Examining Community Structure in Bitcoin User Network

Yokila Arora, Crystal Wu
December 12, 2016

1 Introduction

Bitcoin is an example of a peer-to-peer virtual currency which does not have a central authority
(i.e. mint) to validate transactions. Instead, transaction management is collectively carried out by
users of the network. Bitcoins are generated (mined) by using a CPU to find special solutions of
a hash function. Once mined, they are assigned to a public address. All Bitcoin transactions are
tracked on a public ledger where blocks of new transactions are "certified" as legitimate by what
amounts to a majority of CPU power [Nak08|.

The publicity of Bitcoin transactions provides opportunity for researchers to gain insights into
transaction activities which are usually considered private and sensitive. In this paper, we study
the network structure in detail and propose an algorithm to improve it. Further, we examine
the community structure which emerges from Bitcoin transactions. Specifically, we are interested
in comparing results from different community detection methods and evaluating the results to
identify the most effective approach for Bitcoin user network.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3
describes the dataset, the construction of the user network and provides basic statistics of the user
network. Section 4 proposes an algorithm for improvement of the user network, based on pattern
analysis. Section 5 explains the three community detection methods which were implemented.
Section 6 evaluates the results and Section 7 concludes the study.

2 Literature Review

Most of the researchers use the data obtained from blockchains to develop two graphs, namely the
user graph and the transaction graph for analysis. This process is listed in the paper by Reid et
al. [RH13|. The transaction network consists of transactions as nodes and the flow of bitcoins
from one transaction(as input) to another transaction as directed edges. User network contains
users(public keys) as nodes and transactions between them as directed edges. Using this structure,
we develop the user graph as defined in Section 3.2.

Taint Analysis and Pattern Analysis are two most commonly used methods to analyze network
structure [M06s13]. Moser overviews the flow of bitcoins to determine frequently occuring patterns.
We use pattern analysis and based on it develop an algorithm to improve the user graph.

There are many studies around community detection. K-means clustering [L1o82| partitions
nodes based on Euclidean distances, which can be derived from specified characteristics of the
nodes. Clique percolation method [PV05] can be used to identify overlapping communities built
upon k-cliques. Clauset, Newman, and Moore proposed a modularity based graph clustering
[CM14] which can be applied to very large network. These methods have their own importance in
different network structures. We study these algorithms in detail and implement these algorithms
on the bitcoin user network, to evaluate which works best on it.

3 Data Collection and Parsing

3.1 Data Source

The data set obtained is from the work of Ivan Brugere at the Laboratory for Computational
Population Biology, University of Illinois at Chicago [Bru|. The dataset contains bitcoin blockchains
upto 7th April, 2013 and comprises of 230686 blockchains.

The data is provided in the form of 6 text files, namely 'pubkey _list.txt’, ‘transactionkey list.txt’,
‘user _edge input_public_keys.txt’, ‘user edge inputs.txt’, 'user edges.txt’ and ‘userkey list.txt’.
The text files ‘pubkey list.txt” and ‘transactionkey list.txt’ contain the list of all public keys and
transaction keys. The file ‘userkey list.txt’ groups the user keys which belong to the same user.
FEach line in the file 'user _edges.txt’ contains the transaction id, the sender user id, the receiver
user id, the date of the transaction and the value (in BTC). Figure 1 below describes these files
and the relationship between them.

Bitcoin Transaction network: Data Model (Row specification)

File: user_edges.txt
Fow:Dataor a vansacton

key | imt b
user_from_key int
user_key_to int
date int
value float
public key strings
user key components File: pubkey_list.txt
R anteshash assoatacs wih noces
Flle: userkey_list.txt
Row Pubic kaysbelongng o h same e
P>-{ puslc_key_string | String
| public_k |) ._l 4
public_keys in
transaction key strings
T File: transactionkey_list.txt
Input public keys Pou: ot has assocasac wih s
Fie: user_edge_inputs_public_keys.txt v
Row: Bubic keys used for input n “In" transacton “Jp-| transaction_key_string | String
transaction_key [t 25
public_keys [g
input transaction keys Ao =
File: user_edge_inputs.txt
Row Transacton keys Lsad a8 nput in hs” raneacion Shared key =
transaction_key [_|.|_l
ransacton_keys | int) 1

Figure 1: Bitcoin network structure.

3.2 Network Construction

There are 15.89 million transactions and 11.88 unique public user keys in this dataset. As done in
[RH13|, we group the user keys that are used as input in a single transaction, i.e. if two (or more)
public keys are used in a transaction then we assume that they belong to the same user. Figure 2
and Figure 3 explain this process of grouping. This yields us 6.3 million unique users(almost half
of the original), which form the nodes of our network. The number of transactions between these
users is 37.45 million, which form the edges of our network.

Number of nodes = 10
Number of edges =9

Lo [~] =]

a. B——=up

16|

10 |

Figure 2: An example of the original network structure;
Nodes 1 to 10 represent user public keys;
T1,T2 and T3 represent the transactions.

Number of nodes = 4
Number of edges =3

T1

T3

T2

Figure 3: Network shown in Figure 2, after grouping the nodes;
the number of nodes has decreased to less than half in this case.

After grouping the public keys, we construct a directed graph where the users are represented
as nodes and the transactions between them are represented as edges, going from the sender to the
receiver. Each transaction has a timestamp and the number of bitcoins exchanged(BTC) associated
with it. This representation allows us to learn the properties of the network and examine bitcoin
mixing schemes.

The user graph is further modified in Section 4.4.1.

3.3 Basic Statistics

After constructing the user graph as mentioned in the previous section, we observe some basic
properties of the network for analysis. Table 1 shows some statistics of the user graph generated.

Tablel: User graph statistics

Total number of transaction keys 15898625
Total number of public keys 11885361
Number of nodes(users after grouping) 6336769
Number of edges 37450461
Number of self-edges 9307396
Number of unique bidirectional edges 5053993
Number of unique directed edges 16057711
Number of nodes with zero degree 0

Number of nodes with degree greater than 0 6336769

Further, we observe that the number of transactions in which the amount of bitcoins exchanged
is less than 10, is 32114920, which is 85.75% of the transactions. Figure 4 shows the log-log plot
of the out-degree distribution of the user graph. By this plot, we see that only a very few number
of nodes have higher out-degree, and 90% of them have lower out-degree. Also, since this is a
real-world network it should follow the power-law distribution but we can notice that the relation
is not strictly linear. These properties show that there exist some anomalies in this network.

107 User graph: Out-Degree Distribution Plot

106

Frequency
= =
o o
i w
o°®
.
. L

[y

o
w
T

=
o
~
T
L

101} .

100 I L - laa L -
10° 10! 102 103 104 10° 106 107 108
Degree

Figure 4: Log-log plot of out-degree distribution.

4 Improvement on User Network

We used pattern analysis to further consolidate the user network. We considered the Satoshi Dice
related users, looked at the bitcoin flow pattern and then performed analysis based on it. Because
of the size of the dataset, we only considered the transactions which took place in March 2013.
First, we observe that there are 21 transactions which are made from Node 25(SatoshiDice)
to Node 67, and vice-versa. We notice that the dates of these transactions are exactly same.
Timestamps for 18 of these transactions are exactly same, and for the rest 3 are very close. (In
each of these 3 transactions, SatoshiDice returns the bitcoins late.) By looking at the amount
of bitcoins exchanged, we see a relation between the bitcoins. In most of the cases, 76% of the

bitcoins sent from SatoshiDice are returned back to it. In other cases, SatoshiDice returns 0.5% of
the bitcoins sent to it. This is depicted by an example in Figure 5.

Also, we observe that Node 67 didn’t make any transaction to any other node, i.e. all the
out-edges from this node go to Node 25 only.

0.04012696 0.00015
25 67 25 67
0.03 0.03

Figure 5: Example showing 76% and 0.5% bitcoin returns;
left transactions took place on 14th March, 2013 at the same time
and right transactions took place on 9th March, 2013 at the same time.

We observe that there are many nodes like Node 67, which only have out-edges to Node 25.
This might be because these nodes are related to SatoshiDice, and are used to only collect bitcoins
from its users.

Taking this into consideration, we modify the user graph as given in the Algorithm 1 below. In
this algorithm, we group a node u with another node w if w only has out-edges to w, and no other
node. It should be noted that the number of edges from « to w should be more than one, for this
grouping. Figure 6 and Figure 7 depict this grouping procedure. (It may be noted that we have
not considered self-loops(edges (u,w) and (w,u)) for this implementation, but they can be added
easily.)

Algorithm 1 Modify user graph G = (V, E)
1: for each node u € V do

2 Create a list [, which consists of all nodes v s.t. (u,v) € E

3 if ! contains only one node, say w, repeated n times(n > 1) then > Merge u and w
4: if u # w then

5 for each node z € V s.t. (z,u) € E do

6 Add edge (z,w) > Make all incoming edges to u point to w
7 Remove node u

[~]

Figure 6: Sample network before grouping;
Node u has out-edges to Node w only.

Figure 7: Network shown in Figure 6, after grouping using Algorithm 1.

5 Community Detection

We used three community detection approaches and compared the results in order to evaluate the
pros and cons for each methods. In order to get results within reasonable runtime, we used the
Bitcoin user network within a date in 2013 for this project (the rationale for the date selection
will be explained later in the paper). Based on the graph below, Bitcoin network was becoming
increasingly active in 2013.

200000

150000

100000

50000

0 e L . .
2010 2011 2012 2013

Figure 8: Transaction Count by Dates
The three approaches we used are:
e K-means clustering [L1o82]
e Clique percolation method [PV05]

e Modularity based graph clustering, proposed by Clauset, Newman, and Moore in 2004 (i.e.
CNM) [CM14]

5.1 K-means clustering

K-means clustering method is to partition nodes into k clusters based on specified characteristics
[L1082]. For k-means to work, each node needs to be represented as a multi-dimensional vector in
the Euclidean space for distance calculation. In order to account for the network structure of the
Bitcoin user network, we selected the following features for each node:

e In-degree
e Out-degree
e Clustering coefficient

The procedure of k-means clustering aims to partition all nodes into k clusters in order to minimize
the target function:

k
Zi:l ersi llz — g

where pu; is the centroid of cluster S;.

We selected k = 350 to be close to the final number of clusters produced by the CNM algorithm.
However, the sizes of the top communities identified in k-means clustering were not much impacted
when we adjusted k from 100 to 350.

5.2 Clique percolation method

The clique percolation method is used when detecting overlapping community structure of networks
[PVO05]. The clique percolation method follow:

1. Finding k-cliques of the graph, which are the complete sub-graphs of k nodes. Each k-clique
is considered as a node in the clique graph;

2. Two k-cliques are adjacent in the clique graph if the two cliques share k-1 nodes;
3. Communities are identified as the connected components in the clique graph

Since each node can belong to multiple cliques, this approach allows overlapping between commu-
nities. When deciding which k to use, we tried k¥ = 3 and k = 4. When k = 4, we didn’t find
enough 4-node complete sub-graphs which would cover significant part of the constructed Bitcoin
user network. Thus, we used k = 3 in the implementation.

5.3 Clauset, Newman, and Moore Algorithm

The CNM algorithm is a modularity based graph clustering method, which uses a greedy approach
to maximize "modularity" of the resulted community structure [CM14]. The Modularity Q is
defined as:
kik;
Q = 5 T[4y — S 2 10(6,6)

2m 2m

where A;; represent the adjacency matrix, and 6(c;, ¢;) indicates whether the two nodes belong to
the same community. In each step, two communities are selected to merge so that the incremental
modularity gain is maximized.

The advantage of CNM algorithm is that it decreased the runtime in a network with n nodes
and m edges from O(m?n) in Girmvan-Newman algorithm to O(mdlogn), where d is the depth
of the dendrogram representing the hierarchical decomposition of the network into communities
structured through the greedy process. This increase in speed allows community-finding to be
applied to much larger networks.

6 Results

We constructed the Bitcoin user network for the date 2013.01.26, and tested the three community
detection approaches listed out in Section 4.4. As described in Section 4.3, we used the known
public keys of the user SatoshiDice (i.e. public keys with prefix "1dice") to evaluate the result.
Thus, we selected the date with the most active SatoshiDice users. There are 10 active users
related to Satoshi Dice on the date selected for the project.

6.1 Basic Network Statistics

After implementing Algorithm 1, we compare some statistics of the original graph and the new
graph obtained. Both graphs are considered after removing self-edges.

Original Graph New graph

Number of nodes 26939 26606
Number of edges 86595 73155
Number of unique bidirectional edges 19437 13145
Number of unique directed edges 48364 47829
Number of nodes with degree=0 29 34

Number of nodes with degree greater than 0 | 26910 26572

We observe that the number of nodes has decreased substantially even in one day. All the numbers
except the number of nodes with zero degree has increased. This may happen when some nodes
point to each other only. Further analysis can be done on the graph to analyze this better.

6.2 Distribution of Community Sizes

The three community detection algorithms generated very different results in terms of community
sizes. The results are compared in the chart below:

Number of Communities Size of Maximum Community

K-Means 350 8,303
Clique Percolation | 713 1,448
CNM 414 3,216

We put community sizes distribution in histograms:

k-means Community Size Distribution 2013.01.26 3-clique Community Size Distribution 2013.01.26 Community Size Distribution 2013.01.26

160

140

120

100

20

450 160
400 40
350 120

300
100
250
200
150

100 |-

50 20

0
10"

I [W T
0° 10"

0 0
1 10? 10° 107 10° 10* 10° 10° 10* 10° 10* 10* 10°

K-Means, with k = 350 Clique Percolation, with k = 3 Modularity-Based CNM

Figure 9: Approach Comparison - Community size vs. Number of Communities

e K-means clustering: k-means clustering produces one very large cluster and many 1-node

clusters, due to the power law on degree distribution. In addition, since k-means is based
on selected node characteristics, the information on network structure is not fully exploited.
Even though this is not the best approach to detect communities, this is the fastest approach
of all the three and is efficient to classify nodes based on specified features.

e Clique percolation method: Clique percolation produces the smallest community sizes.

The identified communities are generally more closely related due to the construction process.
However, over half of the detected communities have the size of 3, which is the size of the
pre-defined clique. Also, if a node does not belong to any clique, which in our case means
not being part of a triangle, it won’t be considered in the procedure.

e Modularity based graph clustering CNM: Out of the three clustering methods we

tested, CNM utilized the most information of the network. In later sessions, we will show
CNM produce the best community detection results for Satoshi Dice.

6.3

Community Detection of Satoshi Dice

After obtaining the results, we tagged the 10 user nodes identified as Satoshi Dice in order to
evaluate which method produces better community detection result. The assumption is that nodes
related to Satoshi Dice are likely to belong to the same community.

7

K-means clustering: 10 Satoshi Dice nodes were spread out in 9 different clusters sized
from 1 to 322. K-means was not able to detect the Satoshi Dice community.

Clique percolation method: 5 out of the 10 Satoshi Dice node were not part of any
triangles and thus not considered in the clustering procedure. Among the rest 5 nodes, 1
node (Node 25) with the highest degree was included in multiple clusters sized from 3 to
1448. Also, the same node shared community with two other Satoshi Dice nodes. Since
significant portion of the Satoshi Dice nodes were not part of a 3-clique, this method was not
able to detect the Satoshi Dice community either.

Modularity based graph clustering CNM: 10 Satoshi Dice nodes were found in 5 dif-
ferent communities. Among those, 6 nodes were included in the same community of size 179.
Thus CNM was able to successfully cluster most of the Satoshi Dice nodes into the same
community.

Conclusion

We observe that using the proposed network improvement algorithm, the number of nodes has
decreased. Out of the three community detection algorithms implemented, CNM works the best in
detecting communities based on network structure, and generates most accurate result in clustering
SatoshiDice nodes.

References

[Bru]

Ivan Brugere. Dataset. http://compbio.cs.uic.edu/data/bitcoin/.

[CM14] Newman M.E.J Clauset, Aaron and Cristopher Moore. Finding community structure in

very large networks. In Phys. Rev. E70, 066111, 2004. MBC, 2014.

[Llo82] Stuart P. Lloyd. Least squares quantization in pcm. In IEEE Transactions on Inforamtion

Theory 28(2): 129-137. IEEE, 1982.

[M6s13] Malte Moser. Anonymity of bitcoin transactions, an analysis of mixing services. In

Minster Bitcoin Conference (MBC), 17 - 18 July ’13, Minster, Germany. MBC, 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[PV05] Derenyi Imre Farkas Illes Palla, Gergely and Tamas Vicsek. Uncovering the overlapping

community structure of complex networks in nature and society. In Nature 435, 814, 2005.

[RH13] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin system. In

Security and privacy in social networks, pages 197-223. Springer, 2013.

