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Abstract

With the growth of these social and informa-
tion networks, there is a rising need for detec-
tion of both spatial and temporal anomalies
in the network components. Numerous appli-
cations in dynamic social networks, ranging
from telecommunications to financial trans-
actions, create evolving datasets. Detect-
ing outliers in such dynamic networks is in-
herently challenging, because the arbitrary
linkage structure with massive information
is changing over time. We use unsupervised
learning methods to be able to extract rich hi-
erarchical features that help us improve per-
formance on these tasks. The focus is on
special types of anomalies: global, neighbor-
based, and community-based in both the spa-
tial as well as temporal domain. We propose
various feature extraction methods that are
fit for spatial anomaly detection, and then
extend them to temporal features. These
features are then subjected to either algo-
rithms fit for spatial anomaly detection or
specialized algorithms that detect temporal
anomalies and ensure that this can be highly
efficient in large and gradually evolving net-
works. We use the Intel Sensor Dataset as the
real world network on which we analyze all
of our approached. Along with this, synthet-
ically generated anomalous graphs are also
analyzed.

1. Introduction

Outlier detection is a task to uncover and report ob-
servations which appear to be inconsistent with the re-
mainder of that set of data. Since outliers are usually
represented truly unexpected knowledge with under-
lying value, research has been widely studied in this
area, often applicable to static traditional strings or
attribute-value datasets. Little work, however, has
focused on outlier detection in dynamic graph-based
data. With the unprecedented development of social
networks, various kinds of records like credit, person-
nel, financial, medical, etc. all exist in a graph form,
where vertices represent objects, edges represent re-
lationships among objects and edge weights represent
link strength. Graph-based outlier detection problem
is specially challenging for three major reasons as fol-
lows:

Dynamic changes: Vertices, the relationships among
them as well as the weight of the relationships are all
continuously evolving. For example, users join friend-
ship networks (e.g. Facebook), friendships are estab-
lished, and communication becomes increasingly fre-
quent. To capture outliers in evolving networks, de-
tecting approaches should obtain temporal informa-
tion from a collection of snapshots instead of a partic-
ular instant. For example, snapshots of the Facebook
graph should be taken periodically, forming a sequence
of snapshot graphs.

Massive information: Compared with average data
sets, social networks are significantly larger in size.
The volume is even larger when the network is dy-
namic, massive information involved in a series of
snapshots with millions of nodes and billions of edges.
In this case, it is difficult for algorithms to obtain full
knowledge of the entire networks. Deeply hidden
outliers: Recent studies suggest that social networks
usually exhibit hierarchical organization, in which ver-
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tices are divided into groups that can be further subdi-
vided into groups of groups, and so forth over multiple
scales. Therefore, outliers are more difficult to dis-
tinguish from normal ones if they are hidden deeply
among their neighbored but not globally.

However, outlier detection in social networks has not
yet received as much attention as some other top-
ics, e.g. community discovery. Only a few studies
have been conducted on graph-based outlier detection.
While a more detailed discussion on these approaches
will be provided in section 2, it suffices to point out
here that most of these approaches identify outliers
in un-weighted graphs from a more global perspective.
For example, community based algorithms identify ob-
jects whose evolving trends are different with that of
entire community. All such global outlier detection al-
gorithms require the entire structure of the graph be
fully known, which is impractical when dealing with
large evolving networks. Furthermore, the local ab-
normality may be highly covered by global evolution
trend. Thus, existing global methods fail to identify
the objects with abnormal evolutionary behavior only
relative to their local neighborhood.

2. Related Work

Anomaly detection in weighted graphs: OddBall
algorithm (Akoglu et al., 2010) is a popular algorithm
for anomaly detection in graphs and network struc-
tures. The main algorithm in OddBall is to construct
an induced sub-graph or ’ego-net’ around each node
in the graph, and then try to compute sets of features
that are most characteristic for a majority of the ego-
nets. The authors of this paper have identified various
forms of local anomalies that can be found in weighted,
static networks, i.e. networks with weighted edges that
represent a single snapshot in time.

Local and global anomaly detection in static,
un-weighted graphs: In (Vengertsev & Thakkar,
2005), the authors have tried to implement various fea-
ture extractors and algorithms to detect three differ-
ent types of anomalies - local, community and global.
They have used processes similar to clustering to find
the nearest 1-hop neighbors as well as detect commu-
nities within graphs.

Local Evolutionary Outlier Detection: Both the
above papers have proposed solutions to detect anoma-
lies in static networks or single snapshots of networks
in time. However, social networks as well as other
types of networks like web graphs or sensors are often
evolutionary and time-varying. Finding anomalies in
such networks is often much more complicated. (Ji

et al., 2013) have defined a new concept of CoreNets
for each node that builds on the definition of EgoNets
and SuperEgoNets. These are then used to compute
certain features that can enable the detection of lo-
cal and Deeply Hidden Outliers in both spatial and
temporal dimensions.

Most networks today, especially social networks are
weighted, dense graphs with evolutionary edges. For
example, on Facebook, friends are constantly added
or removed. On a sensor network, whether one sen-
sor sends a signal to another at each time step is
probabilistic. The signals themselves also have val-
ues. When one node malfunctions, either because a
person on Facebook is spamming people or if a sensor
is giving erroneous readings, they may not register as
a global outlier, but it may still be an outlier within
its neighborhood /community. On the other hand, it
may not be detected as an anomaly at this snapshot,
and we would need to consider its behavior in previous
(and potentially later) time steps to see if it’s behavior
is an outlier.

Most of the work done yet focuses on one type of net-
work instead of taking all these issues into considera-
tion. In (Akoglu et al., 2010), the algorithm mainly
focuses on weighted graphs. Also, the neighborhood
used for anomaly detection is very limited, based on
egonets (direct neighbors) of the nodes. The edge
weights are only used in the outlier score calculation
and not while computing the neighborhood of the node
itself, as done in (Ji et al., 2013).

Another major problem with both the above algo-
rithms is that they only consider spatial and not tem-
poral network properties. For example, if a sensor
readings are changing smoothly over time because of
external conditions, even though that of the neigh-
bors aren’t, the above algorithms would classify it as
anomalous. On the other hand, if a bunch of sensors in
the neighborhood suddenly fail, a snapshot wouldn’t
be able to identify this without looking at the readings
at the previous time step.

(Vengertsev & Thakkar, 2005) has also experimented
with auto-encoders to detect anomalies based on re-
construction loss. The energy (or loss) of auto-
encoders is a smooth curve and thus, finding the
threshold for outliers requires some in-depth cross-
validation, which may be the results of the poor perfor-
mance they achieved despite being a superior model.
(Ji et al., 2013) tries to solve a lot of these prob-
lems. They consider evolutionary networks to com-
pute neighborhoods of the nodes and then calculate
the scores based on both temporal and spatial vari-
ations. However, the closeness score used to calcu-
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late the outlier is simplistic, based on just the sum of
weights of the edges.

2.1. Our Contribution

Considering the various limitations of the works dis-
cussed above, we can try to combine them and ex-
tend them using various new feature extraction tech-
niques and outlier scoring techniques. Firstly, we need
a technique that works on evolutionary, time-varying,
weighted multi-graphs with any kind of anomaly, ei-
ther local or global. To do this, we need to aug-
ment the work of (Vengertsev & Thakkar, 2005) and
(Akoglu et al., 2010) with time-varying features and
scoring methods. We can consider the ’context’ of
each snapshot of the graph (previous time steps) to
see if there are temporal spikes leading to anomalies.
In cases where the analysis need not be performed in
real-time, and we have data from the next few time
steps, we can use these too as context.

We can also potentially improve the work in (Vengert-
sev & Thakkar, 2005) for better results by using De-
noising Auto-Encoders to mitigate the problem caused
by noise as discussed in the previous section. The fea-
tures learned by the encoder can themselves be used in
other scoring techniques to detect outliers instead of
using the reconstruction loss. We can also try SVMs
and Elliptic Envelopes instead of Isolation Forests as
they are very different in terms of performance on dif-
ferent types of datasets.

If we consider (Ji et al., 2013) CoreNets are a good
way of computing closeness of neighbors. Incremental
Closeness can be used to see how the closeness be-
tween nodes has changed over time. This is particu-
larly useful in sensor networks where signals are highly
time-varying. However, the outlier scoring using these
CoreNets can be improved by using better techniques
like the scoring system in (Akoglu et al., 2010). Alter-
natively, the features from CoreNet can be fed into a
Denoising AutoEncoder to learn the typical encoding
and decoding of the nets. The encoded features can
either directly be used in scoring or can be decoded to
get the reconstruction loss.

3. Dataset
3.1. Intel Lab Real-world Dataset

As a benchmark dataset for testing and method com-
parison we have selected Intel Lab data set [13]. This
data set is represented as time-varying weighted multi-
attributed graph that corresponds to sensors work for
period from February 28th and April 5th, 2004 with
properties shown in below table Table 1:

Property Value
Number of nodes |V]| 54
Max. Number of Edges |E| 2916
Feature Vector D(t) d=4
Total readings 2.3 million

Table 1. Properties of Intel lab Dataset.

The raw sensor data is given in 3 files:

1. Node Information: The node ids and x and y co-
ordinates of each sensor is stored in a file. There
are a total of 54 sensors and thus, 54 nodes in the
graph. While the primary transmission and re-
ception information is stored in the edges, the ge-
ographical location can be useful to detect/avoid
certain anomalies.

2. Edge Information: The graph given is a fully con-
nected graph with directed nodes from each node
to every other node. However, the probabilities
of a sensor transmitting to another sensor, and
thus, the weight of the edges varies. Using this,
we created different graphs, with edges between
nodes conditioned on the probability being above
a certain threshold. Graphs were thus created
with edges formed between nodes with probability
threshold 0.75, 0.6 and 0.5.

3. Sensor Readings: Sensor readings for humidity,
temperature, voltage and light are provided for
65535 different time instances. These thus repre-
sent about 65,535 epochs * 54 nodes * 4 features
= 14,155,560 total readings.

Data Modifications:

We created smaller datasets for testing the effective-
ness of each algorithm by varying number of edges by
varying the probability threshold as described above.
The number of edges increase from 25 to 187 as we
decrease probability threshold from 0.75 to 0.5
Another way of creating smaller datasets was to de-
crease the number of epochs. Thus, tests can be per-
formed for all algorithms on graphs for sensor readings
for the first 1000 and first 10000 epochs alongwith the
full data with 65535 epochs.

While the given dataset has a lot of anomalies based
on features of the node, there are no edge creation
or deletion anomalies. However, the IcLEOD algo-
rithm is well-known for finding anomalies when there
are new edges added/removed and when the edge
weights change. DNODA and CNA alongwith Isola-
tion Forests can also detect these types of anomalies.
To test these, we added a time-function, J,, to the
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weight of an edge (src,dst) given by:

0, (sre,dst) =1+ Z

fefeatures

|srep, —dsty

The new weight of the edge, w’ is given by

wi(sre, dst) = prob(src,dst) * §,(src, dst)

3.2. Synthetic Dataset

Although the Real World dataset acquired from Intel
Lab is structured and ideal for anomaly detection, it
does not have labels attached to the anomalies. Thus,
barring manually labelling the anomalies, it is impossi-
ble to judge the raw performance of our algorithms on
this dataset. Thus, we generated a synthetic dataset
similar to the Intel Lab (IL) set but with anomalies
inserted of our own.

The edge probability information was kept the same as
the IL set. To generate synthetic sensor readings, we
copy the readings for the first epoch from the IL set.
For every subsequent epoch, the reading is changed by
a small § chosen uniformly at random from a small
range (< 0.5% of the maximum range of that value).
With probability p, an anomaly was inserted in a par-
ticular sensor reading of an epoch. This was done by
picking any value uniformly at random from the entire
maximum range for that feature.

By picking p = 0.001, there were 14042 anomalies gen-
erated in about 65535 readings each for 54 nodes. This
labelled dataset was used to evaluate the performance
of our algorithms based on accuracy, precision and re-
call. The thresholds for each algorithm were deter-
mined by using the ROC curves for them on the syn-
thetic dataset. These thresholds were then used to
identify anomalies in the IL dataset.

4. Problem Formulation

Given a graph G = (V(¢), E(t),w, D(t)), where V(t)
is a set of n nodes at time ¢, E(t) CV x V is a set of
m undirected edges, and w: V x V € [0, 1] is a weight
function such as w(u,v) = 0 if and only if (u,v) ¢ E
, D(t) € R is a row vector of time-dependent node
attributes, d is number of attributes. With subscript
D, (t) we denote vertex v which has attribute vector
D(t) and with superscript D'(t) we denote i-th com-
ponent of the node attribute vector D(t),i € {1,d}.

Definition (Type 1 Anomaly): For graph G a node
v is called type 1 anomaly, if it has attributes D, (t)
that are rare and differ from the majority of other
node’s attributes D, (t) for u € V\u,t € [ty,ty + 9),
for small § > 0. This anomaly is referred to as global
anomaly, Fig.l.a. This anomaly type does not take

into account any network structure or temporal struc-
ture in the data. But as we mentioned earlier network
data incorporates interdependence, therefore we study
three additional pattern-based definitions of anoma-
lies.

Definition (Type 2 Anomaly): For graph G a node
v is called type 2 anomaly, if it has attributes D, (t)
that are rare and differ from the majority of neighbor-
ing node’s attributes D, (t), where v € N(v), where
N(v) are neighboring nodes of node v, t € [ty,t, + 9),
for small § > 0. This anomaly is referred to as neigh-
bor anomaly.

Definition (Type 3 Anomaly): For graph G a node
v is called type 3 anomaly, if it has attributes D, (t)
that are rare and differ from the majority of the same
community node’s attributes D, (t), v € C(v), where
C(v) are nodes from the same community node v,
t € [ty,tg + 9), for small 6 > 0. By community, we
mean a densely connected groups of ”close” nodes in
the graph. This anomaly is referred to as community
anomaly.

Definition (Type 4 Anomaly): For graph G a node
v is called type 4 anomaly, if it has attributes D, (t)
that are rare and differ from the majority of the same
nodes attributes at different time steps in the same
time series, D, (t'), t € [ty,” — ] U [t' +6,T], for small
0 > 0. This anomaly is called temporal anomaly.

5. Theory

5.0.1. Important Graph Properties

Following are some important graph properties that we
will be using to extract features for anomaly detection.
Definition 1 (Egonet): Given a node v € V (t), the
egonet of v is defined as egonet(v) = {v} U {ulu €
V(t), ey, € E(t)}. Where e, is the edge between v
and u.

Definition 2 (Super-egonet): Given a node v € V,
the superegonet of v is defined as super — egonet(v) =

{ego(v)} U {ego(u)lu € V(t), e,y € E(t)}

Obviously, these two concepts are very simple in
obtaining the local substructure: they just re-
gard 1-hop neighbors(egonet) or neighbors within 2-
hop(superegonet) as the ego’s closest neighbors. How-
ever, they will encounter problems when dealing with
weighted graphs. As in the case of a friendship net-
work with edge-weights representing interactions be-
tween friends, one is likely to be closer to his intimate
friend’s intimate friend instead of his nodding acquain-
tances. The concept of egonet focuses only on struc-
tural connection but ignores the power of closeness
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transmission. Therefore, it requires a forceful mea-
surement considering both connectivity and closeness.
First, we propose the following two notions to assess
the closeness between ego and its neighbors. We call
the node of interest core to differentiate it from egonet.

Definition 3 (Closeness related to the core):
Let node vy be core, vy € V(t). For v; € V | we
assume that there are d paths connecting vy and v,

The jth path (I in length) passes through nodes
{vg, vy, v, ...,v;} in sequence, where 1 < j < d . Then
the closeness between v, and v; is defined as:

Wy, Vi—1

; Vi—

Closeness(vy,v;) = max IT._}
1<j<d w

v;
Where w,,,,  is the weight of the edge between v;
and v;,,, and w, is the sum of the weights of the
edges connected to node v, . Obviously, Vv, € V(t)
, Closeness(vg,v;) € [0,1]. The higher the value, the
more intimate the relation is. It is possible that a
node directly connected with the core owns a smaller
closeness. In the case that two (or more) identical
values of closeness are obtained from two (or more)
different paths, to avoid closeness drift, we prefer the
path that includes the edge directly connecting the
core with maximum weight.

Definition 4 (k-closeness of the core): Let node
vy be core, v, € V(t). For Vk > 0, the k-closeness of
the core, denoted as k-closeness(v,), is defined as :

(i) For at least k nodes v, € {V(t)\vy}, it holds that
Closeness(vy,v,) > k — closeness(vg),and

(ii) For at most k-1 nodes v, € {V'(t)\v}, it holds that
Closeness(vy,v,) > k — closeness(v,). Different with
the concepts of Egonet and Super-egonet, this defi-
nition considers the top-k£ ”closest” neighbors of the
core only based on closeness transmission, instead of
linking relationships. In this definition, the "closest”
neighbors are those nodes with larger value of close-
ness, rather than directly connecting with the core.

Definition 5 (k-closeness neighborhood of the
core): Given the k-closeness of core vy, the k-
closeness neighborhood of v0 contains every node
whose closeness related to v, is not smaller than
the k — closeness(vy). Formally, Ni(vy) = {v, €
V(t)\vg|Closeness(vy,v,) > k — closeness(vy)}. As
mentioned above, egonet concerns only the nodes di-
rectly connected with the node of interest, while the
closeness measurement (Def. 3-5) mainly consider
closeness transmission. The former completely ignores
the edge-weight information, similarly, the latter ig-
nores the risk that the reliability may reduce after suc-
cessive transmissions. Thus, for the purpose of discov-

ering the local context for the core, we propose a notion
named Corenet that balances the topology structure
and the closeness transmission.

5.0.2. Feature Extraction

We study four different kind of features and compare
them for the task of anomaly detection

1. Direct Neighbour Outlier Detection Algo-
rithm (DNODA): DNODA is an algorithm that
considers use of the direct neighbours u € N, (v)
of a given node v € V(t). A DNODA outlier fea-
ture is calculated as below. Intuitively the fea-
ture is directly proportional to the distance of v
from its direct neighbours using the feature vector
D, (t), refer to score as DNODA(v,) € R?. Hence
an aberrant variation of any node would indicate
an anomaly. Formally we can calculate this using
the following equation

D,(t

DNODA(vy) = D, (t) — W

To account for the temporal dimension in our

problem, we also consider the readings of the same

node at time-steps t — 1 and ¢t + 1 as neighbors.

Thus, the formula now changes to

Dvo(t —1)+ Dvo(t +1)

DNODA(vg) = D, (t) —

_ ZteNk(vO) Dy(?)
k

k+2

2. Community Neighbor Algorithm (CNA):
Communities were detected in the graph using
Spectral Clustering on the network. Spectral clus-
tering (Buitinck et al., 2013) allows a precom-
puted distance matrix to be used for the clustering
function. Thus, the matrix for the sensors consist-
ing of the probabilities of the corresponding edges
was used as an affinity metric. When the commu-
nities are identified we calculate the score within
community as

> oo Dult)
ONA(vy) = D (1) = ="
Yo

(t—1)+D, (t+1)
k+ 2

where C(v,) is the community as defined by the
MCL algorithm.

Again, we add the features for the previous and
following time step to the ones in the community
to detect outliers.
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3. Denoising Autoencoders: An autoencoder

(Vincent et al., 2008) takes an input x € [0,1]¢
and first maps it (with an encoder) to a hidden
representation y € [0,1]¢ through a deterministic

mapping, eg:-
= s(Wx +b) (1)

Where s is a non-linearity such as the sigmoid.
The latent representation y, or code is then
mapped back (with a decoder) into a reconstruc-
tion z of the same shape as x. The mapping hap-
pens through a similar transformation, e.g.:

z=s(Wy+Db) (2)

The reconstruction error can be measured in
many ways, depending on the appropriate distri-
butional assumptions on the input given the code.
The traditional squared error L(xz) = ||x — z||?,
can be used. If the input is interpreted as either
bit vectors or vectors of bit probabilities, cross-
entropy of the reconstruction. If the input is in-
terpreted as either bit vectors or vectors of bit
probabilities, cross-entropy of the reconstruction
can be used:

d
Z x;, logz;, + (1 — x;,) log(1 — z,)]
k=1

(3)

If there is no constraint besides minimizing the
reconstruction error, one might expect an auto-
encoder with n inputs and an encoding of dimen-
sion n (or greater) to learn the identity function,
merely mapping an input to its copy. Such an au-
toencoder would not differentiate test examples
(from the training distribution) from other input
configurations.

The idea behind denoising autoencoders is sim-
ple. In order to force the hidden layer to discover
more robust features and prevent it from simply
learning the identity, we train the autoencoder to
reconstruct the input from a corrupted version of
it. The denoising auto-encoder is a stochastic ver-
sion of the auto-encoder. Intuitively, a denoising
auto-encoder does two things: try to encode the
input (preserve the information about the input),
and try to undo the effect of a corruption process
stochastically applied to the input of the auto-
encoder. The latter can only be done by capturing
the statistical dependencies between the inputs.

. Corenet: Given the k-closeness of core, k —
closeness(vy), the Corenet of v, contains nodes

that satisfy the conditions: (i) the closeness
related to v, is not smaller than the k —
closeness(vy), and (ii) they are in the super —
egonet of wy. Formally, v, € super —
egonet(vy)\vy, Corenet(vy) is defined as:

super — egonet(v,),
if min, Closeness(vy,v,) >
p

Corenet(vy) = k — closeness(vy)

Ny (vp), others

So far, we have defined corenet as the local con-
text of the core, which fully takes closeness trans-
mission into account and avoids meaningless ex-
cessive transmissions by imposing a structural re-
striction. It is obvious that only the nodes in
super — egonet(v,) need to be calculated close-
ness related to the core and the maximum size
of corenet is the number of the core’s neighbors
within 2-hop.

5.0.3. Spatio-Temporal Anamoly Detection

Once the features have been extracted, we use each
of them and pass them through the following three
algorithms.

1. Incremental Local Evolutional Outlier De-
tection (ICLEOD):- Before we present the par-
ticular measuring function, we first analyze the
signs that a node is evolving abnormally. Con-
sider we have two snapshots G,_; and G, , and
the node of interest is v, there are two major signs
to show that v is likely to be a outlier:

(1) The members of Corenet(v) in G,_; no longer
belong to Corenet(v) or their closeness related to
v is getting weaker from G,_; to Gy;

(2) The new members added to Corenet,(v) have
clear distinction with the former members, more-
over, their closeness related to v can be unex-
pected high. These two anomalous indication can
be measured by Score 1 and Score 2 respectively,
and the outlying score is the sum.

Let, Corenet,_;(v) and Corenet,(v) represent the
Corenets of node v in G;_; and G, respectively.
We denote the intersection of Corenet, ;(v) and
Corenet,(v) except v as C,,;, which is the set
of old neighbors of node v. The elements of
Corenet,_,(v)\C,;; are the neighbors removed

from Corenet(v) at time ¢, denoted as C,..,,oped-
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The elements of Corenet,(v)\C

14 are new neigh-
bors of v, denoted as C,,.,,- The outlying score of
node v is defined as:

OutlyingScore(v) = Z
v,.€C

closeness, 4 (v,.,v)
removed

+ Z [closeness,_;(v;,v) — closeness,(v;, v)]

v;€C014
w’Ul’Uj
+ Z 11— x closeness,(v;,v)]
V;€C e Vi€Co1a Yi
Where w, ,, is the weight of edge between v; and
iV

Vj 5 is the sum of the weights of the edges

connected to v; . The sum of former summation
terms is Score 1, which measures outlying degree
caused by situation (1). Similarly, the third sum-
mation term represents Score 2, which measures
outlying degree caused by new neighbors in situ-
ation (2).

w,, .

2. Measuring Reconstruction error Ly(z,z):
Using autoencoders, anomalies can be detected
since they will be different from learned "normal”
patterns, and therefore would have a higher
reconstruction error.

d

Z x;, logz;, + (1 — x;,) log(1 — z,)]

k=1

3. Isolation Forest: One efficient way of perform-
ing outlier detection in high-dimensional datasets
is to use random forests (Pedregosa et al., 2011).
The algorithm in Isolation Forest ‘isolates’ obser-
vations by randomly selecting a feature and then
randomly selecting a split value between the max-
imum and minimum values of the selected fea-
ture. Since recursive partitioning can be repre-
sented by a tree structure, the number of split-
tings required to isolate a node is equivalent to
the path length from the root node to the ter-
minating node. This path length, averaged over a
forest of such random trees, is a measure of abnor-
mality and our decision function. Thus, random
partitioning produces noticeably shorter paths for
anomalies. Hence, when a forest of random trees
collectively produce shorter path lengths for par-
ticular nodes, they are highly likely to be anoma-
lies.

6. Experiments & Results

We conducted various experiments for different
datasets, that qualitatively give us proof that the im-

Type 1 Type 2 Type 3
DNODA /
DNODA +
Isolation Forest
CNA

CNA + Isolation
Forest

IcLEOD

Denoising /
Auto-Encoders

XXX X
LN |X
NGO N

X
X
v
v

Figure 1. A table describing what algorithms are applica-
ble for the detection of what kind of anamolies.

plementation of our algorithms gives the correct result.

In all, we conducted 12 separate experiments to dis-
cover all the types of anamolies i.e. from Type 1 to
Type 4. Along the way we also compare different al-
gorithms for anamoly detection and different feature
extraction techniques. There are 6 techniques in total
and 2 different datasets ( the intel data set and the
synthetic dataset described above). Here we present
a brief outline of all the 6 experiments that were con-
ducted. All the details about the feature extractors
and the anomaly detection algorithms can be found in
previous sections of this report.

1. DNODA feature extractor with DNODA score as
the anomaly detection measure: This is useful for
detection of Type 2. Our definition of DNODA
features also takes into account the features of
the neighbors at time T-1 and T+1. Thus this
enables the detection of Type 4 anomalies.

2. CNA feature extractor with CNA score as
anomaly detection measure: This is useful for de-
tecting Type 3 anomalies, i.e. anomalies within
a community. Our definition of CNA features is
slightly modified to include the community fea-
tures at time instances T-1 and T+1, thus this
also enabled this model to detect Type 4 anoma-
lies.

3. DNODA feature extractor with isolation forest
as anomaly detection algorithm: Same as experi-
ment (1). This is conducted to compare the per-
formance of DNODA score with the isolation for-
est.

4. CNA feature extractor with isolation forest as the
the anomaly detection algorithm: Same as exper-
iment (2). We can compare the performance of
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Figure 2. A graph comparing the quantitative performance
of various algorithms on the synthetic dataset.

CNA score and the isolation forest algorithm.

5. Corenet feature extractor with IcLEOD algorithm
for anomaly detection: This algorithm is designed
to predict Type 4 anomalies i.e. the temporal
anomalies accurately.

6. Denoising Autoencoders as the feature extractors
with reconstruction loss as the anomaly detection
measure: The denoising autoencoder can learn
the probability distribution of any kind data that
is presented to it. In our experiments we make
the autoencoder learn a probability distribution
of sensor reading as compared to their surround-
ing and also node features at time instances T-1
and T+1. This is done to have a fair comparison
between the other algorithms and the denoising
autoencoder. In its current state this experiment
will also detect Type 2 and Type 4 anomalies.

6.1. Synthetic Dataset

True Positive Rates (TPR), False Positive Rates
(FPR), Receiver operating characteristic (ROC)
curves and Area under ROC curves(AUC) scores are
used to measure the performance of the algorithms
on the labelled data. Table 2 outlines the results ob-
tained for all 6 experiments. Figure 2 shows the ROC’s
of each of the algorithm. As we can see, IcLEOD,
being an algorithm specifically tailored for Tempo-
ral Anomaly detection, performs the best. Isolation
Forests in combination with DNODA and CNA per-
form better than their vanilla counterparts. CNA ver-
sions perform better than the DNODA versions since
the graph is highly clustered and CNA considers more
'neighbours’ than DNODA does. Auto-encoders does
decently well.

Algorithm ROC AUC
IcLEOD 0.91
Isolation Forest with CNA features 0.79
MSE for denoising Autoencoder 0.73
CNA scores 0.72
Isolation Forest with DNODA features 0.60
DNODA scores 0.55

Table 2. Quantitative results for various algorithms on the
synthetic dataset

Figure 3. Sensor Boundaries identified by the Spectral
Clustering on edges of Intel Lab dataset. Different colored
boxes represent the different clusters. Boundaries closely
represent the geographical position of sensor nodes

6.2. Real World Dataset

Although it is not possible to quantitatively evaluate
the results for the real-world dataset, we can visualize
the performance of various algorithms and analyze the
performance qualitatively.

As we can see from Figures 4 to 7, according to
the readings of various sensors displayed, mote ids
{12, 31, 50} seem to be outliers. Out of these, the mote
ids 12 and 31 classify as a Type 2 , 3 anomaly and mote
id 50 as a Type 4 anomaly. This is what is predicted
by the various algorithms which can be seen in the
figures 8 to 10.

We can clearly see that DNODA and CNA are good at
discovering Type 2 and Type 3 anomalies but cannot
detect the Type 4 anomalies ( for mote 50 ) that are
easily discovered by IcLEOD ( due to the spike for the
reading of the light sensors).

7. Conclusion

1. Normal spatial anomaly detection algorithms
with few modifications can detect temporal
anomalies in evolutionary networks.
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Figure 4. The light reading for all the 54 sensors at two
time steps (red and green). As we can see here that there
is a huge spike between the two different time steps for
mote 50. Classifying this as a Type 4 Anomaly. Also, we
can see the spikes for the green scatter plot for node 12
and 31, classifying it as a Type 2 and Type 3 anamoly.
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Figure 5. The voltage reading for all the 54 sensors at two
time steps (red and green). No clear spikes appear in these
readings.
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Figure 6. The temperature reading for all the 54 sensors
at two time steps (red and green). Here the spikes oc-
cur within the same time step for nodes as compared to
their neighbors, thus this may result in Type 2 and Type
3 anamolies.
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Figure 7. The humidity reading for all the 54 sensors at two
time steps (red and green). No clear spikes are observed.
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Figure 8. DNODA scores for all 54 motes for a particular
epoch. As seen, the node 31 (Type 2 anomaly) has an ag-
gregate reading that is very different from it’s neighbours.
DNODA also captures anomalies in nodes 12 and 15.
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Figure 9. CNA scores for all 54 motes for a particular
epoch. As seen, the nodes 12, 15 and 31 are also cap-
tured here. CNA also manages to capture the anomaly in
node 18 (Type 3 anomaly) that was missed by DNODA.
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Figure 10. IcLEOD scores for all 54 motes for a particular
epoch. IcLEOD manages to capture the Type 4 anomaly
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8. Division of Work

The theoretical part was done equally by both team
members. The implementation was divided as follows:

1. Dataset Creation and Curation: Juhi
2. DNODA: Juhi

3. CNA: Juhi

4. Isolation Forests: Juhi

5. IcLEOD: Kratarth

6. Denoising Auto-encoders: Kratarth
7. Results evaluation: Kratarth
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