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Abstract

As the global food trade industry contin-
ues to grow, researchers have observed
that despite lower shipping costs, trade
flow continues to inversely correlate with
geographical distance (ie. the “distance ef-
fect”). Our paper investigates the global
trade networks of specific foods and agri-
cultural commodities using graph-based
algorithms such as weighted global clus-
tering coefficient, community detection,
and weighted k-core decomposition. In
particular, we model the trade flows for
bananas and soybeans as weighted undi-
rected graphs. We find that the banana
trade network has lower global clustering
coefficients (averages of 0.55 for imports
and 0.38 for exports, compared to soy-
beans’ averages of 0.81 for imports and
0.57 for exports), more visible and ge-
ographically determined clusters, and a
lower maximum weighted k-core decom-
position value (1518, compared to 4260
for soybeans) shared amongst more coun-
tries (7, compared to 2 for soybeans). Fur-
thermore, we find that the clustering of the
import and export graphs of both crops
appeared to be correlated with the dis-
tance effect.These differences support our
claim that distance effects impact different
foods/commodities very differently.

1 Introduction

Global trade in food and agricultural products has
grown rapidly in recent decades'. At the same
time, the cost of shipping across large distances
has decreased. However, economists have found
that distance continues to inversely correlate with
trade flow amounts.

"Food and Agriculture Organization of the United Na-
tions, http://www.fao.org/3/a-i5090e.pdf
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This pattern is usually known as the “distance
effect,” and can be calculated using the economic
gravity equation: “Bilateral trade between two
countries is proportional to size, measured by
GDP, and inversely proportional to the geographic
distance between them” (Chaney, 2013). These
distance effects “almost certainly do not arise
solely from transport costs,” since for 80% of all
shipments transport costs take up less than 4%
of the total value. In addition, researchers have
found a distance effect of 1.1 for ’digital goods’
consumed over the Internet” (Disdier and Head,
2008).

Disdier and Head (2008) adds that distance ef-
fects have been found to be persistent in multi-
ple senses: they appear throughout papers with a
wide range of methodologies, and they “are not
declining in studies employing more recent data.”
Given that this pattern exists for trade in general,
how do distance effects impact the trade flows
for specific foods and agricultural commodities?
More broadly, how do the trade flows for different
foods/commodities vary from each other?

In this project, we address these questions
through a network analysis lens. We investi-
gate the results of several graph-based algorithms,
including weighted global clustering coefficient,
community detection, and weighted k-core de-
composition. Then, we discuss what these results
reveal about trade flow structures for different
foods/commodities. Through our analysis, we also
point out that distance effects are not uniform in
the way they affect different foods/commodities.

2 Related Work

In the literature, there is a large body of research
that addresses either global food trade as a whole
or global food trade in the context of virtual wa-
ter trade. However, there are relatively few pa-
pers that look at global food trade for specific
food/commodities. Currently, the papers that are



available look at maize (Wu and Guclu, 2013) and
wine (Cassi et al., 2012).

Wu and Guclu (2013) models global maize
trade as a weighted, directed graph and focuses
on community detection-based insights. They find
three main clusters, which are based around Eu-
rope, Brazil/Argentina, and the US. They find
that European countries trade much of their maize
amongst themselves, and that they trade very min-
imally with the US. Furthermore, the US exports
maize to a large number of Asian, Middle East-
ern, and American countries, many of which only
import from the US. Finally, Brazil and Argentina
”seem to have largely segregated their patterns of
export.”

Cass et al. (2012) focuses on the relationship
between globalization in trade and globalization
in scientific knowledge. As such, it takes a dif-
ferent approach in its analysis of the global wine
trade. It examines the evolution of the wine trade
network and the wine scientific collaboration net-
work over time, focusing on the measure of core-
ness,” or “the degree of closeness of each node to
a core of densely connected nodes in the network.”
The paper finds that ”Old World” wine producers
have higher coreness in both networks than "New
World” producers.

Our approach is based on community detection
and core-based analysis, taking inspiration from
Wu and Guclu (2013) and Cass et al. (2012).
For algorithms, our paper draws upon Opsahl
and Panzarasa (2009)’s definition of the weighted
global clustering coefficient, Martin et al. (2013)’s
OpenOrd community detection toolbox, and Garas
etal. (2012)’s method for weighted k-core decom-
position.

Opsahl and Panzarasa (2009) introduces a
weighted variant of the global clustering coeffi-
cient. It defines the clustering coefficient of a
node as the ratio between the total value of closed
triplets rooted in the node to the total value of all
triplets rooted in the node, where the value can
be aggregated using arithmetic mean, geometric
mean, maximum, or minimum. The paper com-
pares this variant to the standard clustering coef-
ficient as well as weighted local clustering coeffi-
cients in a number of weighted networks, and finds
that it performs as well or better, since it is less
sensitive to local edge weight distribution.

Martin et al. (2013) describes the algorithm for
OpenOrd, a graph visualization toolbox that is de-

signed for surfacing clusters in directed graphs.
According to the paper, OpenOrd uses a force-
directed algorithm with an objective function that
is the summmation of pairs of attractive terms and
repulsive terms. The algorithm attempts to mini-
mize the function using a greedy procedure similar
to simulated annealing. OpenOrd is parallelizable
and can be run on multilevel graphs.

Garas et al. (2012) presents an algorithm for k-
core decomposition on weighted networks. In un-
weighted k-core decomposition, nodes are recur-
sively removed from a network until the network
is partitioned; the resulting partitions are directly
linked to centrality. The paper’s weighted k-core
method provides an alternative measure for the
node degree, which is then used in the same recur-
sive removal process. It finds that the weighted k-
core method is able to "to split the cores obtained
by the unweighted method further and to identify
which are most central of the central nodes.”

3 Methods

3.1 Data and Model

Our data comes from FAOSTAT’s Detailed Trade
Matrix?. The data is collected by the Food and
Agriculture Organization of the United Nations
(FAO) Statistics Division, using official reports
from 186 countries for up to 422 subcategories of
items. The data includes country-to-country im-
ports and exports from 1986-2013, with measure-
ments provided both in terms of quantity (tons)
and value ($1000 USD).

Using this raw data, we built a parser that gen-
erates weighted directed graphs representing the
trade flows for a single food/commodity. In the
graphs, an edge’s source node is the exporting
country, its destination node is the importing coun-
try, and the weight is the amount traded. Our
parser can filter by the desired year and the desired
unit of measurement. We chose 2013, since it is
the most recent year, and the value-based measure-
ments ($1000 USD) so that it is easier to compare
different foods/commodities, especially in context
of the trading countries’ GDPs.

Our first two graphs encapsulate the global trade
flows for soybeans and bananas. Soybeans are a
leading US export?, particularly in recent years as

2http://faostat3.fao.org/download/T/TM/E
3http://www.ers.usda.gov/data-products/ag-and-food-
statistics-charting-the-essentials/agricultural-trade/



a result of strong demand from China*. Bananas,
on the other hand, are a tropical product, and there-
fore the US import share is near zero >.
Occasionally, two countries’ reports of their
trade will disagree; that is, Country A’s reported
export value to Country B will differ from Coun-
try B’s reported import value from Country A. Ac-
cording to the FAO, there are several reasons for

these discrepancies, which include

e Time lag: an export in December may arrive
as an import in January, and be counted in the
following year

e Misclassification of items

e Exported quantities being destroyed by ex-
ternal circumstances, such as accidents or
weather conditions

e Data confidentiality by one of the reporters
e Customs tax or embargo avoidance

In these situations, our parser averages the two
countries’ reports.

3.2 Algorithms

Degree Distributions: After parsing the raw
data into weighted directed graphs, we plotted
the degree distributions of the graphs. For the
unweighted degree distributions, we used the
Snap.py library. For the weighted degree distribu-
tions, we considered the weighted in(out)-degree
of a node to be the sum of the weights of its
in(out) edges.

Weighted Global Clustering Coefficient:
Continuing our analysis of graph properties, we
calculated weighted global clustering coefficient
using an algorithm defined by Opsahl and Pan-
zarasa (2009):

_ Z tripletclosed
S triplet

A triplet is defined as a set of three nodes where
two nodes, x and y, have a directed edge into node
z. A closed triplet is defined as a triplet where at
least one additional edge exists between nodes x

“hitp://www.ers.usda.gov/topics/international-markets-
trade/us-agricultural-trade/export-share-of-production/

>http://www.ers.usda.gov/topics/international-
markets-trade/us-agricultural-trade/import-share-of-
consumption.aspx

and y. An open triplet occurs when no such addi-
tional edge exists.

Opsahl and Panzarasa (2009) describes four
techniques to get the value of the triplet. In each
technique, the total value of the triplet is based on
the weight of the directed edges that ran from the
two neighbors into the central node of the triplet
(node z in the prior example). However, they
differ in that the value of the triplet can be the
arithmetic mean, geometric mean, maximum, or
minimum of the weights. Since Opsahl and Pan-
zarasa (2009) concludes that each technique has
its advantages and disadvantages, we elected to
use and report the results from all four definitions.

Community Detection: The weighted global
clustering coefficient results suggested that dif-
ferent foods/commodities have different graph
properties, so we investigated further using
community detection. For this, we used the
OpenOrd layout program on the Gephi platform.
We chose OpenOrd for two reasons. First, we
wanted to quickly visualize the clustered graphs in
order to gain an intuitive understanding. Second,
OpenOrd is designed to distinguish better clusters
in weighted graphs.

Weighted k-core decomposition: Since the
OpenOrd visualizations indicated that

1. there appears a relationship between clusters
and geographic/distance effects, and

2. different foods/commodities exhibit different
clustering structures,

we wanted to find a way to determine the optimal
number of clusters for each trade network. We hy-
pothesized that applying weighted k-core decom-
position would remove the outer nodes, thus leav-
ing cores representing each geographical cluster.

We implemented the weighted k-core decompo-
sition algorithm defined by Garas et al. (2012). In
the paper, the weighted degree of a node ¢ is de-
fined by

4~ fo($m)]
J

where d; is the degree of node 7, and Z;j wj; is the
sum of the weights of ¢’s outgoing edges. Garas et
al. (2012) assumes o = § = 1, so we made the



same assumption for our implementation:

For the procedure, let us define k¢yrr to be an
incrementing index that starts at kcyr = 1. The
first step of the procedure is to choose the node
with the lowest d; (ties can be arbitrarily broken).
If d, < keyrr, label node i with keyrr (wWe will
refer to this as node ¢’s “’k-value”), remove node 7
and all of its edges from the graph, recalculate k'
for all remaining nodes, and repeat. If k&, > keypr,
increment k., until &, = k.. Then, continue
the procedure with the new k..

4 Results
4.1 Degree Distribution
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Figure 1: Unweighted degree distributions (both
in-degree and out-degree) of banana trade network
(above) and soybean trade network (below)

We began our analysis by plotting the unweighted
and weighted degree distributions of the two trade
networks. Since the networks are directed graphs,
in-degrees (imports) are always represented as
purple, and out-degrees (exports) are always rep-
resented as green.

For both the banana trade network and soybean
trade network, there does not appear to be a clear

power law, small-world, or random graph pattern
in the unweighted degree distributions (see Figure
1). This may be because the networks have rel-
atively few nodes, which increases the impact of
noise and/or outliers on the distribution. We note
that the unweighted degree distributions appear to
be very similar to each other.

The weighted degree distributions provide very
little information. There are too many possible
weighted degrees and too few nodes for the charts
to aggregate them in a reasonable way (see Figure
2).
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Figure 2: Weighted degree distributions (both in-
degree and out-degree) of banana trade network
(above) and soybean trade network (below)

4.2 Weighted Global Clustering Coefficient

Next, we calculated the weighted global cluster-
ing coefficient over the bananas and soybean trade
data.

The initial results indicated that the soybean
trade network was clustered more densely, with
a higher clustering coefficient, while the banana
trade network was more segmented, with a lower
clustering coefficient (see Table 1). Additionally,
the import graphs’ weighted global clustering co-
efficients were consistently higher than the export
graphs’ weighted global clustering coefficients.



Bananas
Import Export
Arithmetic mean 0.519008 | 0.359137
Geometric mean 0.576040 | 0.410663
Max 0.515398 | 0.353698
Min 0.577858 | 0.434700
Soybeans
Import Export
Arithmetic mean 0.769061 | 0.594078
Geometric mean 0.835612 | 0.571988
Max 0.764189 | 0.597177
Min 0.880124 | 0.515560

Table 1: Weighted global clustering coefficients of
banana trade network and soybean trade network,
calculated using all four variations of the Opsahl
and Panzarasa (2009) method

4.3 Community Detection

Using Gephi visualization software and the
OpenOrd layout (Martin et al., 2013), we visual-
ized the banana and soybean trade networks. The
banana trade network appears to have four main
clusters, with a small faint cluster on the far left.
We labeled and colored the banana trade net-
work based on the weighted in-degree (total im-
ports) of each node (see Figure 3; larger figure
provided in the Appendix). A node with more total
imports will have a larger label, as well as a dark
purple color for its label and outgoing edges. A
node with fewer total exports will have a smaller
and lighter-colored label, and fainter pink edges.

United State® of America

Figure 3: Major importers of the banana trade net-
work

As one might expect, the largest importers are
the more developed countries that have bigger

GDPs. Additionally, we note that the clusters
have a strong basis in geographical region. The
bottommost cluster mostly consists of American
countries; the top right cluster mostly consists of
Asian and Middle Eastern countries; the faint bot-
tom left cluster mostly consists of African coun-
tries. As for the left and middle clusters, both con-
sist mainly of European countries, with more East-
ern European countries in the left cluster and more
Western European countries in the middle cluster.

Next, we labeled and colored the banana trade
network based on the weighted out-degree (total
exports) of each node (see Figure 4; larger figure
provided in the Appendix). Here, larger/darker
green nodes and edges represent countries with
more banana exports, and smaller/lighter green
nodes and edges represent countries with fewer or
no banana exports.

Based on the graph, Ecuador is the largest ex-
porter of bananas. Though it mostly exports to the
left (Eastern European) cluster, it also trades with
countries from other clusters. Colombia and Costa
Rica are major exporters of the middle (Western
European) cluster, and Guatemala is a major ex-
porter of the bottommost (American) cluster.

Figure 4: Major exporters of the banana trade net-
work

Here, distance effects may play a small role in
determining trade routes (for example, Guatemala
is closer to the United States than any other ma-
jor exporter). However, distance likely matters
less than historical relationships between coun-
tries, since all of the aforementioned countries
are located in tropical Central America and there-
fore have similar distances to various banana im-
porters.

The largest exporter in the top right
(Asian/Middle Eastern) cluster is the Phillip-



ines, which is consistent with the distance effects
theory. Additionally, Belgium appears promi-
nently in the middle cluster of both graphs; this
is due to Belgium’s role as key re-exporter of
bananas and other fruits to Europe®.

After analyzing the banana trade network, we
graphed the soybean trade network and again ran
the OpenOrd layout. The resulting graph is very
different from the banana trade network graph,
with a single large cluster.

We applied the coloring/labeling technique that
we used earlier to the soybean trade network (see
Figure 5). Since there is only one large clus-
ter, the countries are not separated geographically.
These results suggest that distance effects play
a more significant role in the banana trade net-
work than the soybean trade network. In addition,
these results are consistent with our findings in 4.2
that the soybean trade network is clustered more
densely while the banana trade network is more
segmented.

Chiize,  wiand

United States of America

Figure 5: Importers (purple) and exporters (green)
of the soybean trade network. China (mainland)
is the largest importer, and the US is the largest
exporter

Shttp://www.nationsencyclopedia.com/economies/Europe
/Belgium-AGRICULTURE.html

4.4 k-core Decomposition

Finally, we ran weighted k-core decomposition on
the soybean and banana trade networks, in which
each node is assigned a “k-value” ks. According
to Garas et al. (2012), nodes with a high k, are
located in the center of the network, and belong to
one of the nuclei of the network; nodes with a low
ks are located in the periphery. Because of this, we
originally hypothesized that k-core decomposition
would reveal the underlying clustering structure of
our trade networks in a numerical (rather than vi-
sual) way.

At first, our hypothesis appeared false when we
plotted and compared the k distributions for both
networks (see figure 6. The two charts appear to
be very similar; both graphs have 100 nodes for
the k-value of 1, 1-2 nodes for many k-values be-
tween 102 and 103, and more nodes for the highest
k-values.

w log.png

102 bananas k-value distribution

100 10! 10? 102 104
k-value

w log.png

soybeans k-value distribution

Count
-
9

102

IR

100 10° 04
k-value

Count
=
5

Figure 6: Weighted k-value distributions for ba-
nana trade network (above) and soybean trade net-
work (below), plotted on a log-log axis



However, we note two important differences be-
tween the banana and soybean trade networks’ k;
distributions. First, the highest possible k5 for the
soybean trade network is much greater than the
highest possible k5 for the banana trade network.
Second, fewer countries have the highest possible
ks in the soybean trade network compared to the
number of countries that have the highest possible
k for the banana trade network.

This distinction becomes particularly visible
when we look at the top 20 countries with the
highest k-values for both trade networks. In the
banana trade network (see Table 2), there are 7
countries with the maximum kg of 1518. Each of
these countries also shows up as a one of the “ma-
jor” (ie. dark green or dark purple) countries in the
banana trade network visualization.

On the other hand, only Brazil and China (main-
land) have the maximum ks in the soybean trade
network, but this value is 4260. To explain this in-
tuitively, we can think of a node having a larger k;
as having a greater “nucleus status.” Since coun-
tries in the banana trade network are part of differ-
ent nuclei, they have to ”share” the total “nucleus
status.” However, in the soybean network, there is
only one cluster. China and Brazil are part of the
only nucleus and do not have to ”share” their ’nu-
cleus status” with any other nuclei.

Bananas

k-value | Country

1518 Colombia, Costa Rica,
Ecuador, Guatemala, Russian
Federation, United States of
America, Belgium

1497 Germany, Italy, United
Kingdom

1359 Netherlands

1341 Canada, Dominican
Republic, Honduras

1288 France, Mexico, Panama,
Spain, Ukraine

1201 Sweden

Table 2: Countries with the top 20 weighted k-
values in the banana trade network

5 Analysis/Findings

The experiments have shown that the distance ef-
fect appears to definitely be correlated to various
structures of the graph. To quantify the distance

Soybeans: Top 20 k-values
k-value | Country
4260 Brazil, China (mainland)
3212 Argentina
2633 Canada, Germany, Japan,
Netherlands, Paraguay,
Spain, Thailand, United
States of America, Uruguay
2501 China (Taiwan Province of)
2374 Viet Nam
2328 Egypt
2298 Italy
2289 Russian Federation, Ukraine
2236 Turkey, United Kingdom

Table 3: Countries with the top 20 weighted k-
values in the soybeans trade network

effect on our data set we calculated the variance
of the distance effect on the imports and exports
respectively for the various crops.

tradeamount x distance
gdp1 * gdps

distanceef fect =

We found that for weather dependent crops the
distance effect was definitely present since the
variance for soybeans exports and imports were
8.174e=2% and 1.463e=2? respectively while the
variance for banana exports and imports were
1.463e27 and 1.816e~28 respectively. For the
bananas, the exports had a much stronger effect
due to distance since the variance was two orders
of magnitude larger than that of soybean imports.
This is consistent with our findings with the net-
work structure of those two graphs. The weighted
global clustering coefficient of the banana ex-
port graph was much smaller than that of the im-
port graph for soybeans. Likewise, the visualiza-
tion created with the OpenOrd algorithm showed
much more distinct, separate clusters in the ba-
nana graph. Our findings support the idea that
weather sensitive crops will be traded in higher
volume over large distances while still favoring
closer sources than othan farther ones.

6 Conclusion

From our analysis of banana and soybean trade
networks, we can conclude that trade flows for dif-
ferent types of foods/commodities have very dif-
ferent structure. These differences in structure
manifest themselves through



1. The weighted global clustering coefficient of
the entire graph being lower vs. higher

2. The existence vs. lack of distinguishable
clusters after applying community detection
algorithms

3. The maximum weighted k-core decomposi-
tion value being lower vs. higher, and having
more vs. fewer nodes that have this maxi-
mum k-value.

When we consider these results in conjunction
with the results of our mathematical analysis, we
find that distance effects have a different impact
on the trade flows of different foods/commodities,
and this variation of impact is related to the clus-
tering properties of the trade networks.

Based on our current results, we hypothesize
that these structural differences are due to the
widely different climate requirements of bananas.
vs soybeans. For future work, we would like to ex-
tend our analysis to more foods/commodities, and
develop a mathematical model for why different
foods behave the way they do. Possible factors
we would like to investigate include differences in
climate requirements, perishability, and shipping
logistics.
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7 Appendix (for larger figures)
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Figure 7. Major importers of the banana trade network

Figure 8. Major exporters of the banana trade network



