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Abstract

In this paper, we construct graph inference models
and relevant statistics to investigate how Pinterest
disseminates information. Pinterest is unique in how
information spreads in the form of “repinning”. We
identify some key characteristics of this network.
We compare two methods of constructing the un-
derlying network behind Pinterest. After modeling
the relationship between pins and boards, we ob-
serve how pins propagate across boards. We then
identify what makes boards influential on Pinterest.
Finally, we perform a temporal analysis on the out-
put of our influence models to learn how influence
changes over time. We believe this could provide re-
searchers and marketers insight into the character-
istics of influential boards as well as strategies for
advertising.

1 Introduction

There are many ways to be influential in a social net-
work: for example, one could initiate a new trend,
amplify new trends, or act as the deciding factor in
which trends continue. We identify several ways to
quantify influence in Section 2. Pinterest presents
an unusual social network structure centered around
boards; in order to study their influence, we identify
boards that initiate the propagation of information
and trace the edges involved in the respective cas-
cades.

On Pinterest, users generally repin from the
homepage or pin directly from other websites. Typ-
ically, users do not care which board they borrow a
pin from [1], so we expect our unbiased graph mod-
els to effectively represent the true network without
having to consider the pin’s content. However, be-
cause the underlying network is largely unobserved
(we know when pins were repinned but we do not
know the originating board), one challenge is to re-
construct the network before we analyze how influ-
ence propagates.

We compare results from using a board latency
model as well as a network inference model to esti-
mate the underlying network. Once we have a graph
model of repins, we analyze this graph for influ-
encers, cascades, and bridges. Our project objective

is to identify and characterize ‘influential’ boards in
various definitions of ‘influential’.

Being influential on Pinterest is important for
marketers because the social network lends itself to
being an excellent driver of e-commerce sales.

2 Related Work

We survey several works analyzing how informa-
tion disseminates in social networks. We build upon
the models and algorithms these authors develop as
ways to analyze the Pinterest network. Furthermore,
we looked into several papers looking specifically at
Pinterest to better understand what typical user be-
havior entails.

2.1 Quantifying Influence

First, we need a way to quantify influence on Pin-
terest in order to identify which boards are more in-
fluential. Bakshy et al. [2] quantify the influence
of individual “influencers” as well as tweets in their
Twitter dataset by identifying users who “seed” con-
tent, meaning they are the first one to post tweets.
They measure different levels of influence depend-
ing on how many users a given user follows posted
the same URL. For example, if C follows A and B,
and C posts the same URL after A and B have both
posted it, the level of influence is split among A and
B. These directed edges of influence form an influ-
ence tree, referred to as “cascades”.

Their model resulted in three key indicators of in-
fluence: past performance, number of followers, and
activity level. However, their model does not take
time into consideration, even though posts close in
time are more likely to be correlated than posts far
apart in time. We plan to factor in the time between
repins in our work.

2.2 Inferring Networks of Influence

Before we are able to quantify influence and analyze
the graph for influencers and cascades, the network
has to initially be inferred. Gomez et al. [3] pro-
poses a scalable algorithm that infers the network



based on times online blogs and articles share hy-
perlinks between different news sources. They for-
mulate a generative probabilistic model of how, on
a fixed hypothetical network, cascades spread as
directed trees through the network. Although un-
der that model, the network inference problem is
intractable, they develop a tractable approximation
that show nearly optimal results. Because our prob-
lem formulation for creating a network falls in the
category similar to that of Gomez, we adapt their
proposed algorithm to infer a network on the Pin-
terest dataset and proceed to analyze the resulting
graph for influence.

2.3 Information Diffusion and Cascades

Next, we want to observe how information spreads
on Pinterest. Gruhl et al. [4] derive a mathe-
matical model of information propagating through
Blogspace by analyzing individual topics and see-
ing how bloggers influence one another. They es-
tablish a confidence for each user by measuring how
many standard deviations above or below the mean
time a user posts about a topic. They then estab-
lish a “copy probability”, which is how likely they
think that a user B copied off of A after reading user
A’s blog. The probability increases as the number of
cases of A posting about a topic before B increases.
Then, to analyze communication across Blogspace,
they develop the transmission graph model, where
edges are more likely to appear if there is a high
copy probability to substantiate it. The transmission
graph model will help us turn the nested bipartite
graph in the Pinterest data into a graph measuring
how information flows between boards.

2.4 Learning Influence Probabilities

We also look into other ways to build a graph-
based model to measure influence. Goyal et al. [5]
use a Flickr dataset (1.3 million nodes, 40 million
edges, 35 million actions of which 300 thousand
are distinct) to explore ways of calculating influence
scores from a graph of user actions and interactions.
Specifically, they compare three model types that
are applicable to influence analysis: static models,
continuous time models, and discrete time models.

Static models ignore the time component of ac-
tions and assume that a user is equally likely to
be influenced by another user’s action regardless of
how long ago the action was taken. However, this
model is not particularly helpful to us, since we
want to consider time between actions.

Continuous Time models are predicated on ac-
tions having an influence time decay based on “the
mean life time” which is the mean time for an ac-
tion to propagate from one user to another, and can
be calculated from training data. The joint influ-
ence probability changes with each new activation
of a neighbor and needs to be recomputed after each
step.

Discrete Time models are similar to the continu-
ous model but simplify the assumptions. This model
assumes the influence probability from a user to an-
other user remains constant for a period of time after
an action, after which it drops to zero.

The paper also proposes and interesting tech-
nique for predicting influence. But it assumes we
have an action log, table of (user,action,time) tu-
ples where actions determine direct connections be-
tween neighbors in a graph, which is absent in our
data. Instead, we will largely deal with pin times-
tamps to construct a graph-based model.

2.5 Pinterest Structure

Based on the work done by Gilbert et al. [1], re-
pins are the primary form of interaction, as users
don’t generally directly interact, and follows do not
happen nearly as often as repins. This allows us to
measure diffusion in Pinterest using repins. Further-
more, we may be able to leverage textual informa-
tion about users and boards to improve our predic-
tions about pin propagation [6]. This would also
help us fingerprint influential boards.

3 Dataset

The Pinterest dataset consists of a subset of US
users who have food boards. The structure of the
dataset is a dynamic bipartite graph of users-to-
boards-to pins. This dataset contains over 10 million
pinners, 12 million food boards, 736 million pins,
and 48 million follows.

We load this dataset into four indexed tables in
a Postgres database for easier and quicker manipu-
lation and analysis. We set up the Postgres database
on a dedicated server with 8 Intel Xeon cores, 32GB
of RAM, and a 500GB SSD disk drive.

3.1 Data Characteristics

To characterize the boards we have, we catego-
rized the boards and displayed the top 23 cate-
gories. Similar board names were aggregated to-
gether: e.g. all board names with ‘fall’, ‘summer’,



‘winter’, ‘spring’ in their name were categorized as
seasonal_foods. Boards with generic names such as
‘Food’ were excluded.
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Figure 1: Types of food boards

To observe how often pins get repinned, we cre-
ated distribution of the frequency of pins. This dis-
tribution follows a power law curve. The majority
of pins (51%) never get repinned, and 85% receive
fewer than 10 repins. This suggests that we want
to focus our attention on pins on the upper end of
this distribution because they better reflect influence
propagation across Pinterest.
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Figure 2: Distribution of number of repins

Furthermore, the distribution of the number of
boards a user owns as well as the number of boards
that a user follows in Figure 3 also follow a power
law curve, which indicates that the majority of users
do not follow many boards. Therefore, it may be in
our best interest to reconstruct the network in which

the nodes are boards, not users. In addition, the ma-
jority of boards do not have many followers, which
hints that most repins come from boards that a user
does not follow; building a graph based on follow-
ers would not provide a good model of influence on
Pinterest.
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Figure 3: Distribution of board ownerships
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Figure 4: Distribution of board followers

4 Methodology

We formalize influence as the spread of pins in the
Pinterest network through repins. For each pin, we
only observe the time when it gets repinned and
which board it was pinned on. We build upon the
board latency model and the cascade model to un-
derstand the underlying network and explore the
advantages of each model. We develop a temporal
model on top of these graph models to represent
influence as a dynamic process. We then analyze
influence cascades on Pinterest according to these



models. We utilize several graph statistics as well as
random walks on these graphs to discover sources
of influence.

4.1 Board Latency Model

We develop the concept of a board latency as when
a board pins relative to other boards. For a given
pin with a mean pin time of y, and standard devia-
tion 0, we follow the technique of Gruhl et al. [4]
by measuring the board latency for a board that re-
pinned at time ¢ as

Op

b

Negative values of board latency indicate that this
board is ahead of the curve on this pin, whereas
large positive values indicate that the board catches
the end of a cascade. To evaluate a board’s overall
latency, we average it’s latency across all of its pins.

In this model, an edge (u,v) is drawn with some
probability p if board u comes before board v in
some ordering, which is determined by creation
times of a pin. If board u and board v share mul-
tiple pins, the edge has multiple chances of being
created.

4.2 Cascade Model

Like the previous model, we interpret edges as con-
nections between boards that frequently repin after
another board.

We follow a similar model to Gomez et al. [3]
where the probability of each edge is inversely
proportional to the difference of their pin creation
times. However, instead of using an exponential
model, we use a power-law model. Formally, if we
have the creation times ¢, and ¢, of nodes u and v,
respectively, the probability P(u,v) that edge (u,v)
exists is given by

1

P o< —

(M,V) (tv_tu)a

If 7, > t,, we simply set P(u,v) = 0. We define a
potential cascade c; as a list of boards that contain
pin i. This can be represented as a sorted list of times
[t1,t2,...,1,] when the pin was added to each board.
We can view the cascade as a directed tree 7 where
edges only go forward in time (of the pin).

The probability of observing cascade c; in T is
simply the product of all P, (u,v)s for all possible

(u,v) edges in T.
P(Ci|T) = H PCi(u7V)

(u,v)€T

To find the probability of a cascade occurring in
the entire network G, P(c|G), we need to consider
all possible trees T in which cascade could have oc-
curred (all pin IDs whose repins follow a given cas-
cade). This is given by

P(c|G):Z H P.(u,v)

T (uyv)eT

Therefore, we want to find a global solution for
all possible cascades occurring in the network and
find the edges that maximizes

G= argmax g < [12l6)

ceC

where C is the set of all cascades in the network
and k is the number of edges we want to infer. In-
tuitively, it will infer an edge (u,v) with high prob-
ability if board v consistently repins after board u
within a small time window for multiple cascades.

To find a tractable approximate solution, we adapt
the NetInf algorithm using the power-law model to
infer the number of edges.

4.3 Temporal Analysis

We then select several interesting influential boards
from the results of the models above, and perform
a temporal analysis to observe how their properties
change over time. Our algorithm starts by finding
all pins of a given board, and for each pin’s times-
tamp, we generate a “state of the world” sub-graph
containing all of the boards that contain any of those
pins at that point in time and all their pins posted on
or before the timestamp. Each sub-graph can then
be evaluated for various metrics such as between-
ness centrality or cascade length. Because pins are
not posted with a regular frequency, time is normal-
ized by the respective board’s pin posting sequence
(first posted pin, second posted pin, etc.) instead of
the absolute timestamp. Pins are sampled at even in-
tervals from across the board’s lifetime.

5 Results and Analysis

To observe cascades in this network, we first sample
from our dataset, model information flow as a graph,
and then analyze the resulting graphs.



The table of pins contains 95472102 distinct
board ids, many of which have few (< 5) pins; we
want to restrict our models to boards with a some-
what high number of pins (because finding an in-
fluential board with a low number of pins is more
likely to be a fluke than a consistent result). There-
fore, for each method, we sampled the top 10000
boards with the most pins. We then queried all of the
pins that belong to these boards and reconstructed
the underlying network.

5.1 Board Latency Sampling

For each pin involved in at least one of these boards,
we chronologicallly order the boards that have this
pin. Then, with some probability p, we draw an
edge by — by, where b; comes before b; in the or-
dering.
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Figure 5: Degree Distribution, p = 1

We first set p = 1 to analyze the most connected
graph structure possible. Having a high out-degree
in this graph signifies that this board often pins be-
fore other boards, while having a high in-degree
signifies that the board tends to repin from other
boards. In this case, 9999 of the 10000 boards form
one strongly connected component, with degree dis-
tribution roughly normal (Fig. 5). The out and in
degree distributions look similar (normal), so this
model suggests that repinning may not follow a
preferential attachment method as we hypothesized.

As we reduce the edge probability p, we noticed
that the SCC in this graph remained the same size.
In fact, we had to drop below p < 0.05 to observe
much reduction in the size of the largest SCC (Fig.
6). This suggests that the Pinterest network may
have a bow-tie structure similar to what we observe
in the web [7]. Because we are only looking at the
boards with the most pins, these nodes would all fall
in the large component at the center of the bowtie,
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Figure 7: k-Core of Various Board Latency Graphs

which is why it takes such a small value of p to
break this SCC. Furthermore, as seen in Figure 7,
our k-core plots don’t change shape as we change
D, so we don’t expect our graph structure to change
significantly as we modify p.

Unlike the degree structure seen by Leskovec et
al. [8], our graph is almost the exact opposite, as
seen in in Figure 8. (Although the methods for con-
structing graphs are different in these two cases, we
are just comparing the connectivity of boards/blogs
here.) Following our model, this means that there
are not many boards that are consistently leading
other boards; therefore, we aren’t likely to find
many influential boards just by looking for boards
that pin earlier than others; this model is therefore
better suited for finding boards that amplify topics.

5.1.1 Optimizing Centrality

In this graph, betweenness centrality can be seen as
a measure of how much the node controls the the
flow of information. As seen in Figure 9, there is a
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weak correlation (r2 = 0.235) between node degree
and betweenness centrality. The nodes with low de-
gree and high centrality are especially interesting
because they indicate that the owner gained influ-
ence without many pins. For example, the point near
the top left of the graph is a board titled “Christmas
DIY, Games, Food & Decor” and has a total node
degree of just 14, but a betweenness centrality of
1055, the 5th most in this graph.
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Figure 9: Betweenness Centrality, p = 0.2

This reinforces the observations of Ottoni et
al. [1] that Pinterest constitutes several community
structures, centered around topics. We categorize
the neighbors of these boards, and in our qualitative
observations, some boards (such as the Christmas
board above) create bridges between multiple top-
ics/communities, which affirms our findings in Sec-
tion 3. To better observe this, we compared differ-
ent instances of this board latency graph: we calcu-
late betweenness centrality on a graph with p = 0.2,
and compare with a graph with p = 0.02. We ob-
serve a weak negative correlation between between-

ness centrality in the first graph and node clustering
coefficient in the second graph. We therefore con-
clude that these nodes act as a weak ‘glue’ within
the Pinterest network; they accelerate information
cascades, but aren’t crucial. However, these boards
still have a high level of influence because they can
select what other pinners are likely to see and which
topics will trend sooner.

5.1.2 Centrality and Latency

When we analyze board latency versus centrality,
we observe that boards ahead of the curve and be-
hind the curve do not lead to high centrality. How-
ever, the boards with the highest centrality gener-
ally lie within one standard deviation of the mean
in board latency. As we hypothesized above, the
boards with high centrality are often not the first
to pin; rather, they catch the middle of many trends
and amplify them. This is consistent with our ear-
lier observations, where central boards relate multi-
ple topics, so they would introduce a pin to a com-
munity that hasn’t yet seen that pin. In a sense, this
can be thought of as ‘information arbitrage’: these
boards gain influence by taking existing ideas from
one community and introducing them as new ideas
in another community. This evidence is consistent
with our belief that one effective technique of max-
imizing influence on Pinterest is bridging multiple
communities/topics.

5.1.3 Random Walks

While our plot of node degree earlier indicated that
there may not be boards that are consistently ear-
lier than other boards at pinning, we would still like
to know which boards to observe to know the vol-
ume of pins that flow through the network. In an ef-
fort to find the ‘source’ of cascades, we could search
for source nodes in the graph. However, this would
not be a good approach as boards with just one pin
that got repinned would appear as sources. Further-
more, any cycle would rule out all nodes in that cy-
cle. Therefore, we take random walks through this
graph, stopping with a probability p = 0.05 and tele-
porting with probability 0.2. We record how often
the random walk stops at each node. This distribu-
tion is roughly normal and highly correlated with
out-degree (Fig. 10).

The strong correlation with node degree indicates
that boards that pin more often are likely to be
sources, and that boards rarely deviate from this (so
one wishing to gain influence on Pinterest is un-
likely to be able to introduce new pins early and
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initiate large cascades through the network). This
is also consistent with the findings of Bakshy et
al. [2], which is logical given the nature of ‘repin-
ning’ versus ‘retweeting’. Furthermore, looking into
the boards where the random walk ended most of-
ten, the top board is named “Food & Drink” and
the next dozen are named variations of Food, which
would represent the center of our network in terms
of topic. These boards also do repin from one an-
other, with the k-core holding together even at fairly
high orders and low probabilities, as seen in Figure
(£

Therefore, this model indicates that influential
boards either initiate cascades with a high volume
of pins, and amplify cascades by bridging commu-
nities. However, while this approach scales with the
amount of data we have, one major shortcoming is
that it is unable take time differences into account,
which we address with our model in the following
section.

5.2 Netlnf

Using the cascade model, for each unique pin in the
set of pins among the top 10000 boards, we grouped
all boards for each unique pin i. This formed the
cascade c;, where creation times were sorted in as-
cending order. To remove cascades that we consider
to be negligible, we remove all of the pin cascades
that have have a length of one.

For this set of boards, we observed 581,253 dif-
ferent cascades. We performed the NETINF algo-
rithm with parameter & = 0.0001 and run for 3000
iterations, which inferred ~ 3700 edges.

The average number of cascades that an edge
was part of was 30, which is higher than the aver-
age in [3], which had an average of 7, which gives

us higher confidence in our edges. The number of
edges per cascade follows a power law distribution.

0.035 Number ot Cascades per kdge Distribution

0.030

0.025

0.020

0.015

Number of edges

0.010 |

0.005

e L L
100 150 200 250
Number of cascades per edge

0.000

Figure 11: Distribution of Cascades per Edge

Number of Edges per Cascade Distribution

108

b
5
10°F o
[ ]
a [ ]
() 4
S 104k o 5
2
S
3L
%5 10
@
£
§ 102} E
=4
101 F
100 L PRe——N s . i
10° 10! 102 103 104

Number of edges per cascade

Figure 12: Distribution of Cascade Sizes

We notice several differences from the previous
board latency model. First, the degree distribution
of the resulting network closely follows the Prefer-
ential Attachment model, whereas the board latency
model is closer to those of random graphs.

Furthermore, there is not a strong positive cor-
relation between the in- and out-degree distribution
(Fig, 13). This plot is similar to the observations
of Leskovec et al. [8]; therefore, NetInf indicates
the Pinterest network may resemble a webblog net-
work. As opposed to the board latency model, our
figure shows that there are many boards who have
small in-degrees with large out degrees and boards
with large in-degrees with small out-degrees. This
suggests that many boards that are sources in the
network can be categorized as sources of influences.
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5.2.1 Sources of Influence

From our resulting graph, we analyzed the charac-
teristics of nodes with 0 in-degree and whether they
corresponded to initiators of influence. These source
nodes do not correspond to the top boards that have
the most pins.

For all boards that were identified as source
nodes, we found the number of cascades where the
first pin in each cascade belongs to a source node.
Because a source of a cascade may not be the very
first pinner, we also relax our definition of ‘source’
of cascades to boards that pinned within the first 5
repins.

We observed that although boards that were
source nodes make up only 0.047 of all boards, it
has a much higher percentage of appearing within
the first 5 repins. Furthermore, the average cas-
cade size for cascades in which the source nodes
appears within the first 5 repins is much higher

Source | All
Num Boards 470 10000
First pin of cascade 34158 | 581K
Pct. of Cascades (first pin) | 0.08 1.0
First 5 pins of cascade 104K | 581K
Pct. of Cascades (5 pins) 0.19 1.0
Avg. Cascade Size 2.79 2.29
Avg. Path Size 3.90 3.02
Avg. Out Deg 1.80 4.78

Table 1: Cascade Comparisons between Source vs.
All Boards

than the overall average cascade size. This sug-
gests our model accurately identifies sources of in-
fluence, which we often recognize as those whose
influence lasts for a long time. However, it is inter-
esting to note that the average out degree of these
sources nodes is much lower than on average. This
result differs from that of the board latency model,
which suggested boards with high degree are often
sources.

We realize this is a consequence of how the edges
were formed in each model. In the cascade model, it
conservatively chooses edge where a board v repeat-
edly repins after a board u. Despite the differences
in how these edges were formed, the board types
of these sources were consistent, where a majority
of the boards were named generic names such as
“Food” and “Food & Drink”.

Following our analysis for the board latency
model above, we also attempt to find ‘sources’ of
cascades using random walks. We observe a skewed
right distribution (Fig. 15), which is more in line
with what we expect compared to the distribution
from the board latency model. The boards with
high scores from random walks were similar to the
source nodes in the graph. We analyze a sample of
these boards in the section.

5.3 Influence over Time

As a final step, we explored the temporal nature of
influence and how it changes over time. For both
the Board Latency and the Cascade models of influ-
ence, we took samples of a representative influential
node along with a non-influential node with a sim-
ilar number of pins and compared their properties
to determine whether there was a measurable differ-
ence.

As stated previously, betweenness centrality is a
useful measure of influence in the board latency
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Figure 16: Temporal analysis of the board latency
model shows how betweenness centrality grows
much quicker over time in influential boards

model, as it shows the importance of a board as
an information arbiter. A high betweenness central-
ity can be used as a proxy for the influential sta-
tus of a board in between communities. In particu-
lar, Fig 16 reveals two insights that would be valu-
able to marketers. First, the higher marginal gain in
betweenness centrality for influential boards is ap-
parent from the beginning of the board’s existence.
The outcomes of this clean trend are that (assuming
a consistent pinning pattern) it is possible to fore-
cast a board’s future influence with the board la-
tency model, and also classify it as being influen-
tial or not. Second, the chart shows how effective
the “community bridging” approach can be in gain-
ing influence on Pinterest (purple plot). The influen-
tial board’s influence grows an order of magnitude
faster than its non-influential counterpart. To give a
concrete example, after 50 pins the influential board
enjoys a betweenness centrality score equal to that
of an “average” board after 500 pins!
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Figure 17: Temporal analysis of the cascades model
shows that influence via mean cascade length
changes primarily as a function of number of pins

Mean cascade length is another way to measure
influence. A growing mean cascade length over time
may signify that the board is closer to the heart
of the community, because the average cascade
length would be closer to 0 as a board approaches
the fringes of the network. It can also signify that
the board is a popular “content creator”, surfacing
unique content that then goes viral, and gets shared
many degrees out from the original source.

The examples in Fig 17 containing two source
nodes show that becoming influential as a “content
curator’” on Pinterest is not trivial. With over 10 mil-
lion users, and close to 750 million pins in the food
category alone, finding or creating novel content
that will be repinned is more a matter of luck than
skill. Aspiring Pinterest marketers would be well
heeded to not waste time trying to create the perfect
content to pin onto their board, but rather take the
approach of re-pinning existing content with high
volume, or finding content to pin at the bridge of two
communities. More detailed data on re-pins would
be needed to make a definitive conclusion.

6 Conclusion

The board latency model provided a good model
of how influence flows on Pinterest. We observed
that Pinterest contains community structures cen-
tered around topics and that many boards with high
betweenness centrality serve as bridges between
these topics. This leads us to the conclusion that
one method of becoming influential is through ‘in-
formation arbitrage’; by replicating pins from one
community to another, a board can gain influence



without needing to initiate cascades.

We also attempted to find sources of cascades
under this model using random walks, which sug-
gested that these sources have high out-degree. This
surfaced the shortcoming of our first model because
it couldn’t take time differences into account. How-
ever, these boards provide insight into the state of
the Pinterest network because they include many
pins involved in cascades through the network.

In contrast, the cascade model determined
sources of influences by directly identifying the
sources of the graph. Interestingly, these sources
did not have high out degrees, which indicates that
sources influence other boards which amplify their
influence. This is consistent with our conclusion
from the board latency model that many boards
with high in- and out-degree serve as bridges of in-
fluence. Furthermore, this matches our conclusion
from our k-core analysis that indicated boards that
pin early are not necessarily the most influential;
boards that repin later with a high volume of pins
may do better in terms of influential gain. There-
fore, sources may initiate cascades, but require high
centrality boards to amplify their content to render
the cascade effective throughout hte network.

We conclude that marketers may be interested
in identifying and creating boards which propagate
cascades and connect multiple niche communities,
such as a board focusing on Christmas food crafts.
Otherwise, the typical approach would be to create
a board with a high volume of pins.

7 Future Work

Having additional board/pin data (such as interna-
tional users) and re-pin sources, would increase the
accuracy of our analysis. Furthermore, because have
evidence that there are strong communities revolv-
ing around topics in the network, analyzing data be-
yond just food boards would provide more insight
into these communities. We have determined two
main methods of influence: initiating cascades and
amplifying them. An interesting follow-up would be
how these two types of users could collude to help
one another gain influence on Pinterest.
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