Creating a Path Finding Agent to Navigate Wikipedia

Chaitanya Asawa Alexander Wang Jaimie Xie
Department of Computer Science Department of Computer Science Department of Computer Science
Stanford University Stanford University Stanford University

casawalstanford.edu

aswang96@stanford.edu

jaimiex@stanford.edu

Abstract

We aim to develop an agent that can navigate its way from a source node to a target node by traveling
along edges, and with only knowledge about the current node and its outgoing edges. Specifically, we
would like to develop this agent in the context of being able to navigate from one Wikipedia page to
another, knowing only about the hyperlinks at its current page (a game known as Wikispeedia). To
achieve this, we would like to explore using greedy decentralized search algorithms with some distance
function, trying to measure the conceptual distance between nodes and additionally hoping to exploit
graph properties that may lead to more favorable paths. We also attempt to understand how network
characteristics affect our search ability. Finally, we try to see if we can use human intuition and strategies

to boost our search performance as well.

1 Background

In this paper, we aim to create an agent that can find a
path of links from a source Wikipedia article to a target
Wikipedia article. We generally investigate pathfinding, and
use Wikipedia and this game (known as "Wikispeedia") as
context.

1.1 Relevant Work

West and Leskovec[2012] found that one common strategy
used by humans in playing Wikispeedia was to navigate
first to a hub page, and from there use similarity to the tar-
get to navigate from the hub to the target. Additionally, they
found that the conceptual distance to the target decreased
steadily at each node of the path. We made use of these
insights about human intuition in path finding when imple-
menting our own algorithm.

Kim and Hirtle[1995] define the Wikipedia graph as one
that can be searched using “path" and “distance" strategies.
“Path” strategy follows a procedural route description of
how to reach the target. “Distance” strategy searches a
fixed circle around a node’s position, and can be used in
conjunction with “direction” strategy, which uses a global
frame of reference to travel towards the target destination.
The greedy algorithm that we propose to use in our own
algorithm is the “distance" and “direction" method refer-
enced in the paper.

One problem with using the Wikipedia network directly
is that the sheer number of hyperlinks obscures when two
topics are actually closely related. West, Pineau, and Pre-
cup[2009] instead propose a method of measuring semantic
distance using the “Wikispeedia™ link paths that we have
in our data set. We can exploit the possibility that these
links provide more semantic significance in the analysis of

our own semantic network, and use these distances for our
greedy decentralized search.

1.2 Discussion

In West and Leskovec’s paper, they perform a comprehen-
sive analysis of efficiency and general characteristics of hu-
man path finding, although, while admittedly it is a very
tough problem, it seems their ability to predict the target
was not super successful. Improvements may potentially be
made here by using different models or different features.
In addition, there may be more to be learned about going
from one link to the next rather than jumping to predicting
the target node. Hence, our projects focuses on this area.

2 Problem

A huge problem that we face in the field of artificial in-
telligence is that of path finding, which is at the heart of
the decision-making technology behind self-driving cars
and AlphaGo. Our project considers path finding through
decentralized search, and we hope some of the insights we
gain in the context of Wikipedia can be generalized to more
search applications. We also analyze the effectiveness of
different ways of determining semantic distance and how
graph structure plays a role in search.

2.1 Data Collection Process

The data we will use, released by the SNAP group at Stan-
ford, consists of more than 30,000 instances of humans
playing the Wikispeedia game. The Wikipedia graph used
for these games covers about 4,000 articles and 120,000
links. In addition to these paths, we have the HTML and
plain text versions of the Wikipedia articles. The dataset
can be found at:

https://snap.stanford.edu/data
/wikispeedia.html.

2.2 Algorithms and Models

The first algorithm we would like to develop and explore
for navigation is greedy decentralized search with semantic
distance. In a greedy algorithm of decentralized search, we
would like to traverse edges that bring us to nodes that are
closer to the target by some distance metric. We will ex-
plore and evaluate different semantic distance metrics such
as tf-idf distance between Wikipedia pages, latent similar-
ity, Jaccard Distance, and Sorensen Distance. We will then
try to augment the capabilities of our search heuristics by
using graph features such as out-degree, PageRank, and be-
tweenness centrality. We will also incorporate strategies
commonly used by humans into our algorithm, elevating it
from a simple decentralized search algorithm. Using vari-
ous combinations of distance metrics, graph feature heuris-
tics, and additional human strategies, we will build and
evaluate a variety of models.

2.3 Evaluation

We will evaluate the final performance of our various mod-
els by two metrics:

1) Success Rate: Every time an agent finds a path from
the source to the destination under a predefined constant
number of steps, we count this as a success. We will cal-
culate, for each model, the number of successes over the
number of attempts.

2) Average Path Length: For paths that are successful,
we will compute, for each model, the average path length
needed to find the target.

We will use these metrics for comparison across all models,
and compare it to the actual shortest paths and the human
intuition paths.

3 Methodology

We first ran our agent using four semantic different distance
metrics to guide its pathfinding process. Our agent uses the
greedy traversal strategy described previously, using the
distance metric to choose the neighbor closest to the target
destination at each decision point.

First, we preprocessed every Wikipedia page into a punctu-
ation free, stemmed version of itself. Because we tokenize
the pages into words based on spaces, punctuation charac-
ters create false unique words (i.e. “walk,” will be seen as
a unique word from “walk”). Stemming removes “er” and
“ing” suffixes from words (i.e. “walking” will be stemmed
to “walk”). Preprocessing allows our distance metric cal-
culation algorithms focus more on the actual content rather
than nuances in the English language.

Second, we made sure that the agent could not return to
a node it has already visited, to avoid cycles. If any of the
neighbors are the target node, for computational efficiency,
we add it to our path and stop the search, rather than ranking
the neighbor nodes (note though that our distance metrics
would suggest the target node as the next node since the

distance between the target node and itself would be 0).
Additionally, we limited the number of steps that the agent
could take to 10 (the search fails if the agent does not get to
the target in 10 steps).

Finally, to actually select our source and target nodes, we
considered 3 different selection methods. These selection
methods are:

1) Selecting two random nodes. This helps us to under-
stand our search performance in a very general context.

2) Selecting the start and end nodes from the start and
end nodes of complete paths from humans who played the
game. This helps us compare our performance to human
performance.

3) Selecting the start and end nodes randomly such that
they are articles that belong under the same Wikipedia cat-
egory. This helps us understand our performance when
traveling between a source and target that are guaranteed to
have some similarity, in that they are listed under the same
category.

For each of these 3 source/target selection methods, we
ran 400 simulations for each of the distance metrics. We
describe the semantic distance metrics in more detail in the
section that follows.

After this, we added network features to our heuristic,
weighting semantic distance and the network heuristic to
create a new distance function that would guide our search.
We first tried just the network heuristic by itself, and then
combined it with the semantic distance, one heuristic at a
time.

We also conducted analysis of different graph environ-
ments to see their influence on our search ability — looking
at properties such as clustering coefficient, closeness cen-
trality, and node eccentricity.

Finally, we used the human intuition of first going to a
hub node and then trying to decrease conceptual distance to
the target as a strategy in our algorithm.

4 Semantic Distance Metrics

4.1 Term Frequency-Inverse Document Frequency
(tf-idf)

tf-idf has several variants based on specific weighting
schemes. From a high level, tf-idf makes use of two pieces
of information. First is term frequency. The more fre-
quently a term is shared between two documents, the more
similar they are. The second piece of information is inverse
document frequency. The more rare a term is across an
entire corpus of documents, the more significant it is when
it is found to be common between two specific documents.
The variant of tf-idf we use calculates idf (inverse docu-
ment frequency) as follows:

1+ng

idf(t) = 1 + log — 4 __
idf(t) = 1 +log 33 3y

where ng is the total number of documents, and df(d,t) is
the number of documents that contain term ¢.

We create tf-idf vectors for two documents and compute
the cosine distance between the two vectors — and this co-
sine distance is our final tf-idf distance.

4.2 Latent Semantic Analysis (LSA)

LSA first reduces documents to matrices, capturing each
unique word’s count per paragraph in the document. Sin-
gular value decomposition (SVD) is then used to reduce the
number of columns within the matrices while preserving
features, or meaning. Lastly, the cosine similarity between
rows, or words, is calculated, giving a similarity metric for
individual words, which can be aggregated to find the simi-
larity between documents (and 1 - the similarity is the dis-
tance).

4.3 Jaccard Distance

Given two documents X and Y, we divide the number
of unique, common words between the documents by the
number of total unique words the documents contain. For-
mally:

_|XnY]|
[XUY]|

4.4 Sorensen Distance

Similar to Jaccard Distance; given two documents X and
Y, we divide twice the number of unique, common words
between them by the total number of unique words each
document contains. Formally:

2XNY]|
| X[+ Y]

5 Comparison Across Semantic Distance
Metrics

We present findings using our various distance metrics
with different source and target node selection methods.
First, we look at the success rates, which is the fraction
of searches our agent successfully completed in the search
limit of 10 steps.

10 Success Rate(Same Category)
i T

08

0.653

tf-idf

=
o

0.490 0.500

Jaccard Sorensen

0.425

Success Rate

e o
N &

0.0

Figure 1: The source and destination are chosen randomly
from the same category.

Success Rate(Human Paths)

0.890

0.690 0.710

Jaccard

061540

Success Rate

o
S

Sorensen tf-idf

Figure 2: The source and destination are chosen from Wik-
ispeedia instances.

Success Rate(Random)

0.8

0.610

=4
o

0.440
[0.385 8407

Success Rate

o
S

LSA Jaccard Sorensen t-idf

Figure 3: The source and destination are randomly chosen
articles.

We see that tf-idf is far more successful in completing
searches across all conditions. In particular, with tf-idf, we
complete 89 percent of the searches when we use human
paths for selecting our start and end nodes (note that hu-
mans complete 100 percent of these searches by definition).
We also consistently see Sorensen performs the second best,
followed by Jaccard, and finally LSA. Then, we looked at
average path lengths for successful paths (when we say
“True" we refer to the shortest possible paths):

Average Path Length(Same Category)

El True
EE Agent

4.405

Average Number of Edges (400 Simulations)

Sorensen

Jaccard

Figure 4: The source and destination are chosen randomly
from the same category.

Average Path Length(Human Paths)
. T

N True
& Bl Agent ||
[Human

5470 |

5.279 5.236

5.236

Average Number of Edges (400 Simulations)

Sorensen

Jaccard

Figure 5: The source and destination are chosen from Wik-
ispeedia instances.

Average Path Length(Random)

T
E True
I Agent

4528

5.097 5.018

4.989

Average Number of Edges (400 Simulations)

Sorensen

Jaccard

Figure 6: The source and destination are randomly chosen
articles.

We see that tf-idf consistently across conditions takes, on
average, fewer steps than the other distance metrics (about
0.5 steps less on average). Compared to the actual shortest
path lengths, tf-idf seems to take 1.2 to 1.5 steps more. With
Figure 5, we see that all of the distance metrics perform bet-
ter than humans (at least, when our agent successfully finds
a path; the humans were more successful in completion).
tf-idf takes on average 1.5 less steps than humans.

Finally, we try to see, for successful paths and for failed
paths, the average normalized, true distance to the target at
a particular step. We compute this as follows: First, sup-
pose the shortest distance between a source and target node
is steps. For normalization purposes, we consider the
distance z/x = 1. Then, if after step 1, if the true distance
is z — 1 steps away from the target, our normalized distance
is 17_1, and so on. Using our most successful metric, tf-
idf, we average the normalized, true distances to target for
each step (if the path is that many steps long), separately
for successful and failed paths, across all node selection
methods.

True Distance Change Over Steps In Failed Paths
T T T T

—— Same Category
—— Human Path
— Random

Shortest Path Length

i i i ;
2 4 6 8 10
Steps Taken

True Distance Change Over Steps In Failed Paths
! : ! —— Same Category
— Human Path
— Random

Shortest Path Length

i i i
o 2 4 6 8 10
Steps Taken

We see that in successful paths, at each step, we are con-
sistently getting closer to the target. However, with failed
paths, with the first step we get slightly closer to the target,
but for the most part, do not get any closer to the target
with more steps (as our normalized distance at this point
is always at least 0.9). This seems to suggest that failed
searches make little to no progress on reaching the tar-
get, and we see the exact opposite for successful searches
in that they consistently make progress. Interestingly, all
failed paths seem to increase in distance after the first step,
then begin to decrease distance at around 8 steps. This sug-
gests that the first step in failed paths bring us to a local
minimum, which our agent has to backtrack out of in order
to correct. Some initial progress, then, seems highly likely
to lead to a successful search. Going forward, we will then
employ tf-idf as our measure of semantic distance due to its
superior performance.

6 Using Network Heuristics in Search

tf-idf allows us to measure conceptual distance, but we may
potentially augment our search capabilities by leveraging
network features. For example, we may prefer to travel to
a node of high degree, since it has more connections that
could include the target or lead us to the target .

6.1 Single Network Heuristic

First, as a way to give insight on the usefulness of various
network metrics, we use a single network metric to guide
our search, similar to how we used only tf-idf distance pre-
viously. The metrics we consider are:

1) Out Degree. We may prefer to travel to nodes of high
out degree since they have many connections — and hence
it is more likely that one of these connections may be our
target or lead to it.

2) PageRank. PageRank measures the importance of a
page by assuming that more important website have more
in-links. While this does not directly say anything about
the out-links of a page and whether they will lead us to
the target, we hypothesize that a Wikipedia page that has a
high PageRank, so linked to by other important pages, most
likely has a substantial amount of content (which is why it
is referred to). Hence, we think it is likely to also have many
connections. Additionally, a node with high PageRank may
be a broad topic, which is useful potentially to help prevent
going down a narrow topic path. The broadness and con-
nections of high PageRank nodes may improve our search
performance.

In our Wikipedia graph, we determined the nodes with the
highest PageRank are “United States", “France", “Europe",
and “United Kingdom". Indeed, this seems to validate our
hypothesis that these pages have many out-links and are
broad concepts. In particular, they seem to all be countries,
and humans actually tend to incorporate Geography often in
their searches even when geography is not their target [1];
hence, PageRank may help capture some form of human
intuition of broadness of a concept.

3) Betweenness Centrality. Betweenness centrality of a
node is the number of times a node is in the shortest path
between two other nodes, and hence we would prefer these
nodes since we are looking to travel along the shortest path
between the source and target.

In our searches then, we will always try to go to nodes

with the highest out degree, PageRank, or betweenness
centrality.

6.2 Single Network Heuristic Results

Using the previously described network features to solely
guide our agent, we ran a series of experiments on the re-
sultant success rates and average path lengths.

Success Rate by Network Heuristic
T T T

10

0.8

0.596
0.6

Success Rate

0.4

0.2 SREE 0.167 0.172

0.103

0.169

0.0

t-idf Random PageRank Out Degree Betweenness

Figure 7: The success rates of our agent, using different
network heuristics.

Average Path Length of Successful Search

4.555 |
4.386 4323

Random PageRank

Average Number of Steps

4 567
4
3
2

tf idf

Out Degree Betweenness

Figure 8: The average path lengths of successful searches
with different network heuristics.

As expected, none of these metrics by themselves perform
at the level of tf-idf, since they do not even consider any in-
formation about the target to guide their search. However,
it seems that these metrics do perform better than random —
specifically, they all lead to around the same success rate of
0.17, whereas a random model that chooses random edges
(until the target is a neighbor of the current node the agent
is on) has a success rate of 0.1. The average path lengths of
successful searches seem to be roughly the same — perhaps
indicating that the various heuristics do have the ability to
choose short paths, but have lower success rates because
more often than not they go in a wrong direction.

6.3 Combining Features

We then explored combining tf-idf distance with graph
properties — trying to leverage tf-idf to help us measure
conceptual distance and actually incorporate information
about the target, while exploiting graph properties to choose
nodes that are more likely to be connected or on shortest
paths to increase search efficiency. Hence, we hypothesize
that some combination of tf-idf distance and graph proper-
ties will allow our agent to perform better than using tf-idf
on its own.

Since our tf-idf and network features values are at very
different scales, we normalized our features to have zero
mean and unit variance as follows:

r_T—H
T =
g

where z is the original value of the feature, y is the mean
value of the feature, o is the standard deviation of the fea-
ture, and z’ is the normalized value.

We then combined tf-idf with each network heuristic one at
a time, exploring different weighting schemes. In particu-
lar, we defined the distance to the target to be

(1—w)=*(normalized tf-idf)+w=*(normalized network heuristic)

where w is a weight between 0 and 1.

Note that for certain network heuristics, such as out de-
gree, we would like to travel to nodes that have a high value
for out degree. As our search tries to minimize distance

though, we multiplied out degree by negative 1 such that
minimizing negative out degree would lead to a node of
high out degree.

Success Rate by Network Feature and Weight

I PageRank
EEE Out Degree
I Betweenness

610 509 607 605616 609 604 603 520

Success Rate
o
>

o
=

0.03 0.01
Weight of Network Feature

Figure 9: The success rates of our agent, using different
network feature with varying weights.

Average Path Length of Successful Search
7 Il PageRank
EEE Out Degree
[Betweenness | |

4.474.480.48 |

4.444.474.49

Average Path Length

0.03 0.01 0.005
Weight of Network Feature

Figure 10: The average path lengths of successful searches
using different network features with varying weights.

The success rate of our agent reaches as high as 0.62, which
is marginally better than the pure tf-idf agent’s performance
of 0.60. We theorize that tf-idf is by far the most use-
ful metric to guide our agent with, and additional network
features can act to break ties between nodes of similar tf-
idf distances. For example, if the node has two neighbors
with similar tf-idf distances from the target node, it should
choose the neighbor that has a greater out-degree, as it is
more likely to lead to a successful path.

The reason for only marginal gains may be that Wikipedia
is already considered a “small world” graph with most pairs
of nodes connected by short chains [1], and hence in our
problem leveraging graph structural information for finding
shorter and successful paths is not as useful as using con-
ceptual distance to arrive at our destination.

We plot the out-degree distribution for our Wikipedia graph
and we indeed see a similar shape to the degree distribution
for a small world graph:

3
10 T T

T T T T

Count
T T
|

100 Ll
100 10!

Figure 11: Out Degree Distribution of Wikipedia Graph.

7 Comparison Across Search Environments

We are interested in seeing how well our agent performs
in different environments — specifically how do different
graphs affect our ability to conduct successful searches.
To create these varying environments, we subgraph the
Wikipedia graph by different article categories, creating a
subgraph for each category. These category graphs have
differing characteristics that influence our search ability.
We compute the number of nodes in each subgraph, as this
has a large influence over the graph properties:

Mathematics

Geography
5 Science

23.79% (1094)

Business_Studies

Language_and _literature
People

Citizenship

Countries

Design_and_Technology

Religion
Everyday_life

History

Figure 12: Percentage and number of graph nodes by cate-
gory.

We then run our agent over these different subgraphs, com-
puting success rate and average path length. For the aver-
age path length of the subgraphs, we divide by the effective
diameter (an approximation of the graph’s diameter) to nor-
malize these path lengths across different graphs.

Success Rate Across Category Subgraphs

596 585 581

Success Rate
£

%0 Graph —Science Geography Teligion DT

Countries At 0
Category

Mathematics

Figure 13: The success rates of our agent across different
category subgraphs.

Average Path of Successful Search

Average Path Length

OO Full Graph

Science Geography Religion D&T

Categary

Countries A T Mathematics

Figure 14: The normalized average path lengths of success-
ful searches, normalized by dividing out the subgraph di-
ameter

It seems that success rates and average path lengths when
successful are correlated — that is, for graphs where the
success rate is low, when the agent does succeed, it does
not use many steps. For graphs with higher success rates,
the agent uses more steps when it succeeds. This seems to
indicate that in “less navigable graphs” (those with lower
success rates), it is hard to be successful unless the target is
close, but in more navigable graphs we eventually manage
to find our way. We will try to then more concretely deter-
mine which graph properties influence this.

In our analysis, we see that Mathematics and Countries
have high success rates, and Design and Technology (D&T)
has a low success rate, and so we will try to focus our inves-
tigation using these graphs. We look at average clustering
coefficient of the nodes, average closeness centrality of the
nodes, and the average node eccentricity of the nodes.

7.1 Average Clustering Coefficient

ountries

HMathematics

Science &

feligion
{Geograph
Janguage_and_literature Lt

dlusic gistol

At

&itizenship $usiness_Studies

&veryday _life

$eople
0. 200 4

Pesign_and_Technology
2 6

8 10 12 14

Figure 15: Average clustering coefficient across different
category subgraphs.

We see that Mathematics and Countries have a high aver-
age clustering coefficient, and Design & Technology has a
low average clustering coefficient. This makes sense, as we
expect graphs that are more clustered are more navigable
since there are many connections that bring the nodes in the
graph together.

7.2 Average Closeness Centrality

0.40 T T a
Mathemati@untries
0.35
030} JGeograph
Fu o
025F &eligion |
ecience Slusic
020} &itizenship]
Susiness_Studies &istoly
015} 5 1
panguage_and_liggrafure gveryday life
0.10
&esign_and_Technology
0.05 L i 1 i H i
2 4 6 8 10 12 14

Figure 16: Average closeness centrality across different cat-
egory subgraphs.

With average closeness centrality, we see that Mathematics
and Countries have a high average closeness centrality, and
Design & Technology has a low average closeness central-
ity. This is according to our expectations, as graphs with
a higher average closeness centrality have shorter distances
between their nodes, increasing the likelihood for an agent
to traverse the distance between nodes.

7.3 Average Node Eccentricity

10

janguage_and_literature
9l
8l $esign_and_Technology

feople gveryday life
7k Science
&itizenship
6 i &eligion #isw;(?eograph
&usic
5r g Susiness_Studies
a4t ;Zountries
lathematics
At

3 i i i i

0 2 4 6 8 10 12 14

Figure 17: Average node eccentricity across different cate-
gory subgraphs.

We then juxtapose average node eccentricity across the
graphs, and note that Mathematics and Countries have a low
average node eccentricity, and Design & Technology has a
high average node eccentricity. The eccentricity of a node

is a measure of the maximum distance between it and any
other node. The above graph makes sense, as a low aver-
age eccentricity indicates, similar to high average closeness
centrality, that nodes are generally close together, without
many outliers that have large distances between them.

7.4 Mathematics Subgraph

We visualize the mathematics graph, displaying how clus-
tered it is, and this seems to contribute to its navigability:

Figure 18: The Mathematics Subgraph

By comparing graphs of different properties, we see that
factors such high clustering, high closeness, and low node
eccentricity all seem to be correlated both with each other,
and also correlated with higher success rates.

8 Search Strategies

A common human strategy when playing Wikispeedia is
locating a hub (finding a node of high degree in their first
click), and then from there continuously decreasing their
conceptual distance to the target after [1].

We tested this strategy, which we have dubbed the “hub
then hone” strategy, with our agent — jumping to the highest
degree neighbor in the first edge traversal, and from there
using the shortest tf-idf distance to the target to guide the
rest of the search. We show the success rates and the nor-
malized average path lengths across different categories,
with and without this strategy:

Success Rate (With and Without Strategy)

EEm No Strategy
B Strategy

843854 836846

693.696 .694.698

596.598

585 594

540.536

Countries At T Mathematics

Figure 19: The success rates of our agent across categories,
with and without the “hub then hone" strategy.

Average Path Length(Normalized) of Successful Search

W No Strategy

20, 186 186 B strategy

125126

Average Path Length

0o

Figure 20: The average path lengths of successful searches
with and without the “hub then hone" strategy across cate-
gories, normalized by dividing the subgraph diameter

It seems that using the strategy did not make a difference,
across the various categories, for success rate or average
path length. Since the average path length does not change,
it seems that the value of traversing to a node with high
degree on the first step is the same value as conceptually
getting closer. To measure this utility, we graph the normal-
ized true distance change over steps, as we did in section
4.

10 True Distance Change Over Steps In Successful Paths
i T T

— Without Strategy
— With Strategy

e
o

°
=
T

Shortest Path Length

0.2}

0.0
0

2 4 6 8 10
Steps Taken

Figure 21: The average distance of our agent to its target
page over a successful path, with and without the “hub then

hone” strategy
— Without Strategy
— With Strategy

True Distance Change Over Steps In Failed Paths

Shortest Path Length
o
©
=

e
o
N

0.90 |-

Steps Taken

Figure 22: The average distance of our agent to its target
page over a failed path, with and without the “hub then
hone” strategy

We find that the normalized true distance over steps curves
for successful paths with and without the strategy are nearly
identical. It seems that a node of high degree (since it has
many connections that could lead to short paths to our tar-
get) brings us as close to the target as the first step with
using conceptual distance. Hence, while this strategy may
benefit humans, as it might be easier to determine broad

concepts and hubs rather than conceptual distances for all
out-links, our algorithm does not benefit in successful cases
since it has the ability to compute for every single out-link
a heuristic for conceptual distance.

For failed paths however, we see that going to a hub first
brings us closer to the target on the first step than solely
using tf-idf. This makes sense as we saw previously that
the first step is important to the success of a search, and that
tf-idf on the first step seems to go down the wrong path so
its normalized true distance will be high, whereas going to
the highest degree node is more concept independent and
has many connections to what could be viable paths so its
normalized true distance will be lower. Therefore, it may
actually be better to use the strategy, since the first node
gives us greater flexibility of paths that we can take since
it has a high number of out-links and does not negatively
impact our true distance to the target or our success rate.

9 Challenges

Computing the semantic difference between two articles
is still an open problem, and our project heavily relies on
such methods when selecting the next node to travel to.
Furthermore, when evaluating how “close” our agent is to
the target, the best metric of “true" distance we have is
the shortest path between nodes. Because of how highly
connected the Wikipedia graph is, this is a very rough eval-
uation metric (this issue was discussed by West, Pineau,
and Precup).

In addition, the graphs we had were relatively small, and
perhaps using larger graphs could help better develop the
use of network heuristics, as we saw only marginal gain in
our already fairly well connected graphs.

10 Conclusion

We have found that tf-idf leads to more successful searches
and, on average, takes fewer steps than all other semantic
distance metrics. Additionally, all the distances metrics, in
successful searches, seem to take fewer steps than humans.
We also see that in successful searches the agent seems
to consistently make progress, whereas in failed searches
the agent makes very little to no progress. This seems to
indicate that initial progress may be a good indication of
whether a search will be successful.

We then hypothesized that leveraging network character-
istics along with tf-idf would substantially improve our
search performance, but we concluded this hypothesis to
be mostly false. While these network characteristics are
more useful than taking random edges, it seems that tf-idf
is far more useful in search in this case, potentially since
Wikipedia is already a “small world” graph.

We also found that different graph structures can substan-
tially affect the search success. We see that factors such

high clustering, high closeness, and low node eccentricity
all seem to be correlated both with each other, and are also
correlated with better success rate.

Finally, we also investigated using a common human search
strategy of first going to a hub and then honing in on the
target conceptually. We found our agent performs the same
in terms of success rate and average path length with and
without using this strategy across a series of categories.
However, it may still be beneficial to use this strategy, as
it may afford more flexibility for paths initially rather than
going down potentially a narrow wrong path.

11 Next Steps

Going forward, it may be interesting to see if our results
generalize to other portions of the Wikipedia graph or larger
portions. In addition, it may be interesting to see how our
agent performs in other networks of articles. For example,
the world wide web, graphs of news articles that link to
each other (as news websites very often refer to previously
news articles in current news articles), or perhaps even the
LinkedIn profile network can be thought of as a network of
articles.

We were not able to successfully leverage graph properties
much, but more exploration can be done here, perhaps with
combining more graph features. Machine learning methods
can potentially be used to learn the weights of these more
complicated sets of features. These methods may first be
used just to rank a individual node without using history,
and then perhaps using sequential models such as recurrent
neural nets, LSTMs, and GRUs with the previous nodes
in a path to more effectively determine the next node. We
would hope that these methods can capture some complex,
nonintuitive rules that can be used to boost our search effi-
ciency.

12 Contributions

All group members contributed equally.

13 References

[1] West, Robert, and Jure Leskovec. “Human path finding
in information networks." Proceedings of the 21st interna-
tional conference on World Wide Web. ACM, 2012.

[2] Kim, Hanhwe, and Stephen C. Hirtle. “Spatial
metaphors and disorientation in hypertext browsing." Be-
haviour & information technology 14.4 (1995): 239-250.

[3] West, Robert, Joelle Pineau, and Doina Precup. “Wik-
ispeedia: An Online Game for Inferring Semantic Distances
between Concepts." IJCAI 2009.

