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1 Introduction

Graph, or network, is a standard way to model complex system and data, where each node repre-
sents an entity and each edge represents some interaction or relationship between the corresponding
two entities. Clustering is observed in various of real-world networks, and it is the basic hypothesis
of any community detection research. The prototypical measurement for the extent to which the
nodes of a network cluster is the clustering coefficient, or the frequency at which a node and two of
its neighbors form a triangle. In this project, we generalize the this definition to the higher-order,
which measures the density of clique in the graph.

Basic notations and definitions, including the classic clustering coefficient, are presented in
Section 3. The definition of higher-order clustering coefficient is given in Section 4. In Section 4-6,
I explored a couple of interesting properties of this generalization.

2 Basic definitions and notations

Let G = (V, E) be an undirected, loop-less graph. We use n = |V/| to denote the number of vertices
and m = |F| to denote the number of edges. For any node u, we denote the degree of u by d,, and
the set of its direct neighbors as Ny (u).

For any integer ¢ > 2, a set of £ nodes {ui,uz,...,us} forms an ¢-clique if the induced graph
on these ¢ nodes is a complete graph. Let Ky be the set of /-cliques in G, and K;(u) be the set of
{-cliques that vertex u is one of its endpoints.

2.1 Classic clustering coefficient

We introduce the definition and notation of the classic clustering coefficient here. My definition of
higher-order clustering coefficient is seen in Section 3.

A wedge is an unordered pair of edges {(u,v), (u,w)} that share exactly one common node, and
the node w is called the center of the wedge. A wedge is called closed if there is an edge between
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v and w, and is called open otherwise. Let W be the set of wedges in G, and W (u) be the set of
wedges centered at node u. Note that |W (u)| = (dQ“), and [W| =3 v |W(u)|
The global clustering coefficient C' is defined as the proportion of closed wedges in G, i.e.,

3| K|

“= W

where the coefficient 3 comes from the fact that each triangle closes three wedges. At any node u,
the local clustering coefficient C(u) is the proportion of closed wedges that centered at u, i.e.,

_ |Ks(u)|

W) = W

(2)

In comparison to global clustering coefficient, the average clustering coefficient C is the mean of
the local clustering coefficient at all nodes, i.e.,

0= Clw. (3)
ueV

2.2 Cut and conductance

For a given set of nodes, the cut is defined as the number of edges that has one endpoint in S and
the other one in S, where S =V — S. We denote the cut by Cut(S).
Conductance of a set of nodes S is defined as

Cut (S)

$(5) = min{Vol(S), Vol(S)} )

where the volume Vol(S) =), _gdy is the sum of degree of all the nodes in S. Conductance is a
commonly-used measure on how good this set of nodes is a community.

Benson et al. (2016) generalized the definition of cut and conductance to motif level. Motif is a
high-order version (generalization) of edge which relates to more than two nodes. The most simple
example of motif is triangle (3-clique) in an undirected graph. Given a motif M, the motif cut of
a set S, denoted by Cutjys(.9), is the number of instances of motif M that has points in both S and
S. Motif conductance is defined as

o Cut s (S)
om(S) = min{Vols(S), Vol (S)} (5)

where motif volume Volys(S) is the sum, over all the nodes in S, of the number of instances of M
each node belongs to. For simplicity of notation, for any integer £ > 2, we denote Cut(.S), Vol,(S),
and ¢y(S) as the motif cut, volume, and conductance with motif being ¢-clique, and we call them
£-cut, -volume, and £-conductance respectively.



3 Generalization of clustering coefficient

We first give an alternative way to interpret the classic clustering coefficient from which the higher-
order clustering coefficient can be generalized naturally. First consider a 2-clique (i.e., an edge) in
the network and another edge that share exactly one node with this 2-clique. We call this 2-clique
— edge pair a 2-wedge, and the common node the center of this 2-wedge. Now we say a 2-wedge is
closed if the related 3 nodes form a (2 + 1)-clique, and open otherwise. Now the global 2-clustering
coefficient Cy is defined as the fraction of closed 2-wedges in the graph, i.e.,

_ 6K
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where W5 is the set of 2-wedges, and the coefficient 6 comes from the fact that each 3-clique closes
six 2-wedges. Analogously, for any node u, the local 2-clustering coefficient Co(u) is the fraction of
closed 2-wedges centered at this node, i.e.,

_ 6]K3(u)|

Ca(u) = Walw)]’ (7)

and the average 2-clustering coefficient Cs is the mean of the local 2-clustering coefficient at all
nodes, i.e., .
02 = — CQ u). 8
PIET ®)
Note that each classic wedge is an unordered pair of edges, thus it corresponds to two 2-wedges as
is defined here. Therefore, we have |W (u)| = 2|Ws(u)| and |W| = 2|Ws|, and comparing Equation
(1), (2) with Equation (6), (7), we have C = Cs, C(u) = C3(u), and thus C' = Cy. To sum up, the
classic definition of clustering coefficient can be interpreted as the probability of a 2-clique and an
adjacent edge form a 3-clique.

With this viewpoint, the definition of higher-order clustering coefficients(HOCC) is straightfor-
ward. For any integer £ > 2, we say that an /-clique and an adjacent edge forms an £-wedge; an
C-wedge is closed if the related £ + 1 nodes forms an (¢4 1)-clique, and is open otherwise. Now the
definition of the f-order clustering coefficients, globally, locally, and averagely, are defined as the
following:

(2D ()1 K

Cy = BT 9)
() IE e (w)]
Co(u) = T W) (10)
C, = % Z Cy(u). (11)
ueV

When ¢ = 2, our previous discussion shows that the higher-order clustering coefficient becomes
equivalent to the classic definition of clustering coeflicient.



4 Bound for HOCC

We now study the relationships between local higher-order clustering coefficients of different orders.
In particular, we give an upper and lower bound for Cy(u) based on Cy_1(u). We have the following
result for £ = 3.

Theorem 1 For any graph and any node u therein, we have 0 < C3(u) < /Ca(u), and bounds on
both directions are tight even if Ca(u) is constant.

Proof: The lower bound is trivial, and now we show its tightness. Denote G, as the subgraph
induced by all the 1-hop neighborhood of u (excluding u), then we have C3(u) = 0 if G,, is bipartite,
and in this case C2(u) can be any number between 0 and 0.5.

Now we prove the upper bound. Again consider GG,, which contains d,, nodes. Denote m, and
t,, as the number of edges and triangles in G, respectively. Now note the fact that m, = |Ks3(u)|
and t, = |K4(u)|, we have Cy(u) = 2my/dy(dy — 1) and C3(u) = 3ty /my(d, — 2). Following the
standard bounds in extremal graph theory (Rivin 2002), we have that

ty < ﬂ(dv — 2) 3/2

S 3 1)mu . (12)

Combine everything together, we have

3ty
my(dy, — 2)
V2(dy — 2) - m/?
= do(dy — 1) - mu(dy — 2)

2my,
= @ - Ve

C3(u) =

The upper bound is tight if G, consists of a clique and isolated nodes. Suppose G, contains a
k-clique and d, — k isolated nodes, then we have

_ (5 _ kk-1)
. k P—
C3(u) = 3 () -

Now for any constant o € [0,1], let & = \/a - d,, and as d,, — +o0, we have Co(u) — « and
C3(U) — \/a |

For ¢ > 4, we also have the trivial lower bound Cy(u) > 0 which is tight when G, is ¢-partite.
For the upper bound, I conjecture that Cy(u) < Cy—1(u) but not able to prove it.



5 HOCC in random graph models

In this section, we discuss the higher-order clustering coefficients in common random graph models.
For Erdés-Rényi model, we have the following result:

Theorem 2 For Erdés-Rényi model Gy, p, we have Cp ~ p'l, Co(u) ~ p*t, and Cp ~ p*t.

Moreover, conditioning on lower-order clustering coefficients, we have Cy(u) ~ (Ca(u))*".

Proof: First note that any /-wedge is closed if and only if the £ — 1 possible edges between the
¢-clique and outside nodes in the adjacent edge exist to form an (¢ + 1)-clique. In the classical
Erdés-Rényi model Gy, p, each of the £ — 1 edges exist independently with probability p(Erdos and
Rényi 1959), thus C; = p*~!, and locally Cy(u) = p*~!, and thus Cp = p*~L.

Note that Co(u) is the edge density in G, conditioning on Ca(u), we have Cy(u) = (C2(u))* L.
O

A Dbetter model than Erdés-Rényi model that captures the clustering property of real-world
network is the small-world model(Watts and Strogatz 1998). This model begins with a ring-like
network where each node connects to its k nearest neighbors on both side. Then, for each node u
and each of the k edges (u,v) with v following u “clockwise” in the ring, with rewiring probability
p, the edge is “rewired” to (u,w) where w is chosen uniformly at random.

With no rewiring (p = 0) and k& < n, we have C ~ 3/4(Watts and Strogatz 1998). Here we
generalize this result for higher-order clustering coefficients.

Theorem 3 In the ring-based small-world model with rewiring probability p = 0, as k — 400, we
have

Kelo)l = gy + O, (13)
Olw) ~ S (14)

for any £ > 2.

Proof: We first count the number of /-cliques node v. It can be easily verified that (13) holds for
¢ =2. Now for any ¢ > 3, we first show that

N
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s—1
= 3 @19, (;23) (15)
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~
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Node v has 2k neighbors lining up, and we can label them as 1,2,..., 2k sequentially from one end
to the other. Now for any /-clique at v, we define the span of this clique as the difference between
the largest and smallest label of the £ — 1 nodes in the clique other than v. Note that the span of
any /-clique, denoted by s, must satisfies s < k — 1 since any pair of neighbors that has an edge
between them must have labels differ no greater than £ — 1, and also s > ¢ — 2 since there are £ — 1
nodes in an /-clique other than v. Now for each span s, we can find 2k — 1 — s pairs of (7, j) such

that 1 < ,7 < 2k and j —i = s. Also, for every such pair (i, j), there are (Z:é) choices of £ — 3



nodes between ¢ and j which will give us an /-clique, together with v, ¢, and j. Therefore, we come
up with (15).
Now starting from (15), we have
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Now using (13), we have
(4+1)
K
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- (2k— £+ 1)+ 0(1)
£+1
20
which proves (14). O

6 Connetion with neighborhood clique-cut

Clique-cut means motif cut with the motif being clique of some specified order. In this section,
we show the connection between higher-order clustering coefficients and neighborhood clique-cut,
which generalizes the result by Gleich and Seshadhri (2012). We first show the following simple
and clean result.

Theorem 4 For any integer £ > 2, we have

D cuty(Ni(v) < (1—Cp) - [Wel. (16)
veV

Proof: If an /-clique (uq,...u) gets cut by Ni(v), then v must directly connects with one of
U, ..., up, say uy without loss of generality. Now note that ((uq,...uy),(u1,v)) forms an open
(¢ + 1)-wedge since v can not connect to all of uy,...,us. Therefore, we have built a map from



any clique-cut on the left-hand side of (16) to open ¢-wedge, and note that this map is injective.
Therefore, we have ) _, Cuty(Ni(v)) no greater than the number of open /-wedges, which is
exactly the number on the right-hand side of (16). a

We also have the following interesting result, with its corollary showing its connection with the
neighborhood clique-cut.

Theorem 5 If a graph has global high-order clustering coefficient Cy = 1 for some integer £ > 2,
then each connected component of this graph is either complete or (-clique free.

Proof: We prove by contradiction. Suppose a connected component of this graph contains an /-
clique, then the maximum clique of this connected component is of size j > £. Now if this connected
component is not a complete graph, there must be a node connecting to this maximum clique but
not forming a bigger clique, thus we obtain an open j-wedge, which contains an open ¢-wedge. This
contradicts to the fact that any ¢-wedge is closed in a graph with Cy = 1. O

Corollary 6 If a graph has global high-order clustering coefficient Cy = 1 for some integer £ > 2,
then Cuty(N1(u)) =0 for any node u € V.

Note that Corollary 6 can also be obtained from Theorem 5. It shows that, when Cy, = 1, any
neighborhood set is a perfect cut by the criterion of ¢-conductance. Now we are going to generalize
this result to the case with any Cy € [0, 1], which we will give an upper bound on the ¢-conductance
of neighborhood set.

We first define a probabilistic distribution on the nodes, p;(u) = |Wy(u)|/|Wp|, which connects
the global and local /-th order clustering coefficient.

Lemma 7 ) pe(u)Ci(u) = Cy.

Proof.

B W, L | Koy1(u)|
> pew)Ce(w) = Y |W,£| [Welw)]

ueV uGV
= W > 1K (u
ucV
£

= iZh (€ +1)|Koq1]| = C.
+

where we use the fact that > v |Ker1(u)| = (€ + 1)|Koq1]. O

Lemma 8

Cuty(N1(u))
Z (pZ(U)W> <1-C,.

ueV



Proof:

Cut (N1 (u)
Z(p‘(“) Wew)| )

ueV (
_ 2uev Cute(Ni(u))
— W,
(1=Cy) - Wy
< — - — =1-0C,.
< W, ¢
where the inequality is due to Theorem 4. O

The following theorem shows that large /-clustering coefficient implies the existence of neigh-
borhood cuts with low ¢-conductance. Here we assume that any neighborhood set has smaller
£-volume than its complement, which is intuitively true in real-world large networks.

Theorem 9 For any graph G of global ¢th-order clustering coefficient Cy for some integer £ > 2,
then for any constant a > 1, there exists a node u such that
1-Cy

N < .
de(Ni(w)) < 1-Co+1(l+1)- Z(C(}_—ll)

Proof: We prove the existence using probabilistic method. Suppose we choose a node u according
to the probability distribution pe(u). Let

B Cuty(Ny(u))
AT

which is a random variable, then E[X]| = 1 — Cy according to Lemma 8. By Markov’s inequality,
we have P[X > a(1 — k)] < 1/a.
Let b = acezl, and p = P[Cy(u) < b]. Now according to Lemma 7, we have

a—

Co = ) pu(u)Cilu)

ueV

= Y pe(w)Colu) + pe(u)Co(u)
Cp(u)<b Cy(u)>b

< b-p+1-(1-p),

thus p < 11—_61‘72 =1- %
Then by the union bound, the probability that % > a(l — Cy) or Cp(u) < bis less than
1, thus there exists some vertex u such that Cuty(Ny(u)) < a(1 —Cy) - |[We(u)| and Cp(u) > b. Now

we show that, for this u, we have

1-Cy
N < :
) < o ey - 2




We first find a lower bound on Voly(Ni(u)). First, each ¢-clique cut would contribute at least
one into Voly(Ni(u)). Second, for each closed ¢-wedges centered at u, it is actually an (¢+1)-clique,
consists of £ + 1 unique ¢-cliques, and each ¢-clique would contribute ¢ in Voly(Ni(u)). Now note
that there are Cyp(u)|Wp(u)| > b|Wy(u)| closed ¢-wedges centered at u, which is contained in Ny (u),
we must have Vol,(Nj(u)) > Cuty(Ni(u)) + £(€ + 1)b|We(u)|.

Now combining that Cuty(Ni(u)) < a(l — Cy) - |Wy(u)| and based on our assumption that
Voly(N1(u)) < Voly(Ni(u)), we have

Cuty (N1 (u
e(Mi(w)) = Volggnguii
< Cuty (V1 (u))
= Cuty(N1(u)) + £(£ + 1)b|We(u)|
- a(1 = Cy) - [Wy(u)|

a(l = Cp)[We(u)| + £(£+ 1)b|Wi(u)|
1-Cyp
1-Co+£(£+1)- =5

g

Note that for each constant a, as Cy — 1, the upper bound will decrease to 0, which means
that large global f-order clustering coefficient implies the existence of neighborhood cuts with low

1+/1=C;
Cy :

{-conductance. Moreover, the optimal choice of a for each Cy is a =
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