Predicting User Ratings and Creating Business
Recommendations on Yelp

William Zeng Shivaal Roy Michelle Guo
wizeng@ shivaald mguo95a@
stanford.edu stanford.edu stanford.edu

December 12, 2016

1 Introduction & Motivation

Yelp is a user-to-business review platform where users are able to rate businesses, primarily restau-
rants, that they have visited. With 3 million claimed businesses, 150 million monthly users, and
over 100 million reviews, there is a rich amount of information that can be utilized to provide
information to users about nearby businesses. Users often reference Yelp when trying to choose
which restaurant to eat at, making a restaurant’s rating and previous reviews a major factor in the
decision. However, another part of Yelp that influences users’ decisions on where to go are restau-
rant recommendations provided by the app. Thus, creating pertinent restaurant recommendations
for users is in the best interests of both businesses and users.

2 Problem Definition

We sought to leverage information-rich features of the Yelp Challenge Dataset, such as the bi-
partite user-to-business graph created from reviews and the information available about a specific
business, in order to provide an accurate recommendation system for Yelp users. Specifically,
we attempt to solve two problems: 1) predict the existence of a link (review) between a user and
restaurant and 2) recommend a restaurant to a user given minimal information about the user’s
preferences (partial cold start problem).

3 Related Work

3.1 Evaluation of Item-Based Top-N Recommendation Algorithms (Karypis
2001)

Karypis [1] presents an item-based model of recommendation when most of the commercial rec-
ommendation systems were predominately user-based. Item-based recommendation systems first

compute item similarity by looking at how items are related in a user history, and then recommend
items most similar to the user’s current items. The author shows that item-based recommendation
was up to 28 times faster than user-based recommendation, and provided recommendations that
were up to 27% better. In a Yelp context, this paper’s results infer that it would be more effective
to recommend a restaurant based off a user’s past reviewed restaurants than finding similar users
and recommending common restaurants they visited.

Since restaurant recommendation is the primary objective of this project, this paper provides
a good high-level overview of a recommendation algorithm that leverages information about the
users and items (restaurants).

3.2 Supervised Random Walks: Predicting and Recommending Links in So-
cial Networks (Backstrom & Leskovec 2011)

In this paper, Backstrom and Leskovec [3] propose an algorithm for predicting links in a network.
Specifically, they look at combining information about the network structure with information
stored in the nodes and edges of the graph at some time ¢ in the graph to predict edges between
nodes at some later time ¢’. They develop a supervised random walk algorithm, where they guide
a random walk through the graph by assigning probabilities to edges in the graph. They aim to
directly learn the function that assigns weights to edges. They formulate a constrained optimization
problem, where they seek to find the optimal weights of w of the edge strength function f,(1y,)
by solving
min F(w) = [|u]

with the restraint
Vde D,l € L:p <pqg

Here D is the set of destination nodes that a given node s has links to. L is the set of no-link nodes
that s does not have links to. p; is the probability assigned to an edge going from s to a node in
L, and p, is the probability assigned to an edge going from s to a node in D. Thus the function
should assign higher probabilities to edges going to nodes in D than to edges going to nodes in L.
This initial problem is a hard optimization problem, so the optimization problem is relaxed to

rrgnF(w) = [|lw|]* + A Z h(pr — pa)

deD,leL

where h(-) is a loss function. A(-) = 0 when p; — pg < 0, and h(-) > 0 when p; — pg > 0.

They manually define features that incorporate both network structure (e.g. number of common
neighbors) and node and edge attribute information (e.g. cosine similarity between title’s of papers
written). Since this problem is not convex, they use several different starting points to find a good
solution. The constructed supervised random walk algorithm is not limited to link prediction, and
can be applied to many applications that require learning to rank nodes in a graph, such as recom-
mendations and missing links.

Because the Yelp dataset has a fair amount of structure to it (users, restaurants, and links be-
tween the two groups), this paper provides a promising potential method that we could implement
on our data to recommend restaurants to a user.

3.3 Topic-Sensitive PageRank (Haveliwala 2002)

Haveliwala [2] introduces a modified version of the original PageRank algorithm which precom-
putes a set of PageRank vectors based on a set of representative topics, allowing us to compute
relative importance of Web pages with respect to a target set of preferential topics. For each query,
the relevance of each topic to the query is computed, and the output PageRank vector is a weighted
linear combination of the topic PageRank vectors based on the relevance. Haveliwala shows that
more accurate results can be achieved by computing query-specific importance score, while still
maintaining fast querying speed due to still having the precomputation from PageRank.

In this paper, each topic PageRank vector is created through a personalized PageRank. In Yelp,
since we’re looking to recommend restaurants relevant to a given user, we can treat that user as a
topic and perform a personalized PageRank on each user. Here, since we only have one topic for
each set of recommendations, we dont need to linearly combine multiple topic-specific PageRank
vectors.

4 Models & Algorithms

4.1 Data Collection

The Yelp Challenge Dataset contains business and user details, reviews, friendship network infor-
mation, check-ins, and tips. We discard the friendship network, check-ins, and tips, and instead
only focused on businesses, users, and reviews. Since this dataset covers several cities, we filtered
the businesses to include only those that are in Las Vegas and that are restaurants.

We further narrowed the dataset by only considering reviews above a certain number of stars
and users who’ve written above a certain threshold number of reviews. We’re only able to leverage
positive reviews when making recommendations, and we are able to make better inferences and
have a clearer graph structure when we only consider users who have written many reviews. We
experimented with different combinations of minimum numbers of stars (min_stars) and mini-
mum review counts (min_reviews); for example, after filtering on reviews 4 stars and above and
users with more than 100 of those reviews, we were left with 12077 reviews written by 76 users on
2475 restaurants. After this filtering, we created a bipartite, user-to-business directed graph, where
an edge between user u and business b corresponds to u writing a positive review on b.

4.2 Models

In our milestone, we implemented an items-based recommender system, which essentially pro-
vides the top k restaurant recommendations to users based on their past history of reviews. The
recommendations were generated by first computing the average feature vector for all the restau-
rants in the user’s review set, and then comparing the distance between this average feature vector
with all other restaurants in the graph, where the feature set was a vector of the attributes of each
business as booleans or categorical variables. Some attributes included the cuisine(s) of the restau-
rant, the price range, and different crowds that the restaurant was ‘Good For’. However, we found
that the accuracy of this system was quite poor. For each user, we removed one of their reviewed

3

restaurants randomly, and checked to see if this deleted link was contained among the top 10 rec-
ommendations that we provided for that user. With this evaluation metric, we predicted a deleted
link only 0.8% of the time averaged over all users. We realized that this approach didn’t utilize
the graph structure between users and businesses at all, which we believed would improve our
accuracy, so we decided to use a personalized PageRank algorithm to provide recommendations.

We utilized the Yelp network structure (provided by the bipartite user to business graph) to
better understand users’ restaurant preferences. From this understanding, we can provide busi-
ness recommendations to users based on restaurants they have already reviewed. All three of our
implementations utilize modifications of the PageRank algorithm, which is applicable as a recom-
mendation algorithm because the restaurants with the top k highest PageRank scores can be the top
k recommendations given to the user. By using PageRank, we could even provide recommenda-
tions to users without any previous reviews, which is applicable in a partial or complete cold start
problem where we don’t have much information in the user. Our first method predicts missing links
in a user-business graph using a personalized PageRank algorithm in order to provide recommen-
dations. The second converted the user-business graph into a weighted, undirected, business-to-
business graph, and then used power-iteration to determine the PageRank scores. Finally, the third
method tackles the cold-start problem by providing recommendations for restaurants in a specific
genre without any information about the user.

4.3 Algorithms

In our first method, we offered 10 recommendations for each user, which were the 10 restaurants
with the highest PageRank scores. We ran a personalized PageRank with random walk by using
the set of restaurants the user reviewed previously as the teleport set. In this approach, we kept
the original user-to-business bipartite graph. Since it’s bipartite, the random walk goes from user
to business then from business to user, but it only scored the business nodes. For evaluation, we
deleted an edge between a user and a business they reviewed, thus removing it from the teleport
set, and checked to see whether the 10 recommendations encompassed the removed business.

In our second method, we wanted to convert the original user-business graph into a direct
business-business graph. To do this, we created an edge between two restaurants if there was a
user who reviewed both of them, with the weight of the edge corresponding to the number of users
who reviewed both restaurants. We created an adjacency matrix, where the entry in row ¢ and
column 7 indicates the number of users who reviewed both 7 and j. The teleport set for a user
is all the restaurants they reviewed. By factoring the teleport set into the adjacency matrix and
normalizing each row, we get the transition probabilities matrix. We then run power-iteration on
this matrix to determine the PageRank scores and thus the top 10 recommendations. One benefit
of this approach is by using power-iteration, the PageRank vector is guaranteed to converge. We
evaluate this approach the same as the first one. We remove a user’s review, which deletes one
weight from the adjacency matrix, then run the algorithm. We then check if the deleted business is
within the top 10 recommendations given by the algorithm.

Finally, we wanted to address the cold-start problem where we don’t have much information

4

about the user, including any past reviews. We specifically framed it as a new Yelp user trying to
find a restaurant in a specific genre. For example, if a new user was searching for Korean food,
we want to return some Korean restaurant recommendations without any prior knowledge of the
user. To do this, we ran our PageRank algorithm in our first part on the user-business graph with
random teleportation since there were no previous reviews. We then sorted the restaurants by
decreasing PageRank scores and filtered by the genre in the query, and return the top 10 results.
For evaluation, since there are no previous reviews to compare against, we will manually evaluate
the quality of each recommendation based on the rating, number of reviews, and review content
for each restaurant.

S Results and Findings

5.1 Initial Findings

We ran our first algorithm on three sets of data. The first dataset filtered reviews with only 3 stars
and above and users with over 50 reviews. The second dataset also only considered reviews of 3
stars and above, but looked at users with at least 100 reviews. The last considered reviews of 4
stars and above and also only users with at least 100 reviews. The accuracies reported are actually
an average of 50 trials for each value of n_iters and alpha.

Accuracy for min reviews=50, min stars=3

n_iters
0.055} ; — 5000 |
- 2000
- 1000
— 500 |]

0.050¢

0.045¢

0.040}

Accuracy

0.035

0.030}

0.025}

00297 0.2 0.3 0.4 0.5

Alpha

Figure 1: Accuracy for 50 minimum reviews and 3.0 minimum star rating

0.055 Accuracy for min_reviews=100, min_stars=3

n_iters
— 5000
0.050¢} = 2000 ||
— 1000
= 500

0.045} : T

0.040}

Accuracy
o
£
w
w

0.030¢

0.025

0.020}

5} 0.2 0.3 0.4 0.5

Alpha

Figure 2: Accuracy for 100 minimum reviews and 3.0 minimum star rating

Accuracy for min reviews=100, min stars=4

n_iters
— 5000
0.050} ; — 20001
- 1000
- 500

0.045}

0.040}

Accuracy
L=
P
w
w

0.030¢

0.025}

0.020}

0.013 7 0.2 0.3 0.4 0.5

Alpha

Figure 3: Accuracy for 100 minimum reviews and 4.0 minimum star rating

Across these graphs we see that increasing the number of iterations for our personalized PageR-
ank algorithm increased accuracy greatly, while changing the alpha (probability of teleporting to a
node in the teleport set) only marginally changed the accuracy. The increase we see with number
of iterations can be explained by the fact that we are better learning the true probability distribution
of a user going to a restaurant they have not seen before. Ideally we would find the number of iter-

ations where accuracy no longer increases, but even at 5000 iterations, our program took multiple
hours to run and so was not feasible to explore higher iteration counts.

Given the large number of restaurants in the Las Vegas area, predicting the missing link 5%
of the time with 10 recommendations is pretty good. Since the edges are deleted at random, it is
possible that the edge deleted was to a restaurant that the user doesn’t normally go to and isn’t
super popular, which would make it hard to predict that missing link.

Our top 5 recommendation results for the partial cold start problem are shown in Table 1. When
providing Italian cuisine recommendations to a Yelp user who lacks experience in reviewing Italian
cuisine, we provide reasonable recommendations by using the user’s reviewed restaurants as the
starting preference set. We obtain Italian restaurant recommendations with high star ratings and
large review counts, showing that our approach is capable of solving a partial cold start problem
reasonably well.

Table 1: Partial Cold Start for Italian Cuisine

Business # Stars | # Reviews
Settebello Pizzeria Napoletana | 4.0 256
Cugino’s Italian Deli & Pizza 4.5 460
Nora’s Italian Cuisine 4.0 839
The Bootlegger Italian Bistro 4.0 542
Bambino’s East Coast Pizzeria | 4.5 153

5.2 Difficulties

The primary limitation of this project is that there is inherently less graph structure in the Yelp
dataset than with a social network. Users don’t necessarily review new restaurants that are related
to past restaurants they visited, since they could just be trying different top rated restaurants of
different genres in totally different locations. Whereas in a social network most new links form
with a friend of a friend, the same clustering is not seen in a Yelp dataset as much.

Furthermore, it was somewhat difficult to come up with the evaluation metric. There isn’t a
clear-cut way to measure the accuracy of recommendations as there is with most machine learning
problems where there is a defined output. Instead, we tried to evaluate the accuracy both by hand
and with the missing link prediction problem, where we deleted an edge and tried to have the
algorithm predict it.

5.3 Future Work

There is a lot of very rich metadata in the nodes and edges of the graph we didn’t utilize in our
PageRank algorithm, which only looked at the graph structure. In terms of users, we could utilize
the friend network they have with other users. For edges, which are the reviews, we would like to
incorporate the Hidden Factors and Topics model, in which we are able to connect latent textual
topics from user reviews and latent factors in order to predict ratings for businesses that a user has

not yet reviewed. This model utilizes the actual content of the reviews themselves. Finally, there
is a lot of data about the business that could determine similarity between businesses, such as the
geographic proximity of the two restaurants, the difference in the feature sets that provide details
about each restaurant, etc. The number of check-ins a user has to a restaurant could also be utilized.

For the HFT model, we believe that this is one step further beyond our main goal, as predicting
ratings will implicitly allow us to provide restaurant recommendations to users. The HFT model
proposed in McAuley and Leskovec focused on Latent Dirichlet Allocation (LDA), however we
are interested in trying to use probabilistic Latent Semantic Analysis (pSLA) model, which is an
approach used in Sivic et al. Although Sivic et al. showed that the two models provide simi-
lar results, pLSA is much simpler to implement and would be interesting to experiment with in
combination with latent-factor recommender systems in the context of HFT.

We can also consider common usage behavior of Yelp to add more real-world features to our
model. Most avid Yelpers generally consult Yelp before going to a restaurant, and thus usually
won’t end up going to poorly-reviewed businesses. Thus, for people who often use Yelp, going to
a restaurant and writing a positive experience are correlated. However, another class of Yelp users
may not use the app often and may not consult it before visiting a restaurant. If they have such an
extremely poor experience at the restaurant, then they are likely to look it up on Yelp afterwards
and write a poor review. In real-life use cases, Yelp users can normally be divided into those who
consistently write Yelp reviews versus those who only write them when they have an extremely
poor or good experience. Thus, we can take this into consideration when analyzing a Yelper’s
review history and define their profile as one of the two above-mentioned categories.

References

[1] G. Karypis. Evaluation of Item-Based Top-N Recommendation Algorithms. Proceedings of
the tenth international conference on Information and knowledge management. 247-254,
2001.

[2] T. H. Haveliwala. Topic-Sensitive PageRank. 11th International World Wide Web Confer-
ence, 2002.

[3] L.Backstrom, J. Leskovec. Supervised Random Walks: Predicting and Recommending Links
in Social Networks. In Proc. WSDM, 2011.

Michelle: paper writing, centroid algorithm implementation, cold start implementation
Shivaal: paper writing, plotting analysis graphs, pagerank implementation
Will: paper writing, data processing, creating the algorithms

