CS224w Course Project

Ramtin Keramati, Bazyli Klockiewicz 1

Understanding the human diseasome and the structure
of modules in the interactome

RAMTIN KERAMATI' AND BAzYLI KLOCKIEWICZ!

Linstitute for Computational and Mathematical Engineering (iCME), Stanford University, Stanford, CA

December 11, 2016

In the past decade we have seen a great growth in the human molecular interaction data, causing huge

attention to the emerging field of Network Medicine. In this paper, we analyze the gene-gene interaction

data, often referred to as the proteome. First, we use the proteome to derive the human diseasome, which is

a network of human diseases. We develop a method that allows to normalize the diseasome to unfold rich

community structure as well as to detect associations between similar diseases. We use the same approach

to study the drugsome, which is an analogous network of drugs and has not been previously studied

systematically. In the second part of the paper, we apply tools from topological data analysis to study

the internal structure of the subnetworks in the proteome that represent diseases, drugs and metabolic

pathways. Our results show that these subnetworks do indeed have different topological structure but

that the potential superiority of topological data analysis over classical approach should be investigated

further.
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1. INTRODUCTION

We examine the human protein-protein interaction network (the
proteome). The nodes of the network are the human genes (the
whole genome of ca. 21,500 genes)!. An edge between a pair
of nodes exists in the network if there is any type of interaction
between the genes that was confirmed by independent studies.
However, it is estimated that only about 20-30 percent of the
interactions have been detected so far ([2], [1]). This paper is
based on a dataset of interactions that was aggregated from
sources listed in [3].

The nodes belong to groups called modules. A module is a
set of genes that share a common characteristic. We distinguish
disease modules (i.e. genes associated with a certain disease),
drug modules (genes targeted by a given drug), metabolic path-
ways, and functionality (genes that share a common function).
A single node can belong to multiple modules.

We aim to answer two major questions. The first one con-
cerns the structure of the diseasome, which is a meta network of
disease modules. So far, most disease classifications were based
on their symptoms. We study the structure of the diseaseome
more systematically. We propose a method of normalizing the
data to account for diseases that have very high degrees and
dominate the network. Using modularity tools, we find the clus-

1Often a gene is identified with the protein that it encodes and the two terms
are used interchangeably.

ters of diseases present in the network. We also find diseases
that have significantly more connections than expected based on
the random null model, thus exposing potential non-intuitive
associations between seemingly unrelated conditions. We also
obtain principle-based visualizations of the diseasome. We use
similar tools to examine the drugsome, i.e. the meta network of
drug modules. This network has not been researched yet and
one could expect a similar structure of both graphs.

The second major question that we address is the topological
structure of different types of modules in the network (in the
sense of the topological data analysis). This issue has not been
examined at all and even the very existence of any difference in
the structure of the modules is unknown. On the other hand,
standard network science tools for analyzing the modules are
limited; the modules typically do not induce one connected
component in the network. This means that some notion of
distance is needed to measure the relations between nodes.

Our minor goal was to obtain principle-based visualizations
of the networks. Although many papers contain beautiful vi-
sualizations of the diseasome and other networks, they do not
typically mention the methods that were used to obtain them;
the visualizations seem much more organized than one would
expect based on the "messy" results described that typically only
indicate statistical significance of certain associations. In this
paper, all visualizations are based directly on the data and we
describe the ways in which they are obtained.
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Graph Statistics

Diseasome Null Model
# Nodes 473 473
# Edges 107282 107294
Diameter 2 2
Nodes in LWCC 473 473
Modularity 0.051 0

DrugSome Null Model
# Nodes 645 645
# Edges 169973 147942
Diameter 3 2
Nodes in LWCC 645 645
Modularity 0.006 0

Table 1. Statitics of networks, both diseasome and drugsome
are weighted networks. Top: The original diseasome and the
rewired null model. Both networks are very dense which
makes the comparison difficult. The rewired diseasome cannot
be partitioned into sets with non-zero modularity which in-
dicates the randomness of the null model. Bottom: Drugsome
and rewired null model, both of them are highly connected
networks.

2. RELATED WORK

The problem of defining similarity between modules in the pro-
teome was addressed in [2]. The authors calculate a minimum
required network coverage to observe a disease module and
conclude that the modules can be observed and analyzed in
the interactome despite the incompleteness of the interactions.
The authors define a certain notion of distance between mod-
ules, showing its usefulness as an indicator of their similarity;
in particular they show that diseases close with respect to the
defined metric tend to be related phenotypically. It is unclear,
however, if this method can unveil any community structure in
the diseasome.

Another approach to study the disease-disease interactions
was taken in [4]. Text-mining techniques were used to identify
similar diseases based on their phenotypes, which were then
mapped to the proteome to confirm their similarity; this yields
classification of diseases based on symptoms.

The structure of disease modules in the proteome was first
studied in [5]. Graph-theoretical approach was applied to unveil
certain basic common characteristics of the disease modules.

3. DISEASOME

Armed with the human proteome, we build a meta network
of diseases called the diseasome. Nodes of this network are the
disease modules whereas an edge between two diseases exists
if they have a gene interaction in the interacotme, with weight
equal to the number of interactions. Figure 1. shows a scheme
of how the diseasome is created. The diseasome is a highly
connected network; this suggests that the underlying causes of
a particular disease are typically spread throughout the genome
(however, this does not mean that most connections are not
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Fig. 1. A. Building the diseasome based on the underlying
interactome: 1. Find the genes corresponding to the disease
module 2. Create a super node 3. Calculate the edges and
weights based on the number of shared genes. B. Rewiring
the Diseasome: 1. Create a multigraph based on the weights
of each edge 2. Rewire the multigraph 3. Retrieve the new
weighted graph.

concentrated around some “place” in the network); some of the
basic statistics are shown in Table 1.

The weight of an edge connecting diseases denotes the num-
ber of genes that those diseases share, which should capture
their similarity in terms of genes involved. On the other hand,
finding the most central nodes, for example, can give us a sense
of which diseases have the most central role. Some of the basic
statistics of the diseasome can be found in Table 2.

A. Straightforward diseasome is biased

We found that the definition of the diseasome given above causes
large disease modules to have huge influence over the network
(typically cancer modules). A disease module with a huge num-
ber of nodes will inevitably be connected by high weight edges
to many other diseases. On the other hand, the fraction of the
nodes shared with the other disease may be insignificant, mak-
ing the interpretation of the edge weight problematic in terms
of measuring similarity between diseases. Here, we propose a
different and relatively simple method to build a (normalized)
diseasome, that is not biased by the size of the module and is
aimed at better understanding of the relationships between the
disease modules. 2

B. Normalized Diseasome

We are interested in finding to what extent the weight of the
connection between two diseases is caused by their actual
(un)similarity, as opposed to just the high (low) number of out-
going edges from the diseases. To achieve that, we construct a
null model in the following way.

B.1. Null Model

We treat the diseasome as an unweighted multigraph, repeating
each edge w times, where w denotes its weight. We rewire the
graph using the Configuration model, as depicted in Figure 1. To

2 Yet another source of bias may be the fact that some diseases have been studied
more than others, for example cancers; we do not have sufficient data to take this
into account in designing the null model.
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Diseasome Analysis Normalized Diseasome Analysis
Name Value Name
Centrality Neoplasm Invasiveness 1%t Central Node 0.00430 Brain disease
Stomach Neoplasms 24 Central Node | 0.00429 Glomerulonephritis
Cardiomegaly 3" Central Node 0.00428 Breast Neoplasms
Diabetes 15! Page Rank 0.00588 Prostatic Neoplasms
Neoplasm Metastasis 2" Page Rank 0.00586 Breast Neoplasms
Prostatic Neoplasms 3" Page Rank 0.00540 Diabetes
Page Rank St h Neopl
age Ran omach Neoplasms Table 3. Top: Most central diseases in the Z-score-based Disea-
Diabetes some. Centrality is defined as betweenness centrality and all
lues are normalized between 1 and 0. Bottom: Nodes with
Stomach Neopl va
omach Neoplasms highest Page Rank score in the Z-score-based Diseasome.
HIV Infections
Melanoma modules with high internal edge density could potentially dis-
Name tort the results, as the edges connecting the nodes belonging
. : to the same disease module could after rewiring connect also
Similarity Breast Cancer and Prostatic Cancer different disease modules. We note that this approach gave us
Stomach Cancer and Breast Cancer different (worse) results, and we do not describe it here.
. The obtained measure differs from the original one. For
Stomach Cancer and Prostatic Cancer example, Diabetes has the highest betweenness centrality in the

Table 2. Central and similar diseases in the diseasome. We
found that the diseasome is dominated by cancers and tu-
mores. Top: Nodes with the highest betweeneess centrality and
the highest PageRank in the original diseasome. Bottom: Most
similar diseases in the original diseasome, i.e. edges with the
highest weight.

achieve good statistical properties, we would like the process to
achieve stationarity condition. Using the benchmarks in [6] we
perform 100|E| rewires, where |E| is the number of edges in the
multigraph. Both graphs are very dense which makes it difficult
to confirm that the rewiring process achieved stationarity based
on basic statistics (see Table 1.). We found however that the
modularity maximization tools were unable to find a partition
with non-zero modularity (see section C) which indicates that
the rewired null model has indeed a random structure.

B.2. Normalized Diseasome

In this way, we obtain one hundred randomly generated
diseasomes. Given diseases i and j, we denote by w;; the weight
of the edge (7,j) in the original Diseasome; analogously, for
each rewired network r, we have wlr] We denote the standard
deviation of w{] by a(wlfj) and define the weight Z;; of the edge
between diseases using the Z-score as follows:

H— wii
7o U 1

Z;; is meant to capture how much the connection between two
diseases differs from the one in a random rewired graph. Two
diseases with high Z-score should be similar because the con-
nections between them are highly non-random.

We note here that another possible way to rewire the graph
would be to rewire the interactome itself, and then build the
diseasome on top of the rewired graph, keeping the nodes be-
longing to the diseases fixed. However, in this case, disease

original diseasome, but in the normalized diseasome is the 15"
with respect to that measure. Table 2. along with Table 3. show
some of the differences between the two networks.

Figure 2 shows a Z-score-based network visualized using
Force Atlas algorithm in which nodes with highest Page Rank
score have fixed positions on the plane. In the visualization, we
only show the edges with Z-score in the top 1% percentile. Table
3 describes some of the key statistics of this network.

C. Communities

We test our notion of pairwise similarity by using it as an input
to the modularity-maximization-based clustering algorithm as
defined in [8] and [9]. For a given parameter ¢ (called resolution),
the algorithm aims to find the partition P of the nodes into
disjoint subsets, that maximizes:

R(t)= ) P(C,t)— P(C, ) (2
CeP

where P(C, t) is the probability of a random walk that started in-
side the community C to remain inside it at time ¢, and P(C, o) is
the probability that the random walk is in C at stationarity. Thus
the parameter t accounts for the desired sizes of the communi-
ties. This problem is NP-hard, but there are some approximation
algorithms that work well in practice, and can be restarted with
randomized input for better reliability. We use the implementa-
tion available in Gephi [10]. Of course, the assumption in this
approach is that the communities do not overalap, or otherwise
stated, the algorithm will find the best partition assuming that
there are no overlaps between communities.

To cross-check the quality of the output of our algorithm, for
each t we compute the modularity of the partition defined by :

1 did; .
o2 E ()]

where I(i, j) equals 1 if the nodes i belong to the same commu-
nity and 0 otherwise, A is the weighted adjacency matrix, and d;
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Fig. 2. Z-score based Diseasome. The visualization was per-
formed using ForceAtlas algorithm implemented in [10]. Only
top 1% Z-score edges were used. The size of the node indicates
PageRank value, and the nodes with the highest PageRank
have fixed positions (labeled with name).

is the sum of the weightd of edges adjacent to node i. This mea-
sure quantifies the quality of the partitioning in the sense that
higher values indicate that the connections within a community
are non-random. It should be maximized around t = 1 but its
value at that point as well as its behavior versus the number of
found communities for different values of ¢ helps to understand
the structure of the network and choose the most meaningful
partition.

We perform the community search in two ways. First, we
only use the edges whose Z-score is positive. We find three com-
munities. One can see the plot of the number of communities
captured by the algorithm for different values of resolution as
well as the corresponding value of modularity obtained and the
size of the smallest community in Figure 3. The modularity is
maximized around t = 1.0 and the number of detected com-
munities stabilizes. Also, at this point the communities have
comparable sizes.

By inspection, we find that one of the communities contains
in particular almost all of the cancers and tumors. Another
one contains most of the diseases connected with brain, such
as autistic disorder, Parkinson’s disease or Alzheimer’s disease.
The third one is more difficult to describe, it contains many types
of diseases. In the second approach, we only consider the edges
whose Z-score belongs to the top 10th percentile. This approach
seems to unfold richer community structure. Inspecting the
same plot as before (Figure 5) does not give as clear conclusions

Z-score >0
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Fig. 3. The plot of the change of modularity score and the
number of found communities for different values of resolu-
tion t. The analyzed network is the normalized diseasome
where only edges with positive Z-scores are considered.

Fig. 4. Communities in the modified Diseasome graph based
on the modularity defined in [8], There are 7 communities in
this network as marked by the different colors. The visualiza-
tion is performed using Gephi [10].
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Fig. 5. The plot of the change of modularity score and the
number of found communities for different values of resolu-
tion t. The analyzed network is the normalized diseasome
where only edges from the 10th percentile of Z-scores are con-
sidered.

as before but the modularity is maximized at about t = 1 and
around this point one obtains consistently seven communities.

The communities containing tumors (125 modules) and dis-
eases connected with brain (80 modules), respectively, are now
"purer". We also obtain a couple of other interesting communi-
ties. One of them (76 modules) is rich in diseases connected with
infections, such as tuberculosis, pneumonia or influenza. It also
contains allergies and auto-immunological diseases. Another
community (109 modules) contains diseases of the organs in
the abdomen, such as kidney failure, liver cirrhosis, or diabetes.
Yet another one (50 modules) contains rare genetical diseases,
such as Situs inversus, Seckel syndrome or Nephronophthisis.
We also obtain a small community (18 modules) of diseases
connected with bones and connective tissue, incuding gout, os-
teoporosis and rickets.

For both approaches, we cross-check our results against the
output of the force-directed graph drawing algorithm ForceAtlas
to confirm that the communities that we found are proximate in
the network. The results with communities marked by different
colors can be seen in Figure 4.

D. Pairs of similar diseases.

The Z-score normalization is designed to unfold the pairs of
diseases that are really (un)similar to each other in the sense
that the number of shared genes is highly non-random. Table 4.
shows the most similar diseases based on the edge weights in
the modified Diseasome (with Z-score above 100).

Although the statistical significance of the similarity of the
pairs of diseases should be confirmed by independent study , by
examining the relations between the diseases we find that most
of them are clinically very related. For example, Hermansky-
Pudlak syndrome is a direct cause of Albinism. Zellweger syn-
drome and Rhizomelic chondrodysplasia punctata are closely
related brain disorders, whereas Obesity and Polydactyly be-
long to the symptoms of the Bardet-Biedl syndrome. There is

3We are performing a multiple hypothesis test here. Z-score can be interperted
as a p-value in testing whether any two given diseases are related or not. Looking
at the highest p-values to conclude that the corresponding diseases are related
is not a statistically sound approach. To test whether there exists a pair with a
significant p-value one can run the Bonferroni Test. On the other hand, one can
choose a random pair and repeat our simulation to test for similarity.

Similar Diseases

Oculocutaneous albinism | Hermansky-Pudlak syndrome

Zellweger syndrome Rhizomelic chondrodysplasia punctata

Zellweger syndrome Adrenoleukodystrophy
Cystic kidney Nephronophthisis
Bardet-Biedl syndrome Fundus dystrophy

Obesity Bardet-Biedl syndrome

Adrenoleukodystrophy Rhizomelic chondrodysplasia punctata

Bardet-Biedl syndrome Polydactyly

Table 4. Pairs of most similar diseases based on the defined
Z-score.

one unexpected association, however — the observed similarity
between Adrenoleukodystrophy and Rhizomelic chondrodys-
plasia punctata. All in all, it is evident that our method can
capture related diseases in the network and might point to po-
tential unexpected associations between diseases, not present
directly in the symptoms.

Our results in this section show that 1) the straightforward
meta-network built on top of an original network can be biased
and hard to analyze and that 2) redefining the weights of the
edges using the Z-score can help unfold real underlying struc-
ture, especially in terms of similarity of different modules.

E. Drugsome

In a similar way that we defined the diseasome, we form the
drugsome by considering the drug modules. Table 1 shows some
of the basic statistics of drugsome, and its null model obtained
with our method. Figure 6 is a visualization of the Drugsome,
where only top 1% Z-score edges are visible.

We found that the drugsome is a much more similar to a ran-
dom network than the diseasome. In particular, the modularity
maximization tools failed to obtain a partition with non-zero
modularity in the Z-score-based normalized drugsome; this
shows that drugsome does not have any simple community
structure.

This result is consistent with [1] which shows that drugs
rarely target the disease modules directly, and often have pallia-
tive effect rather than treat the cause of the disease itself. Our
analysis also suggests that, perhaps expectedly, even if the drugs
target proteins associated with diseases they are supposed to
cure, they probably also target a number random proteins in the
network; this could explain why many drugs have side effects
unrelated to the symptoms that they target.

4. STRUCTURAL DIFFERENCES OF MODULES IN THE
PROTEOME.

A. Topological structure of the modules.

As we have noted above, the modules in the proteome (i.e. the
subnetworks corresponding to diseases, drugs or metabolic path-
ways) are not always connected. On the other hand, their nodes
are typically located close to each other in the network. Taking
the subgraph induced by the module may be oblivious to their
distance in the original graph. Therefore, we compute a notion
of distance (see below) for every pair of nodes in the whole
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Fig. 6. Z-score based drugsome. The visualization was per-
formed using ForceAtlas algorithm implemented in [10]. Only
top 1% Z-score edges were used. The size of the node indicates
the PageRank, and the nodes with the highest PageRank have
fixed positions.

network, and use this value as the distance between nodes in
the module. This strategy should mitigate the effects of incom-
pleteness of the interactions data in the network. We use the
LTHT(B) distance between nodes in a graph as defined in [7].
This distance notion leverages between shortest paths and ex-
pected commute times between nodes. When f = 0, it becomes
the stationary distribution of a random walk. When  — oo, it
converges to the shortest path distance. The rationale for using
this definition is that two nodes that are close in the full network
should have on average more and shorter paths connecting them
in the incomplete network.

Using this notion of pairwise distance, one can define per-
sistent barcodes of the modules. For t > 0, we consider the
Vietoris-Rips simplicial complex on the set of the nodes. In
this complex, a set {vy,...,v,} of n nodes forms an (n — 1)-
dimensional simplex at time ¢ iff for all 1 < i,j < n we have
dist(v;, vj) < t, where dist(v;, v;) is the distance that we obtain
from the LTHT calculations. We only do this forn = 1,2,3, and
t < max(dist(v;, v;) in which case it is easy to understand the
Vietoris-Rips complex at time ¢: 1) the nodes always belong to
the complex, 2) if the distance between two nodes is less than ¢,
they are connected by an edge, 3) if three given nodes are such
that their pairwise distances are less than ¢, they form a (filled)
triangle. We use the Vietoris-Rips complex, because it is defined
precisely by the pairwise distance data, and does not depend
on any geometric embedding of the complex (this is not true for
alpha- or Cech complexes, which are other possible methods to
build simplicial complexes on top of the data).

For each specified time ¢, we compute the geometry of thus

barrcode (dimension 0)

L L
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barrcode (dimension 1)
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Fig. 7. An example of a barcode. Each horizontal line corre-
sponds to a homology generator. There are three sub-barcodes,
one for each dimension. The top one corresponds to dimen-
sion 0 (lines are connected components of the graph), the mid-
dle one corresponds to dimension 1 (lines are empty cycles

in the graph), The bottom one corresponds to dimension 2
(lines are voids that is, empty spaces enclosed by triangles).
The x-axis is the time ¢ and the endpoints of a line denote the
appearance (birth) and disappearance (death) of the homology
generator. In the case above, the number of connected compo-
nents decreases until the graph becomes connected at about

t = 23, when there is only one line left in dimension 0. The
first 1-dimensional hole appears when t = 15 and disappears
at about t = 19. First voids are born at about t = 22.5.

obtained simplicial complex (see below). By increasing ¢, we
observe how the geometry of the module evolves over time. The
geometric features that are really important and not a byproduct
of the noise in the data, should have longer lifetimes. For refer-
ence on persistent homology, see [11]. The persistence algorithm
[12] is implemented in package [14] and outputs the persistence
barcode (see Figure 7). The barcodes show the generators of
homology groups that are present at different times ¢ in the
persistence algorithm (again, we only look at zero-, one- and
two-dimensional generators). For a reference on homology, see
[13]. In our case, it has an intuitive meaning: each generator
in dimension 0 corresponds to a connected component of the
graph; a generator in dimension 1 is an empty hole, that is, a
cycle in the graph whose interior can not be filled with triangles
(Figure 8); a generator in dimension 2 is a void, that is, an empty
space fully enclosed by triangles.

We compute the distances using the LTHT metric with
B = 0.01,0.1 and obtain barcodes for the modules (in total,
we analyze 473 disease modules, 645 drug modules and 292
metabolic pathway modules). The barcode can be understood as
a collection of three sequences (by,d, ..., by, dy), one sequence
for each dimension, where (b;, d;) denotes the birth and death of
the i-th homology group generator. The issue of what features
of the barcodes should be used to compare them is an open
area of research. The mathematical notion of similarity between
barcodes, called the bottleneck distance, is not appropriate in
our case, because this notion will not distinguish spaces with the
same local structure if they have different sizes [15]. The other
possible approach is featurizing the barcodes by certain sym-
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Fig. 8. left, An example of a hole. Right, an example of a void
in the space. The hole is represented by the empty space in
the middle. Every triad becomes a simplex. The triads were
filled on the picture on the left but they should be thought of
as filled on the right as well. Void is the empty space inside the
cube.

metric polynomials [16]. We follow this approach, arbitrarily
choosing simple, and easy-to-understand features of barcodes.
We use four main features in each dimension. Thus for each bar-
code we define a vector (x,X3,Y1,Y2,Y3,21,22, 23, W1, Wa, W2),
where:

1. x; is the minimum birth time of a generator in dimension
i # 0 (or maxf if no such generator exists)

2. y; is the average lifespan of a generator in dimension i =
1,23

3. z; is the average death time of a generator in dimension
i=1,23

4. w; is the average birth time of a generator in dimension
i=1,2,3.

We thus obtain eleven features for each barcode. In addition
to their simplicity, the empirical distributions of these features
across different types of modules for p = 0.1 were significantly
different as confirmed by the Kolmogorov-Smirnov tests (the
largest p-value being 0.044). Since the p-values were much lower
in the case of f = 0.1 than B = 0.01, we perform our tests only
for this value.

As a preliminary step to see if thus defined topological in-
formation bears any meaning, we use our features as an input
to the t-SNE algorithm [17] to visualize the data in the two-
dimensional plane. We find that the algorithm tends to bring the
modules of the same type together, as can be observed in figure
9. This is promising as it suggests that the type of the module
can possibly be predicted based on the barcode.

We would like to emphasize here that this choice of features
implicitly contains some information about distances between
nodes because it may contain the scale information. It is the
purpose of the next section to understand what type of informa-
tion is contained in the barcodes as well as assess its predictive
power. It should be noted that the complexity of the persistence
algorithm is O(1®) so good evidence of its usefulness is needed
to consider it a tool of choice in this type of analysis.

Further in this section, we want to assess weather the sim-
ple features of barcodes that we defined can help distinguish
drugs from diseases or metabolic pathways. For comparison,
we separately analyze the (typically disconnected) subgraphs
induced by the modules. We compute some of their features,
including those that in particular should implicitly be captured
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Fig. 9. The result of the t-SNE embedding algorithm applied
to featurized barcodes. The algorithm brings modules of the
same type together.

by the barcodes but can be obtained more easily from the graphs.
We choose this approach also because we want to examine to
what extent the fact of the modules being disconnected makes
the analysis more difficult when traditional graph-based tools
are used.

B. Classical and Higher Order Structures

For each induced subgraph, we compute: the number of nodes,
diameter, clustering coefficient and the average degree, as well
as the number of triads and some other higher order structures
(see Figure 10, which shows the structures that we have used).
One can see that on average the probability of a disease to have
at least one of those structures is lower than pathways or drugs.
For example, any type of the 4" order structures are present
in only 40% of diseases, whereas 83% of drugs and 91% of
pathways have at least one. Our choice of these structures is
also motivated by the fact that some of them can be implicitly
captured by the barcodes.

C. Prediction. Classical vs. Topology vs. Higher Order

Using the different features that we extracted from our network,
we can try to train a model to classify any given module into one
of three groups: Diseases, Drugs, (Metabolic) Pathways. Here
we use standard machine learning algorithms for classification.
Splitting the data ( 1400 subgraphs) into two sets: the train set
(75% of modules) and the test set (25% of modules), we train
SVM, Logistic regression and Random Forest classifiers, and
evaluate their prediction accuracy. Random prediction based
on the number of different types in the data (that is, 473 Dis-
eases, 645 Drugs and 292 Pathways) will result in 41% prediction
accuracy.

We train the algorithms using 3 different types of features (so
we obtain three separate experiments): Classical, which consists
of the number of nodes, average degree, diameter, clustering
coefficient and the number of triads in the induced subgraph;
Higher Order, which consist of the Number of nodes, Average
degree, and the number of 4" order structures of Type I, Type IT
and Type III (Figure 10); Topological, which consists of the first 5
features of barcodes (these features are the minimum birthtimes
of holes and their average lifespan in each dimension). In this
way, in each experiment we perform classification based on five
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Fig. 10. Percentage of graphs that contain the structures in-
dicated. In total, 40% of diseases have any kind of 4" order
structure, compared to 83% of drugs and 91% of pathways.
The presence (or absence) of these structures can be tested as a
potential indicator to classify the modules. On the other hand,
Type I structure could appear as a short line in the barcode.

features. Table 5 shows the predicting accuracy for the SVM,
Logistic Regression and Random Forrest classifiers.

As shown in Table 5, using SVM, or Logistic Regression, both
Topological and Higher Order approach have significantly better
accuracy than the Classical approach, and they perform better
than random; However using Random Forrest classifier we ob-
tain similar results in all approaches. Note that the Topological
approach does not contain any explicit information of the graph,
such as the number of nodes, average degree, etc.

We noticed that adding the number of nodes as an extra fea-
ture to the Topological approach can increase the accuracy, which
suggests that using topological approach combined with Classi-
cal approach can have a strong prediction power. We found that
using higher order structures have the highest prediction power
given a fixed number of features, followed closely by the Topo-
logical approach (the difference being probably insignificant).
Additionally, adding extra information like number of triads or
clustering coefficient will not add to prediction power of this
approach.

Another interesting observation is that for the Topological
approach, the prediction accuracy of logistic regression and
SVM is almost the same, but for Higher Order approach, logistic
regression is not even much better than random. This suggests
that using a mix of features, including topological, can have
better predictive power. Using Average Degree, the first three
Topological features and the Type I structure we obtained 72.46%
prediction accuracy training a Random Forrest. *

5. CONCLUSIONS

In the first part of the paper we showed that the straightforward
analysis of a meta-network of disease modules is biased and dif-

“To avoid over-fitting on the test data, we did not test different sets of features
to find the optimal one, we just selected those features and tested the results; the
data is not large enough for a validation set.
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Prediction accuracy; Random 41%
Features SVM Logistic Reg | Rand Forrest
Topological 60.29% 58.53% 68.25%
Higher order 61.24% 45.70% 69.80%
Classical 56.12% 47.19% 69.79%
Mix 55.05% 45.01% 72.46%

Table 5. Prediction Accuracy of the three different approaches.

ficult to analyze. We proposed a simple method of normalizing
the meta-network using the configuration model and the Z-score
that allowed for unfolding reach community structure consistent
with the underlying nature of the modules. We also obtained
evidence that the method can be used to find associations be-
tween modules in the meta-networks. We also found that the
analogous network of drugs is much more complicated, and
probably more random than the disease network. This finding
is consistent with the current knowledge but adds to the under-
standing of drug design and potential sources of sides-effects in
drugs.

In the second part of the paper, we obtained evidence of
structural differences between different types of modules in the
proteome. In particular, we found that the simple topological
features of barcodes do indeed carry information about the mod-
ules. Our results suggest that topological features of networks
can be used to classify them and perform much better than ran-
dom, but that the chosen naive way of featurizing the barcodes
was not superior to other simple approaches. Further work is
needed to assess its real usefulness in practice. In particular,
a more principled way of featurizing barcodes with symmet-
ric polynomials (for example using metric learning), would be
desirable and should be tested next. Also, as the barcodes are es-
sentially functions of distance matrices, other machine learning
methods that exploit the structure of the distance metric itself,
could be tested as well.

The visualizations used in the paper were all principle-based.
We believe that this is not of no importance, as one would ex-
pect visualizations in research papers in network science to not
only serve the purpose of understanding a given notion, but —
whenever possible — actually contain genuine information of the
represented data.
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