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1 Introduction

Reddit is a popular social media website, which allows users to share stories, photos, news, and
opinions. Unlike other media sites, Reddit is naturally divided into "subreddits", a forum dedi-
cated to a specific topic. This allows users to post and browse specific subjects, such as movies,
politics, or sports. As frequent users of Reddit, we were interested in examining the community
structure of Reddit—seeing whether users naturally fell into categories based on their interests or,
in our case, positions on different political topics. We noticed Reddit’s subreddits topic structure
encouraged people with similar interests to form online communities. The appeal for our project
stemmed from the belief that community detection within these online communities could be used
for many practical applications such as stopping the spread of computer viruses, detecting spam,
or advertising after extrapolating and examining the generated communities.

For our project, we acquired a dataset of comments from 2014 from the politics subreddit. Each
entry in the dataset corresponded to a single comment, and had information on when the comment
was posted, the author of the comment, the parent comment if the comment was in response to a
thread, and the actual text of the comment. In total, the original dataset was 1 GB. We decided to
first create a reasonable graph model such that we could evaluate the results of whatever algorithm
we ran on the graph. We then ran different community detection algorithms on the model and
analyzed the formed communities by running our own algorithms for community organization.

2 Related Work

Community detection is a problem which has been researched extensively. One of the interesting
aspects of community detection is the wide-range of metrics and algorithms that can be used to
detect communities.

One of the original algorithms for community detection was proposed in 2002 by Girvan and
Newman. The main assumption of the their algorithm is that edges with high-betweenness -
meaning that these edges occur on the shortest path between pairs of nodes in the graph very
often - act as bridges between communities. Their algorithm essentially iteratively calculates the
edge with highest betweenness and removes it from the graph until reaching some number of
distinct communities.

In practice, this algorithm worked very well on small graphs, however, it requires recalculating
the betweenness of the edges at each time-step. This equates to a time complexity of O(n?),
which is infeasible for any of our graph models. In 2004, Clauset et. al devised an optimization
to the original GNM algorithm which made run efficiently on large graphs. They optimized based
on the property of modularity, which is the measure of the effect of a proposed division in a
network. The algorithm works by starting each node in the graph as a one-node community, then
calculates the change in modularity produced by joining each pair of communities. Then it joins
the corresponding communities into one community and recalculates the change in modularity by
joining those pairs of communities. The previous step is then repeated until one final community
remains.

A very different class of algorithms for community detection are spectral algorithms. These
algorithms rely on certain properties about the matrix representation of graphs. First, let us define
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cut(A, B) is the number of edges crossing between the partitions, and assoc(B,V is the sum of the
degrees of the nodes in the A. Intuitively, a good partition should have a low normalized cut value,
since there should be few edges between the partitions, and both partitions should be relatively
large.

It can be proved that taking the second smallest eigenvector of the Laplacian matrix of a
graph gives a partitioning which approximately minimizes the normalized cut. This time com-
plexity for the algorithm is O(mn) + O(mM (n)) where m is the maximum number of matrix-
vector computations required and M(n) is the cost of a matrix-vector computation of Ax, where
A=D"z(D-W)D 2.

The proof is omitted since it appeared on the last homework. However this fact by itself does
not give lead to an efficient algorithm for community detection, since the algorithm only applies
to bipartitions.

Several researchers have proposed methods for generalizing spectral algorithms to more than two
communities. In 1999, Shi and Malik proposed two algorithms based on the spectral methods for
community detection. The first essentially uses the algorithm for bipartitioning using the second-
smallest eigenvector recursively. Similarly to CNM, this algorithm terminates when splitting an
existing partition would increase the k-way normalized cut (which is an generalization of the
normalized cut to k-partitions).

The second solution they proposed is a simultaneous k-way cut using multiple eigenvectors.
Instead of using the second-smallest eigenvector to compute a partition, the algorithm takes n of
the smallest eigenvectors, and runs k-means clustering on the points in an n-dimensional space.
Then, they merge the k clusters iteratively until the k-way normalized cut cannot increase by
merging a cluster. Finally, they perform the recursive algorithm described above to on the £’
clusters. However, they mentioned in their paper that they did not implement this algorithm.

Finally, another algorithm proposed by Ng, Jordan, and Weiss in 2001 is very similar to one
described by Shi and Malik. Just like above, they use the smallest n eigenvectors to embed
the points into a n-dimensional. They then renormalize each dimension so that the maximum
coordinate equals 1, and run k£ means clustering on the resulting points to find £ communities.

Here,

the normalized cut of a partitioning of the graph as Ncut(A, B) =

3 Model

As stated above, our dataset consists of the comments from 2014 from the politics sub-reddit.
Each line of the dataset corresponds to one comment and contains the comment’s ID, the parent
comment’s ID, the author of the comment, the karma score, and the content of the comment itself,
minus any links. One of the main challenges of working with the politics subreddit dataset was the
size of the corresponding network. The actual dataset is 1 GB. However, this included the actual
comment text, which we did not include in our graph structure. We instead brought back this
content when we were analyzing how well each community detection algorithm performed. For
our model, we chose to represent the dataset as a undirected graph, where an edge between two
authors i, j exists if there is some interaction between i and j, such as if ¢ replied to j or vice versa.
Furthermore, our algorithms required that the graph they are run on contains only one connected
components, since they might erroneously be calculated to be part of the same community even
though they should logically be in different communities. As a result, we consider the base graph
we use to be the large weakly connected component of the full sub-reddit graph, which contains
over 90% of the authors. Table 1 displays information for the dataset.

One major difficulty is our dataset is that the original posts for threads were not included in the
dataset. As a result, authors that should have been linked to other authors in our graph through
a comment parent were orphaned. This resulted in over 30,000 authors not being repesented in
any way in our edge graph. To rectify this, and include a larger number of these nodes in the
graph, there also exists and edge between authors who replied to a thread’s original post, since the
comment correpsonding to the original post for any thread was not included in the dataset.

For comparisons of algorithms used and the resulting communities, we used two different subsets
of the overall graph, and ran our communitiy detection algorithms. This was done because of our
inability to run our implemented algorithms on our full graph in a timely manner due to the size of
the graph and slow runtime of our algorithms. These subsets were created by taking the subreddit
graph, randomly sampling a number of authors from the graph (15,000 authors for the smaller



Full Graph | WCC v1 | WCC v2 | Small Sub-graph | Large Sub-graph
Nodes 161,715 132729 151,026 4,198 22,978
Edges | 1,091,581 | 933,222 | 1,090,319 10,325 73,510

Table 1: Model statistics for the dataset and various subsets

subset and 40,000 nodes for the larger subset), getting any edges between the sampled authors in
the original graph, and getting the largest weakly connected component of this subgraph. Table 1
provides graph data on the sub-graphs we used for comparing and analyzing our chosen algorithms.

4 Algorithms and Methods

4.1 Modularity Optimization using CNM

For an initial analysis of our dataset, we implemented our own version of the algorithm detailed
by Clausel et al. Since modularity is defined as a measure of the quality of a network’s division
into communities, the division that results in the highest modularity will yield quality communities
based on the graph structure. This algorithm works to optimize the well known Girvan-Newman
method by building several optimizations on top of the Girvan-Newman method like keeping a
matrix noting the change in modularity cause by joining communities ¢ and j.

The algorithm is as follows:

1. Start off with each node in the graph being its own community

i,j) € E

Ll 2
2. Initialize matrix AQ such that AQ; ; = { é/Zm T ctherwise

3. Initialize array a such that a; = k;/2m
4. Get the maximum AQ); ; and join communities i and j
5. Update AQ as described below, and update a such that a; = a; + a; and a; =0

6. Repeat steps 4 and 5 until either one community remains or until the maximum AQ;; <0

For step 5, if we delete row j and column j from AQ), then only the values in row i and column
i need to be updated, since other changes in modularity would not be affected by joining the two
communities. For a community ¢, we update AQ;. as follows:

e If ¢ is connected to both 7 and j, AQic = AQir + AQ ik
e If ¢ is only connected to i, AQ;. = AQi. — 2a;ay
o If c is only connected to j, AQ;c = AQ . — 2a;ax

Clausel et al.’s CNM algorithm runs in O(nlog?n) using a bounded binary tree to store a heap for
each row of the matrix such that finding the index of the max @y value is easy. However, in our
implementation, we used a 2D matrix to represent AQ). Because of this, we reinitialize the updated
matrix after joining two communities by iterating through the amount of total communities left in
a double for loop. Without knowing initially, this data structure change made the time complexity
our version of the CNM algorithm O(n?).

4.2 Spectral Methods

The other class of methods that we implemented were spectral algorithms. Spectral algorithms
detect communities by applying linear algebraic methods to the matrix representation of graphs. In
particular, we implemented the algorithm for detecting communities based on k means clustering,
suggested by Ng, Jordan, and Weiss in 2001.



Both of these methods were covered in the last homework, but as a review, the normalized cut
is defined as Neut(A, B) = SAB) | cullAB) "pere cut(A, B) is the number of edges crossing the

assoc(A) assoc(B)’

partitions, and assoc(A) is the sum of the degrees of the nodes in partition A. A small normalized
cut corresponds to a partitioning where there are relatively few edges between the partitions and
both partitions are reasonable large. Unfortunately, computing a partion which minimizes this
quantity is NP complete. However, it can be shown that the eigenvector associated with the
second-smallest eigenvalue of L, the Laplacian matrix, maximizes the normalized cut if nodes
can be assigned on a range between -1 and 1. Finally, given the second-smallest eigenvector, we
can approximate the partition which minimizes the normalized cut by assigning each node to a
cluster based on whether the entry in the second-smallest eigenvector is less than or greater than
0. (Fielder, 1973).

4.2.1 Generalizing to Multiple Clusters

Unfortunately, the algorithms described only apply to the bipartition case. In many real problems,
including ours, it is necessary to detect more than two communities. So, as suggested by Ng,
Jordan, and Weiss, instead of considering the second-smallest eigenvector, we consider n of the
smallest eigenvectors (excluding the smallest eigenvector). Intuitively, these vectors are interesting
because they attempt to cluster together nodes which share edges in the graph, while maintaining
the property that the assignment is orthogonal to the smallest eigenvector. So, we then use these
n eigenvectors to embed our data into an n dimensional space and run k-means clustering on this
space. Although this approach does not make any guarantees about minimizing the normalized
cut, in practice this algorithm performs well on sparse graphs.

Another version of a spectral community detection algorithm involves the modularity matrix,
which is defined as B = A — %, where A is the adjacency matrix of the graph, m is the number
of edges in the graph, and d is a vector of the degrees of the nodes in the graph. As proved in
the last homework, the largest eigenvector of this modularity matrix maximizes the modularity of

the partition, where modularity is defined as Q(y) = ﬁ D1 s {Ai]— — %] Iy,—,,. Although
this algorithm is intended for bipartitions, by applying the same k-means clustering technique, we

generalized to detecting more communities.

5 Results

5.1 Evaluation

One of the main challenges for this project was finding a good metric to evaluate our communi-
ties. In particular, our goal was to detect communities which made intuitive sense, rather than
maximized some graphical property such as modularity or the normalized cut. Although modular-
ity and the normalized cut provide good heuristics for detecting communities, simply evaluating
communities based on this metric would not have provided farther validation about whether a
community made sense.

Intuitively, we expected that reasonable communities should be communities within the popu-
lation of contributors to the /r/politics subreddit who discuss the same topic. So, using this idea
of topic similarity as a guide, we decided to evaluate communities using the cosine similarity of
term-frequency inverse-document frequency.

Term-frequency inverse-document frequency, or TF-IDF, is a common metric used for evaluating
large datasets of text. The TF-IDF score of a word is the number of times the word occurs in a
document, divided by the logarithm of H_LD, where N is the total number of documents and D is
the number of documents contains the word. Intuitively, a word which occurs in many documents
is less meaningful, or less distinctive in the corpus, and will have a low TF-IDF score, while more
rare terms will have a higher TF-IDF score.

Our evaluation metric considers each authors comments as a separate document, and calculates
the TF-IDF scores for each author. This gives a large sparse matrix, where each row is a vector
containing the TF-IDF scores of the words used by an author. We then calculated the average
cosine similarity of the TF-IDF vectors for each pair of authors in the graph. The cosine similarity
is defined as %, where A and B are vectors. In our case, since every value in the TF-IDF
vector is non-negative, the cosine similarity is bounded between 0 and 1, where a score of 1 means
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Figure 1: Difference between internal and external average cosine similarity on clusters produced
by CNM

two documents are identical. Intuitively, we expect authors within a community to have high TF-
IDF similarity, and authors in different communities to have low TF-IDF similarity. So, finally,
we calculated the average cosine similarity of TF-IDF vectors, for pairs of authors in the same
community and for pairs of authors in different communities.

5.2 Discussion
5.2.1 Limitations

A major limitation of the dataset was the lack of original post content for threads that had the
same parent topic id. As well as the lack of any concrete labels for users in terms of their interests,
party alignments, political beliefs(liberal vs. conservative), etc... One major challenge of this
project was determining the general issue comments and threads were discussing using only the
content of the comments on that thread. On reddit, the topic of a thread is generally outlined in
the original post. The absence of the original posts also orphaned thousands of authors from our
graph model, since their only interaction with our network was replying to a original post. The
lack of labels made it tough for us evaluate the found communities by each of our algorithms. Due
to this, we had to devise and try different types of metrics/scoring techniques to see how well our
algorithms formed communities.

At a more high-level, one big limitation of this project is the lack of a clear objective function
to maximize. As mentioned in the results section, we decided to compare authors by calculating
their TF-IDF vectors, and then computing the cosine similarity of these vectors. This whole
metric relies assumption that good communities will have high TF-IDF similarity. However, in
some sense we expect TF-IDF to be a poor measure of similarity, because the main topics which
unite a community may be very frequent, and have a low TF-IDF score. For example, imagine
some community contains users who discuss immigration, which is a well-defined political issue.
However, since the word immigration appears very frequently in the dataset and is not used just
be users in this community, this community would get a low similarity score because the weight of
the word "immigration" in the TF-IDF vector is low.

In addition, this project made assumptions about what a good community should look like
- in particular, that the community have a certain theme or interest. Although this community
structure is very plausible, it is possible that community detection algorithms would detect some
other underlying structure in the graph that it would then focus on when creating the communities.
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Figure 2: Internal and external average cosine similarity, unweighted graph
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Results of running k-means variation of normalized-cut minimization algorithm.
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Figure 4: Internal and external average cosine similarity, unweighted graph
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Figure 5: Internal and external average cosine similarity, weighted graph



5.2.2 Charts Analysis

In Figure 1, the difference (Internal — External) between the internal and external average cosine
similarity by cluster size is plotted. Notice that as the size of the communities increases as the
difference measure between their internal and external cosine similarities decreases. The high
difference score for small communities have a high internal cosine similarity since the nodes in
these communities will be closer together to each other and a low external similarity since these
nodes will be further away from all other nodes in the graph. For large communities we observe the
opposite effect where we notice high external similarities and low internal similarities. Since these
results logical make sense, we know the CNM implementation was correct in terms of finding some
underlying structure to use to form communities from our graph. We filtered our communities to
not include any single node communities since their internal cosine similarities would be 1.

Figures 2 and 3 show the results from k-means variation of the maximizing modularity al-
gorithm. In Figure 2, we display two charts the first comparing the internal cosine similarities
and the second comparing the external both on an unweighted model of our graph. Both graphs
show how the cosine score varies with the chosen number of eigenvectors representing the data
dimensions. We notice that initializing with 10 eigenvectors usually lead to higher internal cosine
similarity scores and lower external cosine similarity scores, which confirmed our belief that given
the data more space to live in would give us more information to differentiating groups. Also we
noticed that, in general, more clusters lead to better internal cosine similarity scores, while the
external cosine similarity usually stayed constant after reaching about 20 clusters. In Figure 3, we
display two charts the first comparing the internal cosine similarities and the second comparing
the external both on a weighted model of our graph. Here we notice the same effect as with the
unweighted graph. It was interesting to see that the weighted graph did not change the results
very much.

Figures 4 and 5 show the results from k-means variation of normalized-cut minimization al-
gorithm. Figure 4 focuses on the unweighted graph while 5 focuses on the weighted graph. In
Figure 4, we notice the highest internal cosine similarities scores come from initializing with 4-8
eigenvectors and using 15-20 clusters. Also, for external cosine similarities we notice the same ini-
tializations lead to the best results. In Figure 5, the globally best initialization for internal cosine
similarities was 6 eigenvectors while have 10-20 clusters. For external cosine similarities the best
results came from initializing with 2-6 eigenvectors and using 10-20 clusters.

In general the external cosine similarity is a lot lower for normalized min-cut than for max-
modularity suggesting that the communities are better formed using the maximizing modularity
variation of kmeans.

6 Future work

There are many possible directions that we would have liked to explore farther. One of our
original goals for this project was to detect communities with different political opinions. However,
we realized many threads consist of users with conflicting political views debating each other.
Since our graph structure contains edges for each direct interaction, it seems likely that people
with conflicting views would be clustered together, instead of separately. So, instead we decided
that our community detection algorithms would probably return users grouped by similar interest,
which motivated using TF-IDF to measure content similarity.

However, it is certainly possible that there are metrics other than TF-IDF which are better
suited for this problem. In particular, if we actually had the content of the parent topic that started
the threads, we could have looked into that content to find the overall topic the commentators were
discussing and ran sentiment analysis on the individual comments to see whether or not they were
for or against the rooted topic. This way we would have used community detection to see what
users were talking about what then utilized sentiment analysis to form the political views set of
communities by seeing which topics each user was for and which topics each user was against.

Given more time, it would also have been very interesting to create a different graph which
assigns signed weights to edges, representing whether the comments agreed or disagreed with
each other. It would be very interesting to see whether the communities detected in this graph
correspond to political opinions, as we originally expected. However, out-of-the-box tools for
analyzing whether comments agree or disagree do not currently exist, so this would require hand-
labeling the dataset.



Finally, there are many other algorithms which would have been interesting to experiment with
applying to the graph. One of the algorithms described by Shi and Malik, based on recursively bi-
partitioning communities, would have been particularly interesting because it seems like it would
avoid the problem of creating very small communities. In addition, other algorithms such as
clique-percolation method, mentioned in lecture, would have been allowed for detecting overlapping
communities.

7 Conclusion

For this project, we worked on community detection on the dataset of comments from the pol-
itics subreddit included finding a graph based on our dataset, running, implementing different
community detection algorithms, and coming up with an evaluation framework based on the com-
ments. This is still an open problem, in part due to multiple methods of finding communities and
more robust ways of constructing models and evaluating communities using the content of text
comments.

8 Work breakdown

Julien: Final report, normalized cut minimization algorithm, TF-IDF evaluation
Charles: Final report, modularity maximization algorithm
Tkechi: Final report, CMN algorithm, sub-graph generation
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