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Abstract— Our paper focuses on examining the struc-
ture of venture capital investment networks. In examining
investment networks, we construct two types of networks.
First is a bipartite investment network G with unweighted
directed edges from investors to companies based on
investment made, and a more complicated formulation
with weights equivalent to funding amount. The second is
a folded coinvestment network F' on only investor nodes
with undirected edges between investors such that an
edge (u,v) € F if and only if (u,c) € G and (v,c) € G}
that is, two investors u and v made an investment in
the same company c. One part of our research focus
was to understand the structure of these networks and
their properties such as degree distribution. The second
focus aims to tackle the link prediction task on both
the folded coinvestment network F, and the bipartite
investment network GG, where the latter is assumed to be
a much more difficult task. Using a logistic regression
and SVM model with walk-forward cross validation on
our time-partitioned graphs, we see decent but not time-
robust predictive accuracy on link prediction in the
folded coinvestment network F'; however, the results of
link prediction on the actual bipartite investment graph
G leave much to be desired. We conclude that link
prediction, particularly in private investment networks,
is incredibly difficult given a surface-level dataset, and
limited graph features of Bonacich centrality, Adamic-
Adar, and Weighted-Katz metrics.

I. INTRODUCTION

Venture capital (VC) is a very important domain
in finance that helps nascent companies raise capital
to see their ideas to fruition. Identifying investment
opportunities in VC, however, is exceptionally difficult
because of relative scarcity of data in terms of ob-
servable information and outcomes compared to those
in public markets. However, because of technological
advancements and the democratization of information
through services like Crunchbase or Mattermark, or-
dinary individuals can now attain a higher degree of
visibility on the entire VC investing landscape.

In particular, one can now build out a relatively large
network filled with VC firms and startups to examine
the structure of VC investing in a bipartite investment
network. Given this data, our project aims do this by
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identifying certain structures in the network and mea-
sure characteristics such as centrality and identifying
relevant features that might be useful for link prediction
of a VC firm investing in a particular startup.

II. PREVIOUS LITERATURE

Nowell and Kleinberg [3] proposed several methods
to predict links between nodes based on pre-existing
edges in a graph and empirically tested these methods
on various co-authorship networks. One of the methods
used in this paper leverages Adamic-Adar and Katz
metrics which we will also use in our analysis. Their
work is particularly enlightening for our project not
only due to its broad survey of the many methods
of link prediction but also the analogous relationship
between co-authorship of papers and co-investment
of companies. However, for our specific problem
of co-investment of companies, it is also useful
to consider the nature of the investment (round of
funding and amount raised) and different features of
the investors and company (e.g. location and market)
in approaching the link prediction problem.

Bellavitis et. al. [1] examines the tradeoff between
cohesiveness of venture capital (VC) investment
networks versus those that are rich in structural
holes. When a VC firm makes a decision to co-invest
with partners who are already in its network, they
increase the cohesiveness of their network. On the
other hand, when a VC firm decides to establish new
ties, it increases the structural holes in the network.
We use this idea as a motivation for understanding
the connectivity of an investment network and
as a motivation for folding a network onto itself in
an attempt to express the connectivity among investors.

Finally, Liang and Yuan [2] propose a novel per-
spective in predicting the outcomes of investment links.
Many prior studies have been done on investment be-
haviors in terms of personal opinions, investment expe-
rience, and geography. However, the authors here argue
that social dynamics between investors and companies



are actually much more telling of eventual investment
outcomes. Several machine learning algorithms were
performed upon a wide variety of features that represent
the social dynamics between stakeholders. However,
it would be interesting to consider additional features
such as sentiment, reputation, novelty of a company,
and other social factors that cannot be simply in-
ferred from network graph structure. We can apply
these features to optimize supervised machine learning
algorithms to enhance accuracy for investment link
prediction.

I1I. METHODS

Our main goal is to perform link prediction in a
bipartite venture capital investment graph and a folded
coinvestment network. Prior to this, we explore the
data and understand characteristics of our network and
use descriptive statistics to characterize aspects of our
network. This will allow us to identify if there exist
any interesting signals within the network we can use
to generate features for link prediction. These include
various forms of centrality, as well as measures for
network cohesion. After defining features, we split our
dataset into training and test sets by time and determine
the accuracy of link prediction on our test set.

A. Data Collection

For this project, our data source is Crunchbase [4],
which is a public database that consists of information
about startup companies and investors. We retrieved
several CSV files from Crunchbase which allow us
to analyze data on 1) Companies and 2) Investments.
Specifically, we have data on roughly 47758 com-
panies, 110044 different investment transactions, and
21350 unique investors. For companies we have infor-
mation on what industry they operate in, what series
of funding they are on at a particular date, as well as
total funding raised. The Investments dataset includes
information about the transaction between investor and
company, in what fiscal quarter it took place, and
markets that the investor and company operate in.

B. Link Prediction

Next, we will define our main problem: prediction
of links. There are two problems at hand: First, we
will be predicting for a historical network of coinvest-
ments among investors, which investor-investor pairs
are likely to be co-investors in some company in the
future. Specifically, we take the coinvestment graph at
a certain time-step, extract and learn predictive features
of the graph, and use the additional edges created after

Fig. 1: The networks shown above illustrates the result
of folding the bipartite network on the left onto the left
cluster, generating the folded network on the right. In
our problem, we consider nodes A, B, C, and D to be
investor nodes and X, Y, and Z to be company nodes.

the time-step as a test set of predicted edges. Some
of these predictive features, as introduced in Low-
ell and Kleinberg, include the metrics Adamic-Adar
and Weighted Katz and are further described in the
Features section. The second problem is prediction of
future investments from an investor to company. Given
a historical coinvestment graph, historical investment
graph, and contextual variables about companies and
investors, this is a harder problem than the first since
two investors have many more chances to coinvest
in a company, given the large number of companies
available, than the situation where we have one specific
investor and one specific company. Thus, we hypoth-
esize the features and model for this problem will be
much more complex, and we will ultimately relax the
constraints of the problem to make it more feasible to
predict links.

IV. GRAPH REPRESENTATIONS

In examining investment networks, we construct two
types of networks. First is a bipartite investment net-
work G with unweighted directed edges from investors
to companies based on investment made, and a more
complicated formulation with weights equivalent to
funding amount. Figure 2 shows a small section of the
investment network we are working with, limited to the
top investors and companies. The second is a folded
coinvestment network F' on only investor nodes with
undirected edges between investors such that an edge
(u,v) € F if and only if (u,c) € G and (v,c) € G;
that is, two investors u and v made an investment in
the same company c. In addition, for the coinvestment
network, we enforce the condition that the two investors



must have invested in the same company within the
same fiscal year to more accurately represent the notion
of a coinvestment. The coinvestment network is more
lossy than the bipartite network because the bipartite
network has edges between companies and investors
that do not correspond to co-investment edges. Figure
1 shows a pictorial example of how a bipartite network
is folded onto itself.

To capture more information within each edge in
each kind of network, we add an edge weight that
describes the amount of stake an investor has in a
company. For the bipartite network GG, we define the
weight of an edge (u, ¢) to be log,( raised Funds(u, c)
where raised Funds(u, c) amount in US dollars that u
raised for company c. On the other hand, for the folded
network F', we define an edge weight that describes the
amount of coinvestment stake the two investors had
in a company, defined as log,,raisedFunds(u,c) +
log,g raisedFunds(v,c) where raisedFunds(u,c)
and raisedFunds(v,c) are the amount in US dollars
that v and v respectively raised for company c.

Since our data can be modeled as a time series, with
new investments happening across time, we construct
different graphs based on the investments made in a
particular year ¢t. That is, G; represents the investments
network with edges that correspond to investments
made only in year t. F} represents the coinvestment
network with only edges between investors that repre-
sent coinvestments made only in year ¢.

V. FEATURES

In this section, we describe several measures that we
rely on for both the bipartite link prediction problem
and the folded network link prediction problem. We
use features extracted from the networks F' and G' and
in addition, descriptive variables about the individual
company and investor, independent of the network.

A. Adamic-Adar
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Between nodes x and y, z represents the set of nodes
found in both sets of neighbors, I'(z) and I'(y), and
each neighbor is weighted by the inverse of its relative
frequency, or EIN L(1.6:. rarer .nod.e§ are more indica-
tive of s1m11ar1tyg is metric intuitively captures the
connectedness between two nodes based on the number
of shared neighbors.

Fig. 2: Induced Subgraph of Top Venture Firms and
their Company Investments

Graph Visualization

This graph represents the top 10 investors across time
(excluding ”Start-Up Chile”) and the companies they
have invested in, limited to those that have at raised
money from at least 25 investors (for visualization
purposes). This represents the top investors and the
“popular” companies they invest in. As we can see,
these are mostly all notable entities that one would
associate with the field of venture capital.

B. Weighted Katz

Between nodes x and y, paths<l> represents the set of
all length-/ paths between the two nodes. 3 is a learned
parameter between 0 and 1 and weights closer paths
more when it is low. This feature intuitively represents
the degree of connectedness between two nodes, and is
different from the Adamic-Adar metric in that it allows
for two nodes to be connected in paths that more than
just two steps away.

C. Bonacich Centrality

ci(o, B) = Z(a — Bey) Ry 5
J
This measurement of centrality differs from other
forms of centrality in that it can take into account the
centrality of a node’s neighbors. It incorporates a family
of centrality measures depending on the chosen value
of 3. R;; denotes the presence of an edge between
nodes 7 and j. In the case where f is 0, the metric is the
same as degree centrality. However, in the case that the



[ parameter is positive, anyone who knows influential
people are made more influential themselves. When (3
is negative, being connected to people of low influence
increases one’s own status. The centrality measure for
every node is given as follows and can be solved by
power iteration.

With this feature, we can understand whether VC
firm status in addition to the Adamic-Amar and
Weighted Katz features would improve a model, and
to what extent the difference in status between two
VC firms would affect co-investment in the future.
Specifically we add to the feature vector of a pair
of investor nodes the two Bonacich centralities of the
investor nodes, and the absolute difference of their
centralities (representing the difference in status).

D. Contextual Indicator Variables

We construct additional features using contextual
knowledge about how investors invest in companies
more preferentially in terms of market preference or
geographic proximity. That is, for a period of several
years, there tends to be strong autocorrelation in terms
of investments made in companies of a particular mar-
ket. This motivates using the market that the company
is in as a feature, as being in a “hot” market may
increase the likelihood of an edge existing between a
company and an investor. We define a "hot market” as
a market that is in the top 20 list of markets with the
highest number of investments. Figure 3 shows some
of the top markets by investment count. We can encode
this feature as the alignment of a company being in a
hot market, and the investor having concentrated at least
15% of their investments during the training period in
companies of that particular market.

GoodMatch(u, ¢, F') :=

I [market(c) € HotMarkets(F')] x

I [market(c) € InterestedMarkets(u)]

These features are generated only for the prediction
of links in the bipartite network. It allows for the chance
that even if not a single investor has yet invested in the
company, an investor may still consider investing in the
company if it is interested in the same market as the
company exists in.

E. Sum of Weighted Edges
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Fig. 3: Examining the number of investments grouped
by the market that the company exists in between 2013
and 2014, we see a year on year autocorrelation. The
year over year autocorrelation between 2013 and 2014
95.6% when examining the top 30 markets in each year,
indicating that company market may be an interesting
feature for use in link prediction.

Given a pair of investors (u,v) in the network F,
we use the sum of the weighted edges between the
two investors to represent the total amount of co-
investment between two investors across multiple com-
panies in the past. The weight of each edge w; is again,
log,o raisedFunds(u,c) + logqraisedFunds(v,c)
where raised Funds(u, c) and raisedFunds(v,c) are
the amount in US dollars that © and v respectively
raised for company c. This feature is used only for
the prediction of links in the coinvestment network.

VI. MODELS

In this section, we describe models that can be
used to learn how to use the above features to predict
whether a link will exist in the future.

A. Logistic Regression

ho(a) = 9(070) = T

The logistic regression model fits a logistic function to
a set of feature vectors. Each feature vector z, has a
score z that is equal to #7z where theta corresponds
to a vector of weights, one for each feature. For a
given score, z, you obtain from the logistic function
a certain probability between 0 and 1 that the class
is true. The weights can be obtained by finding the
weights that maximizing the likelihood of the training



100
100 10!

Fig. 4: The degree distribution of the bipartite invest-
ment network (outdegree for investors, indegree for
companies). We see that the degree distribution follows
similar to the Preferential Attachment Model.

examples, done through gradient ascent or Fisher scor-
ing. We use this logistic regression model and different
forms of regularization techniques such as specifying
a regularization penalty C' = % where higher A\ terms

more heavily penalize larger model coefficients.

B. Support Vector Machines

HingeLoss(z,y|0) = max(1,1 — (6T 2)y)

The support vector machine model approaches binary
classification by finding a separating hyperplane that
separates the two classes of training examples with the
largest margin. This separating hyperplane is a linear
model and the corresponding score, z = 67z, if greater
than zero, denotes a positive classification. Finding the
weights of the linear model corresponds to minimizing
the hinge loss over the training descent. Stochastic
gradient descent which minimizes the hinge loss over a
single training example in a single iteration also finds
the weights that minimize the hinge loss.

C. Preferential Attachment Model

Examining the degree distribution of the bipartite
investment network indicates that the distribution is
similar to that of the preferential attachment model.

We consider the link prediction problem in the con-
text of the preferential attachment model; probabilisti-
cally predict edges based on degrees, i.e., the preferen-
tial attachment score z(z,y) between an investor node
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x and a company node y described as

(e,9) = GIF@)ITE)

being greater than some parameter v (where C is a
normalization constant). However, previous literature
[5] has shown that this model doesn’t work very well
and is also not deterministic, so we focus mainly on
feature construction and usage of Logistic Regression
and SVM models.

VII. ALGORITHMS

We introduce two algorithms: one on the folded
network and the second on the bipartite investment
network.

A. Link Prediction on a Folded Network

In the link prediction problem over the coinvestment
network, we predict for two investor nodes in a histori-
cal coinvestment graph F}giqrt.tEnd, Where we consider
coinvestments between the years tStart and tEnd,
whether they will have another coinvestment in the year
tEnd + 1. To train a model, we pick a set of pairs of
investor nodes, 400 of which have a coinvestment in
the year tEnd, and 400 of which do not. Note that
since we have a 50/50 split in the labels, and that the
coinvestment graph is generally not complete, we have
severely downsampled the number of non-edges in the
graph. For each pair, we generate the above numerical
features described in the Features section from the coin-
vestment graph FisiqretEnd—1 and the label each pair
with whether there was a corresponding coinvestment
in year tE'nd. We fit the features and response variable
into both SVM and logistic regression models. Next,
we use this model to predict coinvestments of the year
tEnd—+1 in a set of pairs of investor nodes, with their
corresponding features generated on the coinvestment
graph Fisiart:tEnd- We can evaluate our model based
on its predicted labels by cross-referencing it against
the coinvestment network in the year tEnd + 1.

B. Link Prediction on a Bipartite Investment Network

In the link prediction problem over the bipartite
investment network, we predict for one investor node
and one company node in a historical investment graph
GiStart-t End, Where we consider investments between
the years tStart and tEnd, whether the investor will
invest in the company in the year t End+ 1. In addition
to information from network Gisiqrt-tEnd, We will use
information from the coinvestment graph of the same
time period, Fisiart:tEnd- Define U as the set of investor



nodes and C as the set of company nodes. We generate
our features and response by iterating over all investor-
company pairs of (u,c) for v € U and ¢ € C,
regardless of whether investor u actually invested in
company c. If (u,c) € Gistart:tEnd, then we add a
1 label to our response vector, indicating an edge,
otherwise a 0 label.

Now we need to generate features for every (u,c)
pair. We do this by taking the sum feature metric for
(u,u") € Fistart-tEng for all (u/,c) € G. That is, con-
sidering the Adamic-Adar metric, given an investor w,
for all other investors u/ that are investing in company
¢, we compute the sum of the Adamic-Adar metrics for
(u,u’) that was generated from our folded coinvestment
network and assign this as the feature value for (u,c).
We use the sum to capture the additive effect of having
multiple similar investors investing in that particular
node. This describes the construction of our response
label vector, and our feature vector for the training
period. We fit a model to this data and then use it
to predict that in the test period. Finally, we down-
sample the number of non-edges in order to make the
prediction task feasible. We do this since there are
multiples more non-edges than edges and so we down-
sample the training set and test set so that they contain
equal numbers of samples of edges and non edges.

C. Walk Forward Cross-Validation

We evaluate the performance of our models by
training on our model on the features generated from
a subgraph in a particular year, and then testing the
model on the following year. However, this exposes the
model to certain biases when the distribution of features
is dissimilar between training and test periods, or an
abnormality arises in the training or test period. To
evaluate the performance of our models more robustly
with respect to time-variations, we introduce walk-
forward cross-validation on our time-series data. Define
our time series data as D; further, we define D; as the
data collected in a particular year t', and Dy .1 as data
collected from years ¢’ to t”. For the parameters into
the algorithm, define a training window of 7' and a
start period ¢y and number of iterations k. Call our
model M. Then our walk forward optimization works
as described in the Algorithm 1 pseudocode.

VIII. RESULTS AND ANALYSIS
A. Coinvestment Link Prediction

Table I shows the accuracies on the training, cross-
validation, and test set after fitting a model to predict

Algorithm 1: EvaluateModelCV(M, D, T, to, k)

initialize errors_list;

for iteration i from 0 — k — 1 do

trainStart < tg+1;

trainEnd < trainStart + T}

trainGraph <« Dt rainstart :trainEnd;

testGraph <« DtrainEnd—l—l;

X_train , Y_train < constructFeature-
sAndResponse(t rainGraph);

X_test , Y_test <« constructFeaturesAn-
dResponse(testGraph);

M.fit (X_train,y-train);

error < compare(y_test,
M .predict(X_test);

add error to errors_list;

output mean error of errors_list;

|

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

In-sample data (IS) - Optimization

Out-of-sample data (00S) - Verification (backtest)

Fig. 5: Visualization of walk forward cross validation
methodology. This allows us to evaluate our model
in a way that is more robust to time inconsistencies
and anomalies in our training (in-sample) and test
(out-of-sample) data over a longer period of time.
Additionally, this methodology is better for time-series
data than traditional k-fold cross validation since we
are only moving forward in time to ensure point-in-
time consistencies are more strictly enforced.



Model Training Error | Cross Validation Error k=10 | Test Error
SVM No Bonacich 0.135 0.141 0.147
Logistic Regression No Bonanacich 0.135 0.143 0.145
SVM With Bonacich 0.170 0.170 0.178
Logistic Regression With Bonacich 0.135 0.148 0.155

TABLE I: Folded Coinvestment Link Prediction Results: This table describes the training error and cross-validation
error after training our model with either logistic regression or SVM. We depict whether the model included
the Bonacich Centrality measures as features in the model with the name, "No Bonacich” and With Bonacich”
respectively. The features of the training data were calculated from the coinvestment graph, Fggs5.2012 and labels
from Fyp13. The features of the test data were calculated from Fbggs5.0013 and labels from Fogq4.
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Fig. 6: As we examine the top investors by investment
count, we see why it’s important to use the similar
set of investors in the training and test period: there is

high variance in the investment counts among the top
investors in 2013 and 2014.

coinvestments of the year 2014. We see that the logistic
regression classifier worked slightly better than the
SVM classifier, and that the information about the
Bonacich centralities of the two investors surprisingly
added little to the accuracy of the classifiers. We deem
that our model generated has reasonable performance
during cross-validation and on the training and test sets.

One hypothesis why the Bonacich centrality mea-
sures added little information to the model can be
that since the coinvestment graph follows a preferential
attachment model as shown in Figure 4, the graph
tends to form separate clusters of high degree nodes
surrounded by lower degree nodes. These higher de-
gree nodes generally have higher Bonacich centrality
measures. As a result, if the model attempts to predict
a co-investment between two popular investors based
on Bonacich centrality measures, it is uncertain whether
they are connected to each other or not, since they may

reside in separated parts of the co-investment graph.
Even if sometime in the past, the two investors may
have had an edge deemed as a co-investment, it is
not necessarily true that they made an actual deal to
coinvest together. That is, it may have happened by
chance that as high degree nodes, they simply invested
in the same company within the same year.

Despite the reasonable accuracy of our model, we
have reason to suspect that our feature vector can
be improved. Fig 8 shows a regression model that
attempts to find a linear separation boundary between
the two classes, based on minimizing the logistic loss.
Immediately, we see a strong multicollinearity between
the Weighted Katz and Adamic-Adar metrics. Mul-
ticollinearities between features often result in high
variances of the coefficients of the features. This is
also corroborated by the Variance Inflation Factor (VIF)
value of Weighted Katz (6498.37 >> 5) on that
particular example. This result implies we should only
consider one of these features or the other as they relay
roughly the same information in our network.

Table II shows a confusion matrix for link prediction
on the coinvestment network in 2014. Due to the higher
number of false negatives (predicted non-edge, but
actually edge) than number of false positives (predicted
edge, but actually non-edge), our algorithm seems to
have higher precision than recall. However, it may be
better in true prediction settings to sacrifice precision
for recall since the nature of our prediction is such
that it is better to more liberal about our predictions
than conservative. However, we can lower precision and
increase recall, in the logistic model by decreasing the
threshold for the logistic score (by default, the score
threshold is O which denotes 50% probability labeled
as positive) for positive prediction.



Walk-Forward Cross-Validation Logistic Regression Results
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Fig. 7: Results of running Walk Forward Cross-
Validation with a window of 7" = 2 years on test peri-
ods from 2009 to 2014. The model used was Logistic
Regression with both the Adamic Adar and Weighted
Katz features. The mean test accuracy from this walk-
forward cross-validation is 63.20%. However, as we
see, our accuracy deteriorates over time, indicating that
our model performance may not be robust to variations
in time.

B. Bipartite Link Prediction

We consider our model to predict investments from
investors to companies. Unfortunately as we show in
Fig 7, we can see that our model shows a significant
decrease in accuracy in walk-forward cross validation
as compared to accuracies of the coinvestment link
prediction model. We also can see from the figure that
the accuracy deteriorates over time, perhaps because
the same model may not be robust to variations in
time. Patterns in investor-company investments may
fundamentally change over time. From observational
data, we saw that in 2014, there were significantly more
investments in years prior, and our model perhaps did
not account for this increase, and was too conservative
in predicting true edges (leading to more false nega-
tives) in the face of a changing global venture capital
system.

Table III shows a 2x2 confusion matrix for link
prediction on the bipartite network in 2014. It has a
corresponding total accuracy of 72.0%, again signifi-
cantly lower than the coinvestment problem. While the
accuracy score is decent, this does not necessarily mean
that that we can predict an edge between a specific
investor and a specific company; this is because we
severely down-sampled the number of non-edges in our
training and test set so that the prediction task would
be feasible. This automatically introduces bias into our
model toward being able to predict edges correctly
since the ratio of edges to non/edges is now half instead

TABLE II: Confusion Matrix for Link Prediction on
2014 Folded Coinvestment Network F' (Train Period
2013)

Predicted
Non-Edge Edge Total
Non-Edge 24 61 685
Actual
Edge 244 152 396
Total 868 213

Using our model to predict links in the coinvestment
network, we have a 2x2 confusion matrix on the
predicted vs. actual labels of the test set. We see that our
predictions skew disproportionately toward predicting
edges, having more false positives than false negatives.

of in reality being a much smaller fraction. When we
remove the down-sampling, we discover the true reality
of the difficulty of link prediction - our model predicts
all non-edges in this scenario and our features hardly
add any value.

IX. CONCLUSION

Despite having a very rich and complex dataset,
we’ve found that the link prediction problem is incredi-
bly difficult in investment networks for several reasons.
First is informational asymmetry and the nature of
venture capital investments: investments are made by
venture capitalists who spend a significant effort in
qualitatively vetting a company’s team and product;
this is information that is not able to be captured in
simple and surface level features such as where the
company is located, how much they have previously
raised, and which market segment they exist in. Second
is the highly dynamic nature and constant variance in
terms of how investments occur; as we profiled the data
and examined the network structure at different points
in time, we noticed that these were highly dynamic
and constantly changing. The results from our link
prediction problem on the bipartite investment graph
exactly illustrate this sentiment. To relax the problem,
a looser prediction problem was considered based on
the folded coinvestment network, and predicting if



TABLE III: Confusion Matrix for Link Prediction on
2014 Bipartite Investment Network G (Train Period
2013)

Predicted
Non-Edge Edge Total
Non-Edge 1 220 556
Actual
Edge 86 470 556
Total 417 695

Using Adamic-Adar as our feature for predicting invest-
ment links in our bipartite investment graph, we note
that the Logistic Regression model does a decent job in
terms of accuracy. However, this does not necessarily
mean the model is well-suited for an actual investment
prediction task since we down-sampled the number of
non-edges to a 50%-50% edge / non-edge breakdown
to make this prediction task feasible. Note that had
we not down-sampled, our model would simply predict
all non-edges, since many more non-edges occur than
edges in the actual investment network .

an edge would exist in this network, indicating that
two investors would investment in the same company,
though not specifying which company. This proved to
be a more feasible problem given our dataset, since
we were able to examine graph properties such as
degree distribution which gave us insight into how
often investors invest and in which type of companies
they invest in. This allowed us to construct provides
with better predictive power. Ultimately, this research
has granted us a greater acuity into the difficulties
associated with link prediction in graphs, and also the
basic toolkit to understanding common features such
as Adamic-Adar, Weighted-Katz, and node centrality
measures that give us an entry way into exploring the
complexities of link prediction problems.
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