosponsorship network can be an informative factor in the success or failure of a bill.

Appendix
93rd House 103rd House
U statistic P value U statistic P value
Mean clustering coefficient 9443086.5 0.0902 2344384.0 0.1941
Mean number of sponsors 9110409.5 4.2416e-05 2134076.0 3.6296e-07
Mean in degree 8478781.0 2.6156e-11 2330189.5 0.13106
Mean out degree 6413777.0 8.0468e-71 2367365.0 0.3284
Mean PageRank 8758259.5 2.2122e-07 2320199.5 0.09622
Mean HITS Hub score 6658491.5 6.0872e-61 2367003.5 0.3260
Mean HITS Authorities score 8230861.5 1.3132e-15 2330820.5 0.1335
Mean betweenness centrality 8374944.5 5.1396e-13 2269831.5 0.01318
Mean closeness centrality 7720143.5 6.6685e-27 2312814.0 0.07522
Proportion of co-sponsors in same political party as 8799296.0 9.8030e-11 2189680.0 3.1030e-05
sponsor
Proportion Democrat 7291282.0 1.4609e-44 2391436.5 0.4976
Proportion Republican 7545266.5 8.5773e-37 2377681.0 0.3948
Proportion Independent N/A N/A 2315399.0 0.0001576
Proportion of co-sponsors from same state as 9046365.5 8.6183e-10 2268059.5 0.002803
sponsor
Proportion from CA 9501991.5 0.02937 2385608.0 0.4161




Proportion from TX 9261386.0 3.00293e-11 2375648.0 0.2285
Proportion from FL 9418208.0 0.000111 2355647.5 0.02365
Proportion from NY 8968385.0 4.5711e-13 2378919.0 0.2840
Proportion of co-sponsors of same gender as 9122669.5 4.07811e-05 2197107.0 6.5345e-05
sponsor
Proportion women 9245695.0 1.6661e-05 2253033.0 0.001553
Proportion men 9097631.5 4.02455e-07 2301004.5 0.04008

Table 1 Mann Whitney test results for mean statistics. Statistically significant results are in boldface.

Feature
(* indicates significance in 103rd
Congress)

Capped Congress sessions
(93rd-95th)

Uncapped Congress sessions
(97th-109th)

Mean clustering coefficient

1.61783382e-02

Mean number of sponsors* 8.60671189e-04 0.00064667
Mean in degree 5.07789747e-03
Mean out degree 6.50157544e-03
Mean PageRank 1.30916488e-02
Mean HITS Hub score 1.63671940e-02
Mean HITS Authorities score 1.44093480e-02
Mean betweenness centrality* 1.39972555e-02 0.02086913
Mean closeness centrality 1.11629182e-02
Proportion of co-sponsors in same political 5.49782517e-03 0.01349688
party as sponsor*
Proportion Democrat 2.65442639e-03
Proportion Republican 2.75891189e-03
Proportion Independent* 0.00000000e+00 0.00562028
Proportion of co-sponsors from same state 6.42036678e-03 0.
as sponsor*
Proportion from CA 1.20125953e-03
Proportion from TX 1.89553495e-04
Proportion from FL* 1.42685044e-04 0.00589299
Proportion from NY 9.14086620e-05
Proportion of co-sponsors of same gender as 1.10831165e-02 0.00553177

sponsor*




Proportion women* 4.28834847e-04 0.

Proportion men* 1.06496868e-02 0.00570794

Table 2 Mutual information scores of significant features for capped (93-95) and uncapped (97-109) Congresses

Capped Congressional sessions Uncapped Congressional sessions
(93, 94, 95) (99, 100, 106)
Features Average Average accuracy Average Average accuracy
true positive rate true positive rate
All significant features 0.085444 0.8899 0.0750 0.8156
Top 3 features by 0.0020768 0.9392 0.02720 0.8362
mutual information
Top 5 features by mutual 0.020000 0.92629 0.01309 0.8302
information
Table 3 Average rates for leave-one-out-cross-validation experiments
Random-random Degree-degree Random-random within Degree-degree within
party party
Average accuracy across 0.589 0.581 0.631 0.641
sessions 97-109
P-value from 8.601e-06 8.125e-06 7.548e-06 6.048e-06

Mann-Whitney

Table 4 Average Accuracy for Triadic closure.
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