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We are partnering with a start-up whose mission is to be a personal recruiter
for a network of top companies in every industry. The goal of our project
is to provide company recommendations for job-seeking candidates using
data from LinkedIn provided by the start-up. This task can be framed as
a network edge prediction problem: given a bipartite graph consisting of
users and companies, predict which are the most likely user-company edges
to be created in the future. Extensive research exists on link prediction,
and link prediction for bipartite graphs specifically. Our project is unique
because we have additional metadata: each user profile has a list of other
user profiles viewed. Using this information, we can generate a user-user
similarity network. We leverage this supplementary similarity network to
improve upon existing edge prediction methods.

1. INTRODUCTION

Link prediction is an important problem when it comes to social
and information network analysis. Recommendation systems for
social networks effectively solve this problem. Liben-Nowell and
Kleinberg [Liben-Nowell and Kleinberg 2003] solved this problem
by using a number of similarity metrics over nodes. These metrics
are defined beforehand and are not tuned to each specific graph.
Other works involve methods which are trained on the graphs[Li
and Chen 2013][Al Hasan et al. 2006][Kashima et al. 2009].

In the special case of bipartite graphs, general methods are not
directly available. For example, similarity metrics like the Common
Neighbors, Jaccard Coefficient, and Adamic-Adar are not directly
applicable. Work has been done on modifying Kernel based meth-
ods for bipartite graphs[Liu and Yang 2015].

Our project involves a bipartite graph of users and companies,
representing users’ work history. Link prediction can be used to
recommend jobs to users. Bipartite link prediction is applicable to
other networks as well. For example, a Pinterest dataset may in-
volve a split into two groups: the pins and the boards. Unlike other
bipartite link prediction problems, our dataset has additional user-
user edges which join similar users together. The edges connect
the users whose accounts were most visited by the same people.
We leverage these edges to improve upon existing link prediction
methods. We show for a number of simple methods that using user-
user edges significantly improves results.

2. LITERATURE REVIEW

For the goal of link prediction in networks, several heuristic-based
approaches have been proposed. These include similarity-based
techniques [Resnick et al. 1994][Sarwar et al. 2001], eigenvector-
based node ranking [Huang et al. 2004][Huang et al. 2007a], node
position-based [Fouss et al. 2012], and clustering coefficient-based
techniques [Huang et al. 2007b]. All of these methods, except
[Fouss et al. 2012] which uses random-walks to compute similari-
ties, are not directly applicable to our method because they do not
involve bipartite graphs. Approaches which combine node meta-

data can be tweaked to leverage user graph edges. We modify some
similarity metrics to make them compatible for the given graph.

Model-based approaches that use statistical machine learning, in
contrast to heuristics, have also recently enjoyed attention in liter-
ature owing to their success across tasks. The success of the col-
laborative filtering paradigm in heuristic based approaches has led
many learning approaches to attempt to extend the paradigm in a
dynamic setting. [Getoor and Sahami 1999] employ probabilistic
relational models (PRM) with collaborative filtering. This work is
extended to dynamic hierarchical class learning using hierarchical
PRMs by [Newton and Greiner 2004]. An active learning method
that uses probabilistic models with collaborative filtering to query
user preferences in order to achieve better performance for new
users is presented in [Yu et al. 2004].

A supervised learning technique that uses node proximity fea-
tures, aggregated linkage features, and topological features for link
prediction is presented in [Al Hasan et al. 2006]. Another super-
vised approach that uses logistic regression with topological and
content-based similarity measures is due to [Wang et al. 2007].
Semi-supervised [Kashima et al. 2009] and unsupervised cluster-
ing based techniques [Reddy et al. 2002] have also been used for
link prediction. Features to compute node similarity can leverage
user graph edges.

As an alternative machine learning approach, graph kernel meth-
ods can be used to extract features from graph structure. As com-
pared to feature-based methods, kernel methods do not require
explicit node featurization, which can be computationally expen-
sive or require extensive domain knowledge. Marginalized ker-
nel [Kashima et al. 2003], Diffusion kernel [Kondor and Lafferty
2002], Commute time kernel [Fouss et al. 2007], Laplacian kernel
[Yajima 2006] have all been used to capture features from graphs
that can be then used for link prediction tasks. Another kernel
based method, due to [Li and Chen 2013], can in fact incorporate
both graph structural and node level features and combine them for
its kernel calculation. We apply one graph kernel based approach
which uses user graph edges as features.

3. PROBLEM DEFINITION
3.1 Input

—Bipartite graph G, = (V,,, Ve, E) linking users to companies.
—User network G,, = (V4,, F,,) linking users to other users.

—Set of users U C V,, for whom to generate predictions.

3.2 Output

Set of companies C' C V. for each user u € U.

3.3 Evaluation Metric

Mean average precision at k (MAP@k)[kaggle ]: The average pre-
cision at n for a user is:



n
ap@n = ' P(k)/min(m, n)

k=1
where P(k) means the precision at cut-off k in the item list,
i.e., the ratio of number of recommended nodes followed, up to the
position k, over the number k; P(k) equals O when the k-th item
is not followed upon recommendation; m is the number of relevant
nodes; n is the number of predicted nodes. If the denominator is
zero, P(k)/ min(m, n) is set to zero. The mean average precision
for IV users at position n is the average of the average precision of

each user, i.e.,

N
MAP@n = 2 ap@n;/IN

i=1

As the equation above shows, the order of predictions matters for
this metric, but only if there is at least one incorrect prediction.

4. DATA
4.1 LinkedIn Data

Our start-up partner has provided us with sample user profiles and
company profile data from LinkedIn in order to experiment on real-
world data. The data has the following format:

—User profiles: These are the profiles created by LinkedIn users.
For each user, the dataset contains previous work experiences
(including company name and start date). The previous work
experiences are used to build G, the graph containing undi-
rected edges between users and companies. Additionally, for
each user, the dataset contains a list of other user profiles that
are commonly co-viewed by other LinkedIn users ("People Also
Viewed”). These adjacency lists are used to populate the graph
Gy

—Company profiles: These are the profiles created by LinkedIn
companies (or auto-generated by LinkedIn otherwise). For each
company, similar to the user profiles, the dataset contains a
list of other company profiles that are commonly co-viewed by
LinkedIn users ("Companies Also Viewed”). Since the ”Com-
panies Also Viewed” lists are very sparse, they were not used
to generate company-company edges when populating the graph
G..

A key challenge involved with using the provided LinkedIn data

is that the dataset is large and edges are sparse. In total, there

are 9 million company profiles and 100 million user profiles.

The company dataset totals 27 gigabytes and the user dataset

totals 240 gigabytes. Unfortunately, taking a random sample of

the dataset is not effective because doing so does not produce
enough edges. In fact, when sampling random sets of as many as

100,000 users, the average degree in the resulting G, graphs is

less than 1.0.

In order to identify a dense subgraph G, of the user profile

dataset, we developed the following algorithm. By processing

small batches of the dataset at a time, and by making greedy (i.e.

locally optimal) decisions, we successfully produced a subgraph

with 7,304 users and an average degree of 5.958.

e Let GG be the graph of all user profiles, n be the target number
of nodes in the output subgraph, and O(m) be the maximum
number of nodes that can be stored in memory.

e Initialize the current subgraph S to be the empty graph.

e Phase 1. For each batch B C G of m nodes:

—Add Bto S.

—Remove nodes with degree of 0 from S.

—Compute the largest connected component S¢ of S.

—If |S¢| > n, let S = S¢ and break.

—Else, remove the m —n nodes from S\ S¢ with the smallest
degrees.

e Phase 2. Initialize a priority queue g storing the degree of each
node in S in increasing order. Denote g; as the 7*" element in
q. For each batch B C G of m nodes:

—For each node 7 € B: If removing go from S and adding ¢
to S would increase the total number of edges in S (i.e. if
¢ would have a larger degree in S than go has), add i to S,
remove qo from S, pop qo from the g, and insert 7 into q.

e Return S.
Phase 1 identifies a connected component S in G whose size is

approximately n, and Phase 2 repeatedly swaps new nodes with
nodes in S if they increase the total number of edges.
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Fig. 1. User-company degree distribution for company nodes in LinkedIn
dataset
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Fig. 3. User-degree distribution for Linkedin dataset

The figures above show the plots for the *densified’ graphs gener-
ated using the LinkedIn data. The first two subplots show the degree
distribution for company and user nodes in G, respectively. The
degree distribution of company nodes in the GG, graph appears to
follow the power law, and so does the the degree distribution of G,,
which is shown alongside.

4.2 Synthetic Data

In addition to real-world data, we synthesize pseudo-random data
using several different graph models described below. By compar-
ing results on real-world data to results on synthesized data, we can
better understand the successes and limits of our models.

—Erdos-Renyi Model: The user-user graph GG,, and the company-
company graph G, are generated using a standard Erdos-Renyi
random model. The user-company graph is generated by creat-
ing edges between each user node u and d companies sampled
uniformly at random. The degree d of each user node is sam-
pled from a normal distribution. This graph model helps serve as
a benchmark for evaluating the extent to which our models can
make use of structure found in other graphs.

—Latent Factors Model: In order to model our hypothesis that users
and companies in the real-world are more likely to link to each
other if they exhibit similar traits (such as personality/culture,
interests/industry, location, etc.), we make use of a latent factor
model when generating edges. Each user and company is repre-
sented as a vector v € R"™ of real values chosen uniformly at
random. Each value in v represents the magnitude of the user or
company’s expression of some latent variable.

In order to mimic power-law node degree distributions found in
real-world graphs, we developed the following algorithm to gen-
erate the user-user graph G, and user-company graph G .:
e Number the nodes ny ...ng.
e For each node n;:
—Sample a value d from a power-law distribution X .
—Compute the cosine similarity, denoted s;;, between latent
factor vectors v; and v; forall j € {1,...,k} and ¢ # j.
Let sgﬁ) denote the m'" largest s;; forall j € {1,...,k}
and i # j.
—Create an edge between nodes 4 and j for j € {1,...,d}.
This algorithm produces a graph whose degree distribution fol-
lows the power-law. To see this, observe that when each node n;
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Fig. 4. User-company degree distribution for company nodes in Random
graph
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Fig. 5. User-company degree distribution for user nodes in Random graph
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Fig. 6. User-degree distribution for Random graph
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Fraction of nodes

is considered, d drawn from the distribution X edges are created.
Each node n; can also have edges if any other node happens to
link to it. Thus, the expected degree of each node n; is 2+E[X],
which is a scaled power-law distribution.
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Fig. 7. User-company degree distribution for company nodes in Latent
Factors graph
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Fig. 8. User-company degree distribution for user nodes in Latent Factors
graph

The degree distributions for user nodes and company nodes in
the Latent Factors graph appear to mimic the degree distributions
for the LinkedIn dataset, more so since the parameters for the
latent-factors model are fine tuned for this task.

—Rewired LinkedIn Data: We run a rewiring algorithm on our

graph where we randomly pick 2 edges and their end-points
and switch their wiring (the metadata, such as employment start
date, which we need for our train-test split, is kept with the
same edges). The wiring is done for the user-company edges
in a way to ensure bipartitenes. We randomly perform rewiring
15,000 times for the user-user graph and 15,000 times for the
user-company graph.
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Fig. 9. User-degree distribution for Latent Factors graph
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Fig. 10. User-company degree distribution for company nodes in Rewired
graph

As a sanity check for the rewiring, above we plot the degree
distribution for the nodes in the LinkedIn graph after rewiring.
Clearly the degree distribution of the nodes remains the same
before and after rewiring the graph, which confirms our imple-
mentation of the rewiring algorithm.

4.3 Data Splitting

—Train-test split: We randomly assign 70% of users for training,
and the remaining 30% of users for testing. The graphs G*"*™ =
{Giv"azn, C;’Z’razn7 G’tlfcazn} and Gtest — {G,tht, GZESt7 GZe‘:st}
represent the subgraphs of G, G., and G, restricted to the
train or test users, respectively (6 graphs in total). Note that both
the G'"%"™ and G**** graphs contain all companies. When test-
ing, we evaluate predictions for one test user at a time. This
means that when generating predictions for a test user ¢, a model
can use all of the G'™**" graphs, but only the edges in G**** in-
volving user . Note G.. is just a set of nodes and has no edges
and is the same for training and testing.

—Features-labels split: In addition, we hold out certain edges from
the GiTai" and GEe5t graphs in order to determine which user-
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Fig. 11. User-company degree distribution for user nodes in Rewired
graph
100 User-user degree distribution
T T
- o .
.. \
107~ e
\
L]
0 »
4 \
3 e
c ®
5 102 %
8 :
g ",
i Smy
3 ‘.‘J ?
107} %, -‘.
& R e
LN # '
' 7" e '
' Wl \
104 ¢ ¢ civocie ce0o 0 ® b
10° 10! 102 10°

Fig. 12. User-degree distribution for Rewired graph

company edge predictions are correct. These held-out edges rep-
resent the ground truth. Rather than holding out a random set of
edges, we determine a certain cutoff date in the past and hold out
all edges that were created after this date. We are able separate
edges temporally because user-company edges have timestamps.
The reason we separate edges temporally is that this approach
simulates the start-up’s use of our system: the system is trained
and tested using all the data available from the past, then when
a new user creates an account, the system needs to predict edges
that will be created in the future. We denote all the data before
the cutoff date as features and all the data after the cutoff date
as labels. Thus, the train and test user-company graphs are each
splitin two, resulting in G f | Girainl Gtest.f and Gtest:t,
The cutoff date is set such that 70% of the user-company edges
occur before it, and 30% of the edges occur after it.

—Train features-labels split: Since some of the models require
labeled training data for supervised learning, we also split
the training user-company data temporally. This results in
Girain.f.f and Gir@n-f:l The train cutoff date is set such that
70% of the training user-company edges occur before it, and
30% of the training edges occur after it.

To summarize, in total we split our data into 9 graphs:

—Train‘ graphs: G’tumm, Gz““'", fo:in»fﬁf, Gf[c‘”"’f*l, and
Gt'rm.n,l.
uc

—Test graphs: GZ&st’ GZest’ Gt;ft’f, and (;viecst,l~

4.4 Graph Statistics

As described earlier there are 4 graphs on which we test our algo-
rithms: the LinkedIn Data, Erdos-Renyi graph model, latent factor
graph model, and rewired LinkedIn Data. [t]

5. MODELS

We implement the following models in order to predict user-
company edges that will be created in the future given data from
the past.

—Random Baseline: The random baseline picks a company ran-
domly from the set of companies a user hasn’t worked at. All
methods should exceed this performance if they are doing some-
thing intelligent.

—Metric Based Methods: One simple method for link prediction
is to define a node similarity metric and order node pairs by de-
creasing similarity [Liben-Nowell and Kleinberg 2003]. These
metrics are not directly applicable to Bipartite graphs. Also, they
need to be modified to leverage the special user-user edges.

We define some notation for this discussion. N (z) is the neigh-

borhood set of a node z in a general graph G. Let u and c be

a user and company node respectively. Given the nature of our

problem, our similarity metrics will give us a number to compare

u and c and not any 2 general nodes in our graphs. N, (u) and

Nyc(u) is the neighborhood of « in the graph G, and G,.. We

also define N, (u) as the set of all nodes which are at a dis-

tance of two edges away from u in G,.. Note that all of these
nodes will be user nodes because GG, is bipartite.

Let us look at 4 common similarity metrics used for link predic-

tion.

e Common Neighbors: For two nodes z and y in a graph G we
output | N (z)NN (y)| which is the number of neighbors shared
by x and y. In a bipartite graph this will fail because two
nodes in the two parts will not share any neighbors. We pro-
pose two variants here for nodes u and ¢: | Ny, (1) N Ny (€)]
and | Ny, (u) N Nyc(c)|. The former will work on any bipartite
graph and the latter leverages the extra G,,,, structure. We see
that we are basically just considering the user-neighborhood of
each node. For user-user edges this will be the same as calcu-
lating this metric normally but normalizing it will be different
as we discuss next.

e Jaccard Coefficient: For two nodes z and y in a graph G we

[N (z)ON ()| 3 - [Nucu (W) Nye (<)l
Output R TR ()] Our versions are: [N en (UM e ()] d

%. This metric removes the effect of the rela-
tive sizes of the neighborhood sets. We don’t use the number
of companies a user connects to when considering user-user
edges.

e Preferential Attachment: For two nodes z and y in a
graph G we output |N(z)||N(y)|. Our versions are:
| Nyew(w)||Nue(e)| and | Nyy (w)||Nye(e)|. This metric is
based on the preferential attachment model and works with
the intuition that neighbors with greater degrees will link to-
gether. For recommendation this is a very poor metric as this
will pick the biggest company irrespective of industry. One



Statistics for the graphs we run our tests on

Avg .
. o | user # of i of — Clu;f{lelilng ﬁverfage Average #
Graph Model M| user user- Ot compa- 1o mpany| S°° clent O €om- | of users per
users user nies 1In user-user pames pCI'
graph edges company
edges graph user
degree
LinkedIn Data || 7304 5058 | 21758 | 19659 25337 | 0.720 3.469 1.288
LinkedIn Data | 7304 | 50957 | 21755 | 19659 25337 | 0.114 3.469 1.288
Rewired
Random 7304 5957 | 21755 | 19659 36058 | 0.231 4.937 1.834
Latent Factors
Eﬁ;"m Erdos || 7304 5958 | 21758 | 19659 22141 | 0.001 3.031 1.126

modification we propose to fix this is to only look at compa-
nies which share common neighbors with u (the u-neighbor
can be defined as |Nycy ()| or [Nyc(c)|). We present results
with our variant. With this modification it still prefers larger
companies but in a more guided fashion.
e Adamic-Adar Coefficient: For two nodes z and y we
output > (log(|N(2)]))~*. This method also
zeN(z)NN(y)
considers common neighbors between two nodes but
gives more weight to nodes with smaller degrees. Our
versions are: > (log(|Nuew(2)]))"*  and
2€ Nycu (u)NNyc(c)
(log(|Nuu(2)])) ™. We can instead of look-
2€Nyy (u)NNyc(c)
ing at the number of user neighbors N, (2) (or Ny (z) if
not using uu edges), look at the number of company neighbors
when N,,.(z). We believe it makes more sense to use N, (z)
as selectivity should measured on the basis of the number of
companies a person has worked at. We call these two variants
Adamic-Adar user and Adamic-Adar company.
It is important to note we have moved away significantly from
the original definition because for the neighborhood definition
we selectively look at only user neighbors of the graph. For the
plain bipartite case we look at users two hops away to construct
such a neighborhood.

—User-User Collaborative Filtering: Similarity scores are com-

puted for pairs of users based on the similarity of their user-
company edges. The recommended companies for a given user
1 are the companies at which the users who are most similar to
1 have worked. In order to use information provided by user-
user edges, we experimented with computing the weight of a
user-company edge between user u and company c as the Jac-
card Similarity of u’s neighbors and the users who worked at c.
Another idea we have for future exploration to incorporate user-
user edges is to develop a hybrid recommender system that also
makes use of content. In our case, we could represent the content
of two users as features involving the user-user social network.

—Personalized Random Walks: Whereas simple metric-based

methods are very local in nature, random walks can be used to
create metrics leveraging large sections of the network structure.
Generalizing random walks to include user-user and company-
company edges is straightforward and may yield promising per-
formance improvements. The hitting time H , from x to y is
defined as the expected number of step it will take for a ran-
dom walk to reach y starting from x. The negative of this can
be taken as a similarity metric which would make nodes with
smaller paths more similar. This metric can be very small if y

happened to be a node with high stationary probability m,, irre-
spective of what x is. The measure is normalized to —7, H ,,. To
reduce the dependency of this metric on nodes far away from x
and y, the random walk is modified to the the page rank method
where the walk is reset to = with some probability 3. For our
graph the random walk can also leverage the uu edges for its pre-
dictions. We run random walk simulations instead of calculating
stationary values to allow for quick runs through the dataset.

—Graph Kernel-based Machine Learning:

[Li and Chen 2013] introduced a novel graph kernel that incorpo-
rates both node level features and graph structural context. This
kernel can be used to measure the similarity between different
edges in the network, and differentiate possible edges from im-
possible ones using a kernel-based classifier such as one-class
SVM. The kernel similarity between two user-object pairs (in a
bipartite graph G) is defined as:

kg(@,we’) = = 3 [Kpaun (h, H)P(RIG)P(H]G)]
uoChu'o’ch’

Where h, h are random walk paths on G starting from node pairs

uo and uo, and where

Kol ) = Rigoge (110 ) X Kigge (e g M1 % s X Ko (115 00)

X Knode(0,0') X v X Knoge (n;_l,n;_l) x knode<n;, n;)

P(h|G) = py ()P (mIny 1)~ P (n3In3) Py (n|u)p; (nS lo)p: (n3Inf)
RACLAVACHE

knode measures the similarity between two nodes, ps(7) is the
stop probability of random walks at node i, and p;(Z|j) is the
transition probability from node j to node :.

The kernel kg lends a natural interpretation to the task of link
prediction in the graph. It measures the joint similarity of the
structure of subgraphs around user-item pairs (approximated by
random walks upto a fixed length) and features of nodes in these
subgraphs. To adapt this algorithm to our use-case we extended
K,ode as follows. Since LinkedIn dataset is not strictly a bi-
partite graph, it also contains edges between user pairs and be-
tween company pairs. These edges correspond to the People Also
Viewed feature on LinkedIn, which indicates users/companies
(henceforth, nodes) that are similar (according to some hidden
distributed metric of similarity determined by the populace) to
a given node. These edges were held as representative of node
similarity, such that the similarity of a pair nodes (measured by
K,ode) 1 if either of the nodes occurs in the others’ “People
Also Viewed” list.



6. RESULTS AND ANALYSIS

The table on the next page tabulates the results for all the methods
on the 4 graphs we discussed about earlier. We discuss the results
of our experiments and make some interesting observations. We
consider Graph Kernel-based Learning separately as its execution
was extremely slow so we don’t have comprehensive results. Also
we don’t have a non-uu variant of it (for that we need additional
metadata to exploit).

6.1 Best Performance

Simulation of random walks gives us the best results in all cases
except one. This shows the power of these walks to exploit the
structure of the graphs to make such predictions without any mod-
ifications.

6.2 User-user vs. no user-user Graphs

We consistently observe for all methods that leveraging uu edges
consistently yields better performance. Which makes sense as these
edges provide added structure for the methods to exploit.

6.3 Variation over Graphs

We see the best results are possible on the random latent factor
graph. This is because the nodes are connected in a very struc-
tured way (leading to more regularity as compared to the real world
dataset). The closer the latent factors are on the hypersphere the
more likely it is that the nodes will have an edge between them.
We note that rewiring destroys the underlying structure of the graph
(as expected) and leads worsening in the performance of the al-
gorithms. It is ineresting to not that uu edges still provide addi-
tional benefits even though the rewiring of user-user graph and
user-company graph was independently done. This is probably be-
cause the degree distribution still carries some useful information
which the methods can exploit.

We observe the most extreme scenario in the Random Erdos Reyni
model which makes sense as the user-user connections are inde-
pendent of the user-company edges. Therefore, uu edges are com-
pletely misleading and lead to all methods failing. All methods
not using uu edges give the same performance. We note the ran-
dom walk method uses uu edges to give better performance. This
is probably because the random uu edges let the random walk ex-
plore farther away nodes which can come into easily easily in an
erdos-reyni graph model where each edge has equal probability.

6.4 Everyone wants to work for Google

We observe that among all methods based on simple similarity met-
rics preferential attachment gives the best results. This lends some
credibility to the intuition that people on average prefer working
(or end up working) in big companies.

We note preferential attachment works extremely well in the latent
factor model. This is probably because the latent factor model will
prefer joining users to high degree company nodes. This also in-
dicates that there might be more structure at play in the LinkedIn
dataset which the latent factor method can not capture.

6.5 Collaborative Filtering

We note that when not considering uu edges collaborative filtering
gives the best performance. The only exception is in the case of
the rewired graph. This is probably because they loose a lot of their
structure. Interestingly we get the best performance on Erdos-Renyi

with collaborative filtering. Perhaps it captures uniformly random
distributions better than other methods.

Unfortunately, our variant with uu edges performs worse than
vanilla collaborative filtering. Even so the performance degrada-
tion is not very bad. We believe further exploration in this direction
can lead to better results.

6.6 Graph Kernel-based Learning

Although this method gives reasonable results, it takes a lot of time
to run (approx 4 hrs per experiment). We believe such a method
would require far more richer metadata to reach its full potential.
Even so on the linkedIn dataset we get the second best performance
using Graph Kernel Learning.

6.7 Very Low values

Even though all methods perform much better than the random
baseline, we note that the values is still very low. This is simply
because the problem of predicting links in large graphs with sparse
edges is difficult. Interestingly a graph in a given state can presum-
ably evolve in a huge number of ways. Our methods are supposed
to act as recommender systems and what would be interesting to
measure is how useful they are to users when deployed on a profes-
sional network. This analysis is not possible with our dataset.

6.8 Effect of density on random walk performance
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Fig. 13. Change in results with density for latent factor model

The chart above plots the performance of the Random Walk
model (with and without user-user edges) on latent factor synthetic
graphs as the density of the latent factor synthetic graphs increases
(as the parameter x,,;, increases, the number of edges in the latent
factor synthetic graphs increases linearly). The results demonstrate
that for sparse graphs, user-user edges provide valuable informa-
tion. However, as the graphs become very dense, performance de-
creases. This seems reasonable because when there are many edges
and as the graph becomes a fully connected graph, each edge be-
comes less significant. The result is that the Random Walk model
is able to extract less information from the structure of the graph.
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MAP @10 results of various methods on the 4 graphs

Random
Erdos
Renyi

Rewired Random
LinkedIn Latent
Data Factors

LinkedIn

Algorithm Diita

Random

Baseline 0.000094

0.000109 | 0.000104 | 0.000000

Common
Neighbors
(with uu)

0.021499 | 0.000782 | 0.055694 | 0.000000

Common
Neighbors
(no uu)

0.003346 | 0.000084 | 0.010583 | 0.000188

Jaccard
Coeff. (with
uu)

0.016202 | 0.000494 | 0.035209 | 0.000000

Jaccard Co-

eff. (no uu) 0.001998

0.000000 | 0.005144 | 0.000188

Adamic-
Adar user
(with uu)

0.020798 | 0.000796 | 0.053531 | 0.000000

Adamic-
Adar user
(no uu)

0.003031 | 0.000380 | 0.008658 | 0.000126

Adamic-
Adar comp.
(with uu)

0.021499 | 0.000782 | 0.055694 | 0.000000

Adamic-
Adar comp.
(no uu)

0.003346 | 0.000084 | 0.010583 | 0.000188

Preferential
Attachment
(with uu)

0.027375 | 0.002850 | 0.062309 | 0.000000

Preferential
Attachment
(no uu)

0.007967 | 0.001393 | 0.021054 | 0.000188

Random
Walk  Sim
(with uu)

0.043612 | 0.002102 | 0.067047 | 0.000220

Random
Walk  Sim
(no uu)

0.007440 | 0.001976 | 0.021455 | 0.000188

Collaborative
Filtering
(with uu)

0.010293 | 0.000477 | 0.029650 | 0.000377

Collaborative
Filtering (no
uu)

0.012354 | 0.000587 | 0.031656 | 0.000377

Graph
Kernel-
based
Learning
(with uu)

0.034408 | (not run) 0.034408 (not run)
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