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1 Introduction

As city populations continue to swell, city planners and civil engineers need to match the tide of incoming
people with scalable transportation systems that can support a growing population, or else face gridlock
congestion and immobility undesirable for inhabitants and visitors.

In our project, we will use measures of graph centrality such as betweenness and closeness centrality to
identify which areas of a city’s road network has the greatest potential for traffic congestion for vehicles.
Furthermore, we will create traffic simulations for dynamic, empirical insight and visualizations into which
streets experience the most vehicle traffic. After drawing conclusions from our results, we will compare and
contrast the different approaches we used to measure traffic congestion, as well as the differences we observe
in cities across the world and their points of peak traffic.

2 Related Works and Research

2.1 A Google-like Model of Road Network Dynamics and Its Application to
Regulation and Control

Crisostomi, Kirkland, and Shorten’s work focuses on modeling road networks as Markov chains, both for the
purposes of traffic simulation and network congestion detection. Using a dualrepresentation, they represent
roads and streets as nodes, and intersections as a web of edges among the streets that meet at the junction.
This formulation allows for information about turning probabilities (data would have to be provided), which
turns are legal, and street metadata to be encoded easily in the graph. The time T (in time steps) one takes
to traverse a street was simulated by a self-edge at each node; with probability (T-1)/T a traveller would
take the self edge, otherwise it will take one of the edges turning onto a different street. By turning the road
network into a matrix of state transition probabilities, the authors observe the Perron vector represents the
long-term stationary distribution for each state in the network.

The authors use a dynamic strategy to calculate road congestion reminiscent of PageRank role in scoring
websites, and different from the static measures of centrality most commonly discussed. We drew inspiration
from Crisostomi, Kirkland, and Shorten’s work to create our own traffic simulation, and were especially
captured by their idea of using a dual representation of a road network to run simulations. However,
where they analyze the long-term stationary vector of the road network as a matrix to diagnose congestion,
we proceeded with a more empirical method to discover areas of the graph with high traffic. For more
information, see ”6.2 Modeling Traffic Units”.

2.2 Access to destinations: travel time estimation on arterials

Again for modeling traffic, an important paper is Xiong’s and Davis’ 2007 work. The authors’ paper focused
on identifying and evaluating several different models for estimating travel times on arterials, or signaled
roads with traffic lights. Travel time depends on factors like road capacity, the current volume of traffic,
and free-flow speed without traffic. Some models included the Bureau of Public Roads (BPR) function,



the Singapore model, the conical volume-delay model, and the Skabardonis-Dowling model. The authors
found that the Singapore and Skabardonis-Dowling models were two of the models that performed best in
predicting travel time when tested against field data.

Xiong and Davis provide several promising traffic functions that have been used in the past in various
contexts to estimate travel time delay due to congestion. In our traffic model, we use a nonlinearly decreasing
function for traffic congestion delays similar to both the BPR function and the Skabardonis-Dowling model.
We kept in mind that Xiong’s and Davis’ work is on arterial links however, and their results have not been
tested on traffic patterns in freeways and roads with fewer stop signals. Hopefully, our traffic function will
prove effective for both arterial roads and highways both.

3 Obtaining Road Network Data

In order to obtain data on urban road networks in many dif-

ferent countries and regions of the world, we use OpenStreetMap
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For the purposes of this project, we picked 25 different cities from
N many different regions of the world. The following is the list of
longitude +1.396e2 CitieS:

Asia: Shanghai, Beijing, Tokyo, Seoul, Jakarta

Europe: London, Berlin, Saint Petersburg, Rome, Amsterdam

North America: New York, San Francisco, Los Angeles, Vancouver, Mexico City
South America: Rio de Janeiro, Sao Paulo, Santiago, Bogota, Buenos Aires
Africa: Nairobi, Cape Town, Cairo, Addis-Abeba, Accra

Middle East: Istanbul, Doha, Jerusalem

Oceania: Sydney, Auckland

In choosing these cities, we strove to choose fairly large or well-known cities representing each region of
the world, with some diversity in terms of population, size, and history. The purpose was to pick cities that
were fairly representative of the region, in order to be able to compare and contrast cities in different regions.

For the rest of this paper, the reader should keep in mind that references to a street may not be a street
in the common sense of the word: in our road networks, one real-life street may be subdivided into several
street segments to replicate the curves and twists on a road, for example. This is directly because one way
in the OSM data has a sequence of nodes outlining the curve of the street.



We use the nodes and ways to build a SNAP graph. The graph only considers the ways tagged as a
“highway”, which include roads of all types, and ignores other ways such as buildings, railroads, and barriers.
Each SNAP node corresponds to an OpenStreetMap node and represents a street intersection. Since the
nodes making up a way are ordered, there is a SNAP edge between each pair of two nodes forming the way,
representing a street between the two nodes. The road networks were visualized using matplotlib’s plotting
functionality, where each edge is represented by a line on the map (Figure 1).

4 Measures of Traffic Congestion

We compared our selected cities across a spectrum of different measures, chosen to give insight into where
high-traffic areas around the city area.

4.1 Betweenness Centrality

The betweenness centrality of a node is the number of shortest paths in the graph (from every node to every
other node) that traverse that node. We leveraged the SNAP library’s built-in snap.GetBetweennessCentr()
function for this purpose.

The betweenness centrality captures how “well-trodden” a path or intersection is, as it is proportional
to the number of pairs of nodes that must travel over that path or intersection to arrive at each other. We
assume most travellers in the network will use the shortest path they can to arrive at their destination, and
thus an edge or node with high betweenness centrality is suggestive of high volumes of traffic in that area.
Inversely, those with low betweenness centrality are likely to indicate low traffic. We expect regions near
major, centrally-located roads (such as freeways and their entrances/exits) to rank high on betweenness
centrality.

4.1.1 Modifying Betweenness: Approximate Weighted Betweenness Centrality

In addition to using the traditional betweenness centrality in road networks, we created our own variant of
the measure to circumvent two issues.

With road networks, there is a major challenge to incorporate street weights into calculations of close-
ness, betweenness, and the like. Whereas in another graph (e.g. social networks) edges are fundamentally
equal, an edge in a road network can be very short or very long in distance, and this crucial information is lost.

A second challenge we experienced was long running times. The betweenness centrality algorithm re-
quires finding the shortest paths from every node to every other node, a non-trivial operation.

We resolve the first problem by incorporating distance into calculations of shortest path between nodes
during the betweenness centrality algorithm. We resolve the second by sampling at random 1/100 of all the
pairs of nodes in the city graph. The rest of the betweenness algorithm remains the same as before. Our
approximate weighted betweenness centrality leveraged sample code from Question 2 of Problem Set 4 in
this class.

4.2 Closeness Centrality

The closeness centrality of a node N is the average length of the shortest path between N and every other
node in the network. A lower closeness centrality indicates a node occupies a more central location in the
graph, with fewer extremely long shortest paths to another node. To calculate the closeness centrality of
nodes, we leveraged SNAP’s snap.GetClosenessCentr() function.

We expect nodes that are geographically closer to the center of a city to possess a higher closeness
centrality. Nodes with a high closeness do not necessarily have a high betweenness; there may be pockets of
nodes near a high betweenness way in the network that receive little to no traffic. Indeed, we expect that
nodes and edges with high betweenness are closer to the center of cities, but that only a subset of nodes
with high closeness centrality in the center of cities will also have high betweenness. The nodes closest to
those with high betweenness may in fact experience very low betweenness themselves, in the way that the
smaller, local roads next to major highways have less traffic because of their adjacency to them.



4.2.1 Modified Measure: Approximate Weighted Closeness Centrality

We similarly used a variant of closeness centrality in addition to the original measure for the same reasons
we did for betweenness centrality (see section 4.1.1).

4.3 New Measure: Urbanness

The urbanness measure of a node N in a graph is defined as the reciprocal of the average distance from N
to its nearest 500 nodes, as traversed in a weighted Dijkstra search from N. Here we define the distance
between u and v not as the graph distance (i.e. number of edges traversed to travel from u to v), but as the
physical distance between the two given their associated latitude and longitude coordinates. More formally,
we define urbanness as follows:

K
> wen(n, i) distance(N, v)

K here is the number of nodes to traverse outwards from N; a small K fails to capture nearby parallel
streets or densely packed blocks, but a large K creates an unreasonably long runtime.After tuning the
parameters a bit, K=500 was found to give a good balance between detecting dense urban areas and
reasonable runtime. D(N, K) here represents the set of the first K nodes encountered in a Dijkstra search
starting from the node N. The weight of an edge is defined as the physical distance between two points.
Since the relative curvature of the Earth’s surface is almost negligibly small in a geographic region the size
of a city, we simply use the Euclidean distance between the latitude and longitude coordinates of two nodes
in R2, as defined below:

urbanness(N, K) = (1)

diSt(Z’l’LCE(U, U) = \/(ulatitude - Ulatitude)2 Ea (ulongitude - Ulongitude)Q (2)

Intuitively, the urbanness of a given node was designed to capture how concentrated the nodes near
it are. Many nodes clustered in one region can be indicative of a high concentration of intersections and
therefore traffic congestion. We expect nodes with high urbanness to appear around downtown areas and
compact residential neighborhoods.

5 Traffic Simulation

The next stage of our project was to generate data from traffic simulations
in the cities we had analyzed. Static graph measures such as betweenness

Figure 2: Legend and closeness had already revealed insight into the topography of a city
Exact Unweighted Closeness and its most travelled, most congested areas. Next, we proceeded with

T— our own traffic simulation model. Not only does this traffic simulation
B e e 0del provide a way to simulate real traffic data in city networks for

the purposes of hypothesis testing and comparison to static measures, it

Approximate Weighted Closeness . . . .
itself may prove to be a reliable predictor of traffic congestion.

Approximate Unweighted Betweenness

5.1 The Dual Graph

Inspired by the work of Crisostomi et al. in our readings of related
Urbanness research, we performed the traffic simulation on a dual graph represen-
tation of a city’s traditional road graph, where the usual representation
of nodes and edges are reversed: all streets are represented as nodes in-
stead of edges, and an intersection of two or more streets is represented
as a complete graph between the street nodes that meet at the intersec-
tion. (From this point on, the reader can assume references to a city’s or
simulator’s graph refers to a dual graph representation of the city’s road
network.) This choice allows for several advantages.

Approximate Weighted Betweenness

Traffic Simulation
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We make the assumption that vehicles spend most of their time when driving travelling down streets, not
stalled or turning an intersection. To reflect this, a car’s state will be tracked by the street it is traversing
at any time instead of an intersection. The dual graph representation allows us to easily do this by making
streets into nodes, and also associate with a street node its length, geographical coordinates, and other
useful information. Additionally, it’s possible to encode further information such as turning probabilities
and illegal turns into edge weights and the absence of edges at an intersection. Our OpenStreetMap data
unfortunately did not include data for us to leverage the latter in this case, but the dual graph representation
was a good choice for the former nonetheless.

The dual graph class was cre-
ated through SNAP. We begin with
a empty snap graph D, and let
R be a traditional road graph we
parsed from OSM. For every edge
e in R, we assign it a new node
ID p(e) unique from any other ID

before it. This association is re-
membered, then p(e) is inserted into
D as a node. Information about

the street’s coordinates (averaging end-
points) and its weight (length) is associ-
ated and recorded with the new node in
D.

Then for every node n in R, we iden-
tify the edges E(n) that meet at n by it-
erating over n’s neighbors. Let E’(n) be
the set of node IDs p(e) associated with
every e in E(n). We create edges be-
tween every pair of nodes in E’'(n) and
insert them into D.

5.2 Modeling Traffic Units

To complete our traffic simulation
model, we created two other classes: one
for a car that will move along our dual
graph, and one for a traffic simulator to
coordinate the entire operation with the
traffic units and dual graph.

5.2.1 The Car class

Upon initialization, a car is connected
to its parent simulator, from which it
can access the city’s graph. The car is
then initialized with a randomly gener-
ated journey in the city. Two streets
with lengths under the median street
length in the city are selected at ran-
dom. We do this to prevent cars from
selecting a large highway or major road
in the city as a source or destination; the

Figure 3: San Francisco Traffic Congestion Measures
(left column): Unweighted closeness, exact weighted closeness, exact
unweighted closeness.
(right column): Unweighted betweenness, weighted betweenness,
urbanness
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assumption is that most cars will start and end at smaller streets like a home, school, park, or store. Using
the median street length as a threshold allows both a minimally limited selection pool and a sufficiently
low absolute threshold. Then, the car is given its itinerary, a list of streets to traverse to arrive at its



destination starting from its source; it is properly ordered. The itinerary is discovered by A* search with a
heuristic function of the euclidean norm distance (in geographical coordinates) to the destination.

The car keeps track of which street in the itinerary it
is currently on with an index, as well as its progress (a
non-negative float) down the current street. = When sig- Figure 4: San Francisco Closeness Cen-
naled to advance one time step, the car will increment its trality
progress by some amount (see below), and when the car’s N
progress quantity exceeds the length of the current street ’ = e G
it will move onto the next street in the itinerary. If the E—
next street is the destination, the car’s journey is com-
plete. At this point, if the simulation is not yet over and
there are still time steps remaining, the car is ”reincarnated”
by being assigned a new starting point, ending point, and
itinerary.

San Francisco Closeness Centrality
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The value of progress’ increment inside each car is intuitively o9 53 o 55 55 2o
a measure of speed, how fast it can traverse streets. increment o
can be summarized as a value randomly from 1/8 to 1/12 of the
current street’s length and potentially scaled down by a factor for traffic, but is at minimum 5 and at
maximum 15:

t = 0.25(count—1)/L
i=t%L/(10.0 +2r)
increment = min(15, max(5,1))

where L is the length of the car’s current street, r is a random uniform variable from 0 to 1, and count
is the number of cars (including our current car) on the street. ¢ is a traffic coefficient the car requests from
the parent simulator at each time step: an exponentially decreasing function starting at 1.0 when no other
cars are on the current street, and 0.25 when there are as many cars on the current street as the street’s
unitless length.

5.2.2 The TrafficSimulator class

The traffic simulator is initialized with a graph of
a city G, a number of cars N, a number of time
steps to run the simulation for 7', and a frame rate  Figure 5: Unweighted betweenness centrality
F for data collection. It also contains a dictio- (clockwise from upper left) London, England; New
nary of street node IDs to car counts for streets in York, New York; Tokyo, Japan; Santiago, Chile
G with at least one car for traffic coefficient cal-
culation, and data structures for collecting data to  .ut
vizualize our traffic simulation with (see next sec- =
tion).
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The traffic simulator initializes a list of N i
cars, with itinerary and all, described in the last
subsection. Then for 7T time steps, at each

time step it signals all N cars to increment for-
ward on their journey (and reincarnate as men-
tioned before, if necessary). As each car moves
through its itinerary, it diligently updates the sim-
ulator’s car counts dictionary to maintain accu-
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rate counts when it moves from one street to an- -

other.



5.3 Collecting Data on Simulated Traffic

The traffic simulator is in charge of taking snap-
shots of simulated traffic while the simulation is run-
ning. From its frame rate F, the simulator will
take a snapshot of the current cars’ positions every F
time steps. A snapshot of a running simulation at
some time step yields a Counter of non-empty streets’
(>= 1 car) coordinates to the count of cars on that
street.

We collected traffic data in two ways: an
overview of long-term traffic distribution in the
city, and a series of snapshots that reveal the
flow of cars in the city over the duration of
the simulation. For long-term traffic data, we
aggregated all snapshots the simulator took into
one dictionary storing overall car counts over the
run of the simulation and create a plot from
it.

The second way we collected data, the sequence of

Figure 6: Weighted betweenness centrality
(clockwise from upper left) Rome, Italy; Addis
Abeba, Ethiopia; Amsterdam, Netherlands; Cape
Town, South Africa

separate snapshots, was used to create chronological visual demonstrations of cars flowing through a city.
Taking every frame 10 time steps apart, one can clearly see the movement of cars on a map when plotted.
We then created videos from these series of plot images to easily display the movement of the cars.

6 Results and Conclusions

6.1 Traffic Congestion Measures

For each traffic congestion measure, we plotted on a map
the top 500 nodes with the highest values for that mea-
sure. The nodes were colored according to the legend of
gradients in Figure 2.

6.1.1 Applying Results to San Francisco

We begin by first examining the results of the congestion
measures based on a nearby city, San Francisco. Figure
3 displays the six traffic congestion measures overlaid on
a map of the city. By doing so, we can gain more insight
into the results by matching the highlighted nodes with
actual geographic areas. Firstly, the closeness measures
did fairly well at identifying important downtown areas,
as we predicted in the methods section above. The un-
weighted closeness measure focused on Fillmore District,
Mission District, and City Hall/Civic Plaza area, which
are fairly popular, lively areas of San Francisco. The two
weighted closeness measures identified a slightly different
region, the Castro District. The approximate closeness
measure performed nearly identically to the exact mea-
sure with a significantly faster run-time, indicating that
sampling just 1% of nodes in a road network is more than

Figure 7: Unweighted closeness centrality
(clockwise from upper left) Saint Petersburg, Russia;
Buenos Aires, Argentina; Beijing, China; Jakarta,
Indonesia
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sufficient to give highly accurate estimate of closeness. This is further demonstrated in Figure 4, which sorts
the normalized closeness for all nodes in the graph and plots these values. Note that the lines for exact and



approximate weighted closeness are nearly identical, while unweighted closeness has a smoother distribution

with a less steep drop-off in closeness at the end.

Figure 8: Approximate weighted closeness cen-
trality

(clockwise from upper left) Istanbul, Turkey; Berlin,
Germany; Mexico City, Mexico; Shanghai, China

Returning to Figure 3, the betweenness measures
were effective at identifying major, important through-
ways for the city. The unweighted betweenness identi-
fies roads such as CA-1, Divisadero Street, Guerrerro
Street in the Mission, part of highway 101, and Mission
Street. The weighted betweenness identifies also identi-
fies Guerrerro Street in the Mission and Mission Street,
but focus more heavily on Lincoln Way and Highway
280. These roads are fairly important roads that help to
link different parts of San Francisco together. It is inter-
esting that both the weighted and unweighted measures
tended to highlight smaller roads rather than highways;
one explanation for this is that highways are generally
represented in OpenStreetMap data as multiple parallel
roads, so each parallel segment shares the total between-
ness, causing it to be lower than expected. Additionally,
the graphs were undirected, while cities frequently have
many one-way roads, so the shortest paths in our graph
include a larger than expected number of small one-way
roads rather than highways. Nonetheless, the roads iden-
tified do serve as important roadways for San Francisco.

The last graph in Figure 3 displays urbanness in San Francisco. At a first glance, two major sections
are highlighted: the Financial District and the South of Market region near City Hall. These areas are
also among the most densely packed regions of the map simply from a visual inspection, and based on
background knowledge of San Francisco, these regions are indeed highly urban and dense areas. Thus, the
urbanness measure seems to effectively identify downtown regions of a city, which may indicate higher levels

of activity or congestion.

6.1.2 Comparative Analysis

Figure 9: Urbanness
(clockwise from upper left) Jerusalem, Israel;
Bogota, Colombia; Los Angeles, California; Seoul,
South Korea
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Cape Town, displays some of these traits as well.

For each measure, we present the maps of 4 selected
cities. Figure 5 displays the unweighted betweenness
centrality for London, New York, Tokyo, and Santiago.
These four cities, which represent four different conti-
nents, each demonstrate different patterns of between-
ness. New York, like many North American cities, had
highly concentrated betweenness along a single or a very
small number of major roads. This suggests that New
York and similar cities may have large amounts of traffic
along a small number of major roads. South American,
African, and Asian cities generally had concentrated be-
tweenness along several roads emanating out from the
city center, such as in Santiago or Tokyo. This suggests
that these cities may have significant traffic moving into
and out of the city center.

On the other hand, London as well as several other
European cities have very scattered pockets of concen-
trated betweenness, suggesting that there are not partic-
ularly large, major roads, so traffic may be more evenly
dispersed. Figure 6, which maps weighted between-
ness centrality for Rome, Addis Abeba, Amsterdam, and

Figure 7 displays unweighted closeness centrality, and Figure 8 displays approximate weighted closeness
centrality, which serves as an equivalent substitute for exact weighted closeness, as described in the section



above. In general, closeness typically seems to identify one central downtown area of the city. The size and
shape of the downtown area varies; for example, Beijing displays a unique ring-structure that causes the
closeness centrality to be concentrated around a central circle. Unweighted closeness centrality generally
behaves fairly similarly to weighted closeness but locates smaller and more concentrated regions of high
centrality. An interesting outlier is Istanbul in Figure 8, which has two highly disparate regions of high
closeness that are separated by a body of water.

Figure 10: Closeness Centrality Distri-
bution
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Figure 9 maps urbanness for Jerusalem, Bogota, Los Angeles,
and Seoul. In some cities, such as Los Angeles, there is a single
clear "downtown” area that tends to have both high urbanness Figure 11: Betweenness Centrality Dis-
and high closeness centrality. Bogota, on the other hand, like tribution
Buenos Aires and other South American cities, has 2-3 smaller 0%, Comparison of Unweighted Bet centraiity
areas of high urbanness that are a bit different from the results 10°
from closeness centrality. Finally, cities such as Seoul, Jerusalem,
and other European and Asian cities tend to be generally more
evenly dense, and thus have several small areas of urbanness that
are scattered around the city.

Figures 10 and 11 display distributions of weighted and un-
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Los Angeles being a slight outlier in closeness. We also see that
weighted betweenness seems to be distributed more evenly with a 10
less sharp drop-off at the end. Weighted and unweighted closeness
centralities appear to be fairly similar in distribution.
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6.2 Traffic Simulation Results

Figure 12 displays the results of traffic simulation data for four
cities. Simulations were run with 10,000 cars in the city for 10,000
generations, taking a snapshot every 10 time steps. The 1000 snap-

shots’ data were overlayed and combined into one map of streets KD 0z o o5 o8 18

Betweenness Centrality
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representing their relative long-term traffic, yielding a Counter of
10,000,000 car counts distributed over streets in the city from all
snapshots. Streets that experienced more traffic over the genera-
tions will have higher car counts and a darker red color; those with
less traffic a lighter red color. In the maps for Sydney and Rio de Janeiro, there is high traffic on streets
that cross bodies of water, which makes sense as all traffic traveling between the two areas of land must be
routed through one of a small number of roads, leading to traffic congestion. Other cities have slightly more
distributed traffic, such as Cairo, indicating that traffic is spread out over different roads and thus is less

concentrated
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