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1 Introduction

Since its launch in 2007, YouTube has been
a fast-growing network, with over 4 billion
videos viewed a day!. This social network
continues to grow as more videos (nodes) get
added every day. In this project, we explore
different models for incorporating graph struc-
ture on related videos to predict ratings and
view counts of YouTube videos. we pro-
pose and test a probabilistic model for how
a video’s attributes compare to the attributes
of other videos in its “related” section. Our
model is based on conditional random fields
from image segmentation literature and aims
to capture the intuition that related videos are
more likely to have similar ratings and view
counts.

Although our work is specific to the related
videos network on YouTube, we hope that the
ideas in this paper can generalize to other pre-
diction tasks over networks where attributes of
neighboring nodes are related, but there is no
outright clustering in these attributes.

2 Related Work

Our general question is inspired by the use of
conditional random fields in image segmen-
tation for computer vision. A common ap-
proach in computer vision (Silberman et al.,
2012; Nathan Silberman and Fergus, 2012)

Thttp://www.personal.ceu.hu/tex/footnote.htm

for producing a detailed scene segmentation
is to first apply a classifier on local patches of
the image, and then tune the global set of la-
bels in the image by optimizing an objective
which penalizes neighboring pixels for hav-
ing different labels. This approach has been
shown to increase the accuracy of the entire
image labeling by a few percentage points,
because neighboring pixels are likely to have
the same label. We explore whether applying
this same model to related videos will allow
us to more accurately predict ratings and view
counts of YouTube videos. We expect that our
results can give us insight on the structure of
YouTube ratings across related videos.

We are interested in comparing our com-
puter vision-inspired approach with feature
representations of the graphical structure.
Semi-supervised methods such as node2vec
(Grover and Leskovec, 2016) and DeepWalk
(Perozzi et al., 2014) learn a feature repre-
sentation of the nodes in the graph by opti-
mizing an objective that preserves informa-
tion about the neighborhood of the nodes. In
(Grover and Leskovec, 2016), it is shown that
node2vec and DeepWalk can be used to pre-
dict labels for a set of nodes in the graph, given
supervision (labels) for a smaller subset of the
graph. We are interested in whether these
feature embedding methods will also be able
to predict YouTube ratings and view counts,
which could have higher variance across re-



lated videos.

In a social network context, the problem
of prediction based on information from simi-
lar nodes has been tackled in the literature on
recommendation systems. In (He and Chu,
2010), He and Chu investigate the problem
of using social network information to predict
a user’s interest in a product based on infor-
mation about a user’s friends. They model
interactions between users in a similar way
that CRFs from computer vision model inter-
actions between neighboring pixels; however,
the difference here is that they have full ac-
cess to past ratings. In our setting, the ratings
of neighbors are not known.

On the other end of the supervision spec-
trum, there are unsupervised techniques for
clustering such as modularity maximization
(Chen et al.,, 2014). Chen, et. al explore
heuristics for modularity maximization, which
is an unsupervised methods for extracting
clusters from a graph. While similar optimiza-
tion techniques apply to our setting (simulated
annealing, for example), we have the benefit
of a small training set to train local classifiers
which are then used in the CRF. We also note
that intuitively, we should not expect videos to
cluster based on ratings and view counts the
same way they would cluster based on video
category. Thus, our objective is different from
these clustering approaches.

3 Method

3.1 Dataset

We use the YouTube dataset provided to us
by (Cheng et al., 2008) for our project. This
dataset includes 749361 crawled YouTube
videos before February 2007. However,
since some of the videos were only partially
crawled, we prune out these videos, ending up
with 730110 total videos used in our dataset.
The method with which (Cheng et al., 2008)
crawl the dataset induces a graph structure:
after crawling a video, they add up to 20 re-

lated videos to the crawl queue, thus perform-
ing a breadth-first search from the starting
video. This allows us to construct an undi-
rected graph where an edge exists between
videos if one video is in the related section of
another. Figure 1 shows the resulting degree
distribution on this graph on a log-log scale.
We see that the degrees do not entirely fol-
low a power-law distribution because there are
fewer low-degree videos, resulting from the
fact that most videos will have at least 20 re-
lated videos.
For each of these videos, we are given:

e an 11-digit unique string as the video ID
e the video uploader’s username
e video age and category

e video length and number of views (at the
time of the crawl)

e video rating and number of ratings.
e number of comments

e up to 20 video ID’s that are related to this
video

Because the dataset we are using was cre-
ated in 2007, ratings on YouTube were on a
scale of 0 to 5. In each video, we are given the
average rating.

In our dataset, we found that roughly 15.6%
of the videos had a very low rating of less
than 1. 2.8% had a rating between 1 and 2,
3.8% between 2 and 3, 10.9% between 3 and
4, and 67.0% with a high rating of greater than
4. This means there is a very uneven distribu-
tion between the ratings, and because we want
the slots to be as even as possible, we catego-
rize ratings into the following buckets, which
we have found makes the ratings more or less
equal:

e rating < 2.8
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Figure 1: Degree distribution for the crawled YouTube videos.

e 2.8 <rating < 4.5
e 4.5 <rating < 4.95
e 495 < rating

For our prediction tasks, we attempt to
predict which of the four ratings categories
a given video falls under. We label these
categories 0 through 3. We also discretize
view counts similarly, dividing videos into
two classes based on whether number of views
is less than 1200, labeling these categories 0
through 1. We find that this splits our dataset
into two classes of roughly equal size. In Fig-
ure 2, we show the precise proportions in each
class.

3.2 Baseline Predictor

We implement a naive softmax classifier that
predicts the ratings category based on five
simple features: video age, video length, num-
ber of views, number of ratings, and number

0 | 1 | 2| 3
0.215 [ 0.270 | 0.267 | 0.248

(a) Proportion of nodes in each ratings
category.

0 | 1 |
0.491 | 0510 |
(b) Proportion of

nodes in each views
category.

Figure 2: We show how categories are dis-
tributed across the dataset.



of comments. We train using gradient descent
on a training set of 1000 randomly sampled
videos from the graph, and tune learning rate
on a validation set of 30000 randomly sam-
pled videos. The inputs to the classifier are
the vectors of concatenated features, where
each vector is normalized to have Euclidean
norm 1. Because our classifier has so little pa-
rameters, there was no evidence of overfitting,
as our training and validation accuracies were
virtually the same. For view counts, we im-
plement the same type of classifier, except we
use video rating as a feature instead of num-
ber of views. We used the scikit-learn neural
network package to implement the classifier.

We also implement the same type of classi-
fier for both ratings and view prediction, this
time using node2vec features as input instead
of video metadata features. Our node2vec
features have dimension 128. To extract
node2vec features, we run the SNAP imple-
mentation of node2vec on the directed graph
of video relation. If Video A is a related video
of video B, that does not necessarily mean
video B will be on the related videos for video
A. Also, the undirected graph caused the com-
puter to run out of memory.

3.3 Conditional Random Field

Our aim for this project was to leverage the
additional supervision of the graph structure
to try to perform some more meaningful pre-
dictions on the video ratings. In particular, we
would like to find a good probabilistic model
for the assumption that a video’s ratings and
view counts are likely to be similar to those of
its neighbors. In our analysis, we show that
this assumption is valid, although our proba-
bilistic model has more mixed results.

Our probabilistic model is based on con-
ditional random fields from computer vision
(Silberman et al., 2012; Nathan Silberman and
Fergus, 2012). For video v in our dataset V/,
let r, be its predicted rating or view category.
Let f(v) be the feature vector of video age,

length, etc. We will model the energy func-
tion of our CRF as follows:

E(R) =Y ¢(ry, f(v))+
Z Z 10(7“@,7’1;', f(’U), f(vl))

veEV v'eN(v)

(1)

¢(rv, f(v)) will be the negative log probabili-
ties of rating r, as predicted by our softmax
classifier. 1 will be a function imposing a
“difference penalty” between related videos;
following the computer vision literature (Sil-
berman et al., 2012) we let

¢(Tv7rv’af(v)7f( /)) =
e ( F@ W) @
Iro = rofjerexp (5 ||f*(v)||||f*(v/)||)

where o, 5 > 0 are hyperparameters that we
tune. We end up using o = 0.0003, 5 = 3. To
compute ||, — 7|/, we compute the number
of buckets separating the ratings of v and v’
Finally, f* is a normalization of f that is nec-
essary because the components of f are on dif-
ferent scales (i.e. the view count will in gen-
eral be much larger than the number of com-
ments). The choice of f*(v); that worked best
on the validation set turned out to be

f(v); — minyey f(v);

maxX,cy f(U)z — mMiNyey f(U)z

fr(w)i =

so that f*(v) has all its components between 0
and 1. We experimented with different choices
of ¢ and f*; for example we also tried letting
1 be independent of the features and depend
only on the ratings categories, and we also ex-
perimented with using unnormalized f(v) in
Equation 2. The functions highlighted are the
ones that worked best on our validation set.

In Equation 2, we take the cosine similarity
between f(v) and f(v'); if this is large, then it
is more likely that f(v) and f(v’) have simi-
lar ratings, and we therefore want to penalize
dissimilar ratings more.



We wish to find a configuration of ratings
which minimizes the energy objective; since
this objective is intractable we will use simu-
lated annealing to find a local optimum: we
can perform Gibbs-sampling passes through
ratings predictions with R ~ exp(E(R)/T)
as the target distribution, where we slowly de-
crease 71" according to a schedule that we tune
as a hyperparameter. Our initial configuration
will be the predicted ratings from applying the
classifier alone, without the CRF structure on
top of it.

We note that a simple softmax classifier as
described in Section 3.2 can be viewed under
this CRF framework as the special case when
we set the hyperparameter « to 0. In this case,
all predictions are made independently from
predictions on neighboring nodes.

4 Results and Analysis

We provide numerical results for our exper-
iments in this section. Although our CRF
model does not end up improving the accu-
racy of our predictions, we provide an argu-
ment here that models of this type could still
be worth exploring in future work.

4.1 Structural Analysis

We analyze the quality of the ratings and
views categorizations in the related videos
graph to determine how much they “cluster”.
The first we metric that we analyze is modu-
larity, which rates the strength of clustering of
the network into its different categories (New-
man, 2006). The modularity is defined as the
fraction of edges that go within a category mi-
nus the expected fraction if the edges are dis-
tributed at random while preserving vertex de-
grees. We find that for view count categories,
the modularity is 0.0650, and for rating cate-
gories, the modularity is 0.0740. The expected
modularity if categories were randomly as-
signed is 0. This means that categories are cor-
related between neighboring videos, but not to

Category 0 1 ) 3
0 0.432 | 0.238 | 0.124 | 0.206
1 0.225 | 0.370 | 0.202 | 0.203
2 0.140 | 0.229 | 0.380 | 0.251
3 0.181 | 0.210 | 0.239 | 0.370

(a) Conditional distribution of ratings categories given
majority categories over neighbors.

Category 0 1
0 0.680 | 0.320
1 0.401 | 0.599

(b) Conditional distribution of

views categories given majority
categories over neighbors.

Figure 3: Conditional distribution tables for
categories given the majority neighbor cate-
gory. The majority neighbor category is on
the vertical axis, and the node category cor-
responds to the horizontal axis. For exam-
ple, from the ratings table, for nodes whose
most common neighbor category is 0, 23.8%
of these nodes have a category of 1.

the point of outright clustering.

Next, we empirically examine how neigh-
boring nodes affect the categorization of a ver-
tex. To do this, we compute the distribution of
ratings and views categorizations, conditioned
on the class of the majority of the video’s
neighbors. Figure 3 shows these distributions.
Compared to the true distribution over view
or ratings categories, these conditional tables
clearly show that the categories of the neigh-
bors strongly influence a video’s category.

4.2 Experimental Results

We wish to compare our different methods
against the baseline of a simple softmax clas-
sifier on video metadata. We have not been
able to get a classifier based on node2vec fea-
tures to exhibit reasonable performance, as
our training accuracy is roughly around that
of random guessing. This is likely because
the ratings categorizations do not delineate the



‘ CRF ‘ Softmax ‘
Test Accuracy | 0.460 | 0.462 |

(a) Test accuracy on ratings category predic-
tion.

‘ CRF ‘ Softmax ‘
Test Accuracy | 0.767 | 0.773 |

(b) Test accuracy on views category predic-
tion.

Figure 4: Test accuracies for our prediction
tasks.

graph into clear enough clusters, as seen by
our modularity scores, which, while positive,
are still quite low. Thus, for the remainder of
our experiments, we compare just our prob-
abilistic CRF model applied to softmax class
probabilities as input with our simple baseline
softmax classifier.

We evaluate performance on the test set,
which we define as the entire dataset minus the
train and validation sets. Figure 4 shows our
accuracy results for the two prediction tasks.
As seen from the figure, the conditional ran-
dom field performs slightly worse for both
tasks.

We further analyze our model in order to
explain the poorer performance of our condi-
tional random field. In Figure 5, we show con-
fusion matrices for the softmax classifier; the
confusion matrices for the classifier with the
CRF look virtually identical. One main take-
away from these confusion matrices is that the
prediction classes are not balanced: for ex-
ample, for ratings the classifier tends to pre-
dict category 1 much less and for views the
classifier also tends to predict category 1 less.
We explain why this difference matters in later
analysis.

We also require insight into what the condi-
tional random field actually does, since it only
changes the prediction accuracy by a few frac-
tion of percentage points. We find that com-
pared to the softmax-only classifier, the CRF

Confusion Matrix Without-CRF 0.54
0 1 2 3

0.48
0.42

10.36

40.24

0.18

0.12

i

(a) Confusion matrix for ratings category predictions.

0.06

Conf%sion Matrix WithOL{t-CRF

0.72

~40.64

40.48

0.40

0.24

(b) Confusion matrix for views category predictions.

Figure 5: Confusion matrices of the softmax
classifier for our different prediction tasks.
The z axis corresponds to true ratings cate-
gories, and the y axis corresponds to predicted
categories. We do not show the confusion ma-
trix for the classifier with the CRF on top be-
cause there is no visually discernable differ-
ence.



on top of softmax classifier actually relabels
2.36% of the videos for view count categoriza-
tion, and 3.89% of the videos for the ratings
categorization. Compared to the amount that
the prediction accuracy changes, these values
are quite significant, and means that the CRF
does make a substantial amount of changes,
though most of these changes are wrong.

Figure 6 displays the distribution over class
probability predicted by the softmax classifier
for videos whose labels are changed by the
CRE, and compares that to the class probabil-
ity distribution over the entire dataset. From
the figure, it is apparent that the CRF rarely
changes the label of videos that the softmax
classifier is already quite certain about. This
behavior is what we would expect from the
CRF objective and is also desirable because
we want the CRF to correct predictions that
the softmax classifier is uncertain about.

We can further evaluate whether the CRF
is working as desired by comparing the en-
ergy objective of the CRF for our different sets
of labels, which we display in Figure 8. Re-
call that the energy objective is modeled as in
Equation 1, and the simulated annealing op-
timization of the CRF aims to minimize the
energy objective. We also compute the sec-
ond sum in Equation 1 involving only the v
terms (defined in Equation 2) because it does
not make sense to apply softmax class proba-
bilites to ground truth or random labels. The
random labeling is generated by sampling a la-
bel for each video i.i.d. according to the em-
pirical distribution over categories.

This experiment confirms two things: 1) our
optimization strategy is effective in reducing
the energy of the CREF, as seen by the fact that
the CRF has lower energy values in both cate-
gories than all other labelings we look at. This
means the CRF model is problematic, not the
optimization. 2) The ground truth labels are
indeed lower in the CRF objective than ran-
domly generated labels. Intuitively, this could
mean that minimizing some objective of this

form could be a reasonable heuristic, as long
as the objective is right.

We note that the predictions outputted by
the softmax classifiers already have lower
pairwise energy objectives than the ground
truth labels, even without any CRF-specific
optimization. One of the reasons here is im-
balance in predictions as seen in Figure 5;
class imbalance means that there will be more
edges going between videos of the same cate-
gory, thus lowering pairwise terms in the en-
ergy objective.

Class imbalance does not entirely explain
the lower energy objective of the softmax
classifier, however. The modularity objective
is more resilient to class imbalance because
it pertains to fractions of edges. Figure 7
again confirms the idea that the CRF does in-
crease the amount of clustering in the labels,
as we compute the modularity score for CRF-
predicted labels as well as labels predicted by
only the softmax classifier. However, interest-
ingly the modularity score of the softmax clas-
sifier is still closer to the ground truth labels
than the modularity score of the CRF classi-
fier. This could be because related videos will
also have similar features that are inputted into
the softmax classifier, so the softmax classifier
will naturally output similar predictions for re-
lated videos.

4.3 Main Takeaways

In summary, the main takeaways of our anal-
ysis should be as follows: the assumption that
related videos will have more similar view
counts and ratings is valid, but our current
CRF formulation does not leverage this as-
sumption in the right way for prediction. From
our analysis of the behavior of the CRF, we
know that our algorithm is roughly optimizing
the objective as intended, in that the videos
it relabels tend to be ones that the softmax
classifier is already uncertain about, and the
energy objective decreases when the CRF is
used. However, because this objective is in-
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(a) Distributions over class probability of softmax classifiers for rating categorizations changed by the CRF.
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(b) Distributions over class probability of softmax classifiers for view count categorizations changed by the CRF.

Figure 6: We plot the empirical distribution of the class probability for the class predicted by the
softmax classifier. We compare the distribution over the entire dataset to the distribution for just
the videos where the CRF output does not agree with the softmax prediction. To estimate these
distributions, we discretize these class probabilities into 20 evenly spaced buckets and plot the
proportion of examples falling into each bucket. The z axis is the class probability predicted by
the softmax classifier, and the y axis is the proportion of examples in that bucket.



CRF | Softmax | G. Truth
Modularity | 0.0938 | 0.0703 0.0740

(a) Modularity of CRF and softmax labels for ratings.

CRF | Softmax | G. Truth
Modularity | 0.0894 | 0.0638 0.0650

(b) Modularity of CRF and softmax labels for views.

Figure 7: We show the modularity of the la-
bels produced by the CRF and softmax classi-
fiers, respectively.

fluenced heavily by class imbalance, as ar-
gued in the previous section, it is question-
able whether this objective is the right one. It
would be interesting to optimize a modularity-
based objective instead (i.e. something akin
to maximizing modularity), which will be less
influenced by imbalance between classes.
Finally, there is also the question of whether
we attempt to cluster ratings and view counts
categorizations too much by optimizing a
global objective influenced by labels of related
videos. This is because similarity between re-
lated videos might already be implicitly cap-
tured by the fact that related videos have sim-
ilar feature inputs into the softmax classifier.

5 Conclusion

We explore the task of prediction in the gen-
eral setting where our labels are related based
on social network structure, but not strongly
related enough to form clusters. Drawing on
computer vision literature, we propose using a
conditional random field to model these rela-
tions between neighboring videos.

We test our model on a YouTube dataset
of related videos, attempting to predict rat-
ings and view counts. While we are unable
to report improved performance by our model,
from a structural analysis of the YouTube
dataset graph we provide evidence that some
model of this form can work. For example,
our model has a lower objective function value

when evaluated on the ground truth labels than
on randomly generated labels, suggesting that
some of the assumptions in our model are ac-
curate. Thus, while the model’s performance
is not good right now, we believe that it can
lead to interesting directions of future work.

For future work, it would be interesting to
change our model’s objective to be invariant
to class imbalances, which is a shortcoming
of the current model we used. Another direc-
tion of future research could also be to learn a
function for pairwise potentials in the CRF di-
rectly from the training data, instead of tuning
it as a hyperparameter. However, it is unclear
whether this approach is computationally fea-
sible.
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CRF | Softmax | Ground Truth | Random
Energy Objective 648678 | 652580 n/a n/a
Energy Objective, Pairwise Only | 30725 | 35819 50424 69231
(a) Energy objective for different ratings categorizations.
CRF | Softmax | Ground Truth | Random
Energy Objective 354312 | 356012 n/a n/a
Energy Objective, Pairwise Only | 24881 | 27147 28202 35061

(b) Energy objective for different views categorizations.

Figure 8: CRF energy objectives. Since it does not make sense to evaluate the softmax classifier
on ground truth labels, we also provide the energy objective due to pairwise potentials only (sum

of all the v values).
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