CS 224W PROJECT REPORT, AUTUMN 2016

League of Legends: The Meta as a Function of
Time and Rank

Bryant Chen, Ted Li, and Sean Rafferty

I. INTRODUCTION

EAGUE of Legends is one of the most popular

online games, attracting over 100 million monthly
players. League of Legends is classified as a Multiplayer
Online Battle Arena (MOBA) game, where teams of
5 players will compete against each other to complete
their objective of destroying the opponent’s base. Each
player controls one of 133 champions as their avatar. The
game is broken up into two major phases, drafting and
gameplay. Drafting is the process by which each team
assembles their 5 champions.

For our project, we are focusing on investigating the
relatively unexplored champion selection networks that
are found in League of Legends. The problems we will
address are of two types. The first will be to perform
various classification tasks in order to get an objective
evaluation metric. These tasks include prediction of
player skill and classification of champion roles.The
second problem will be one of exploration - League of
Legends is unique in that every two weeks, the game is
updated in order to add variety while trying to fix balance
issues. Because of this, champion selection networks
are constantly changing, and we want to see if we can
identify these changes through our network analysis.

II. RELATED WORK

One resource we used was the paper A tutorial on
spectral clustering” by Von Luxburg. As the title implies,
it provides a detailed explanation on the implementation
of spectral clustering. It presents three different types of
similarity graphs and two classes of the Laplacian matrix
for similarity graphs. The Laplacian matrix approach
we used for the League of Legends match data is
described in detail later in this paper. This paper also
provides three different approaches to clustering: graph
cut, random walks, and perturbation. This paper does not
address overlapping communities, this algorithm results
into partitioning of the graph nodes into distinct sets.

Another helpful resource was the paper “Clustering in
weighted networks” by Opsahl and Panzarasa. This paper
explored various methods for calculating the clustering
coefficient of weighted graphs. The bulk of the paper

is focused on their new model, which involves a new
scoring mechanism for triplets. Instead of only counting
the number of triplets, each triplet, defined by a central
node connected by edges to two other nodes, is given a
score. From here, the weights of the two edges connected
to the central node are combined to get a triplet score
using either the arithmetic mean, geometric mean, maxi-
mum, or minimum edge weights. To calculate the global
clustering coefficient, we use a similar formula as above.
However, instead of using 3 times the the triangle count,
we use the scores of all 3 triples in each triangle; and
instead of dividing by the number of triples, we divide by
the sum of all triples. They then demonstrate that many
of the properties of the traditional clustering coefficient
are consistent. This algorithm was very useful to this
project, as we used a weighted graph and it is a large
improvement over the naive alternative of binarizing the
edges into low and high buckets.

III. DATA COLLECTION

We collected data from League of Legends matches
from April to July 2016. There is a patch (a change to
the game) every two weeks. Thus, our dataset spans 6
patches. We downloaded around 30,000 matches for ev-
ery patch which resulted in about 180,000 total matches.
We did not discriminate on the type of matches during
our collections so our dataset contains matches from a
variety of game modes and skill levels. This allows us
to filter our dataset and analyze how game mode, skill
level, or other attributes affect the network structure of
champion picks.

There are two major types of matches when it comes
champion selection order: draft and non-draft. Normal,
All-Random-All-Mid, and Al matches are all non-draft
matches. Ranked matches are draft matches. In non-
draft matches there is no explicit champion selection
order, and you do not get to see what champions
your opponents picked. Hence, non-draft matches yield
undirected edges between the champions on each team
but no edges between the teams. This results in two
disjoint complete components. In draft matches there is
an explicit champion selection order that switches off
between the two teams. Only one player is choosing a

CS 224W PROJECT REPORT, AUTUMN 2016

champion at a time, and that players gets to see which
allied and enemy champions were previously chosen.
Thus, draft matches produce directed edges within teams
and between teams in both directions. We choose the
convention that an edge from champion a points to
champion b if a was chosen before b (a could have
influenced b).

We will also provide a mathematical definition of a
general champion selection network G given a set of
matches. G will consist of n fully-connected nodes.
Each node is associated with a particular champion. Let
A be the symmetric adjecency matrix for G. Define
A;; to be the number of times that champion ¢ and
champion j were selected on the same team in the set
of matches. Since you can not select the same champion
as a teammate (except in a special game mode), the
diagonal is zero in A.

IV. INITIAL EXPLORATION
A. Spectral Analysis

Overview: We hypothesize that there are multiple
prominent champion clusters. We believe the most dis-
tinct cluster will be the “role” cluster. In League of
Legends there are five roles: Top, Mid, Jungle, AD Carry,
and Support. These roles are heavily ingrained in the
game and are even enforced in ranked (draft) matches.
Each player fulfills exactly one role, and all roles must
be filled on each team. Note that this does not imply
that a champion can only be used in one role for every
game. However, our experience playing the game tells
us that champions are very frequently used in only one
role, rarely in two, and almost never in three or more.
Thus, we believe it is possible to separate the champions
into five distinct clusters associated with the five roles. If
we can find the role clusters using spectral clustering, we
will conclude that the dataset is not just noise and that
spectral clustering is an effective tool that may be able to
find other clusters if we change our similarity matrix. In
the rest of this section we provide a technical overview of
spectral clustering and show that it is a useful technique
in finding champion roles.

Similarity Matrix: Spectral clustering requires a sim-
ilarity matrix. There are many choices one can make
for their similarity matrix and no one choice is best
(Luxburg). We will use a post-processed version of the
adjacency matrix, A. First we note that A is a co-
occurence matrix: it counts the number of times that
pairs of nodes occur on the same team in the same game.
However, more popular champions are overrepresented
in this matrix. We want to model interactions between
champions, not champion popularity. Thus, we will

normalize A using association strength, which yields
the best results for normalizing co-occurence matrices
(Eck). Next, we notice that some entries in A are
sparse. This may produce some noisy clusters so we
will use Laplacian smoothing by pretending that each
champion combination appeared at least once before
normalizing our co-occurence matrix. Finally, we will
normalize the resulting matrix to live in the range [0, 1]
by subtracting the minimum entry and multiplying by
the new maximum entry. We will call this final matrix
w.

Algorithm: Given a similarity matrix W we compute
the graph Laplacian L as follows:

L=D-W (1)
Where D € R™ " is a diagonal matrix defined as:
n n
Dg = Z Wi; = Z Wi ()
j=1 j=1

Then, we will solve the generalized eigenvalue prob-
lem below for A\ and w (this implemented normalized
spectral clustering as recommended by Luxburg):

Lu = ADu 3)

Let U € R™F be the matrix containing the first
k eigenvectors as columns. The rows of this matrix
Y1,Y2,...Yn € RF are used as the features for the n
champions.

Finally, we cluster the rows y1,y2, . .. Y, into k clus-
ters using K-means clustering.

Comparison: We will first look at some similarity
graphs (Fig. 1). The top row are adjacency matrices
(unnormalized) and the bottom row are post-processed
matrices found using the process detailed earlier. The left
column were formed by looking at all matches in our
data set. The right column were formed by looking only
at ranked (draft) matches. Notice that some champions
are drastically overrepresented in the left column which
caused issues even in our post-processed matrix. In con-
trast, the right post-processed matrix for ranked games
looks much nicer. This will help explain our results.

We first ran unnormalized spectral clustering on the
post-processed similarity matrix generated by looking at
our entire dataset (the bottom left matrix in Fig. 1). This
produces most of the role clusters we expected but it
had one double cluster and one cluster with just a few
champions. This can be explained by the few outliers
remaining in the normalized similarity matrix (the rows
and columns with many bright spots). This lead us to
use normalized spectral clustering on the same dataset
which produced the five clusters we expected with no
erTors.

CS 224W PROJECT REPORT, AUTUMN 2016

Fig. 1 Similarity Matrices. The top row is
unnormalized and the bottom row is normalized. The
left column has data from all matches and the left
column has data only from ranked matches

We then ran unnormalized spectral clustering on the
post-processed similarity matrix generated by looking at
only ranked (draft) games (the bottom right matrix in
Fig. 1). This produced the same clusters as normalized
spectral clustering on the entire dataset. We also ran
normalized spectral clustering on the ranked dataset
and achieved the same results. We believe that running
normalized spectral clustering may be redundant when
the similarity matrix was correctly normalized.

Results: We will focus our attention on the results
of normalized spectral clustering on the post-processed
similarity matrices associated with ranked games across
multiple patches. We will approach this in several ways.
First we compare the role that a champion is picked for
most often with the role that spectral clustering assigns
it. Second we assign scores to roles for each champion
by computing Euclidean distance between the champi-
ons and each cluster in the reduced five-dimensional
eigenspace used during clustering and compare these to
the frequencies that champions are chosen to fill those
roles. Finally, we plot our champions in two-dimensional
eigenspace associated with the normalized spectral clus-
tering by choosing two of the top-five eigenvectors
(eigenvectors having the largest associated eigenvalues).
We conclude that spectral clustering does a fantastic job
of clustering champions and aiding in visualization of
the champion graph.

First we observe how often the anonymous cluster la-
bels match the most-chosen role for each champion. For-
tunately, our dataset contains information about which
role a champion is filling in each ranked game. We will
map anonymous cluster labels to actual roles by selecting
a champion that is known to be associated with each role
and mapping its assigned anonymous cluster to its known
role. For completeness, we chose Irelia for Top, Shaco
for Jungle, Syndra for Mid, Vayne for AD, and Bard for
support. We use data from all six patches. Using this
method, we assign 129 of the 131 champions to their
correct cluster. The two champions we label incorrectly,
Jax and Ryze, were both used to fill two roles about
equally during these six patches. In Fig. 2 we plot the
empirical pick rate in green and our estimated pick rates
in blue (the details of how we estimate pick rate is given
in the next paragraph).

Jax
1.0
0.8
0.6
0.4
0.2
- =l =-—=__ ==
Top Jungle Mid AD Support
Ryze

0.8

0.6

0.4

0.2

00 I
Top

__ =m =N
Jungle Mid AD

Support

Fig. 2 Empirical role frequencies (green) and estimated
role frequencies (blue) for Jax and Ryze using all data.

While spectral clustering does well when a champion
fills just one role, it fails to model to ability for a
champion to fill multiple roles. As shown in the previous
paragraph, this causes issues when attempting to assign
a particularly versatile champion to a single role. Instead
of computing a single role for each champion, we now

CS 224W PROJECT REPORT, AUTUMN 2016

compute the distance from each champion to each role.
To make these more like pick rates, we pass the distance
through a sigmoid function and normalize them so that
all roles for a particular champion sum to one. These are
the estimated pick rates that we showed in Fig. 2. As you
can see, these scores to do a much better job of modeling
the ability for a champion to be used in multiple roles.
Furthermore, it is strictly more general than clustering
because the role with highest estimated pick rate is also
the role that clustering would assign. To get a sense for
how well we do from patch to patch and how well we
generalize, we will compute our accuracy in choosing the
kth most common role for each champion. For instance,
a high accuracy value for the 2nd most common role
means that we are often correct in choosing a champions
secondary role. These results are tabulated in Table 1. As
expected, we see an extremely high accuracy for primary
role. However, our accuracy for the secondary role is
much lower than expected. This is explained by the fact
that most champions do not have a secondary role but are
still included in the calculation. To explore this further,
we calculated the accuracy only for roles which were
picked at least ten percent of the time. These are reported
in Table 2 as fractions where the numerator is the number
correct and the denominator is the number of trials. We
see that only half of the champions are used to fill at
least two roles, only one sixth of champions are used to
fill three roles, and almost no champions are used to fill
four or five roles.

[Patch | 1T [2 | 3 | 4 | 5 |

6.07 || 099 | 0.59 | 0.38 | 0.41 | 0.52
6.08 | 098 | 0.58 | 0.47 | 045 | 0.70
6.09 || 096 | 0.52 | 0.44 | 0.37 | 0.54
6.10 | 098 | 0.55 | 0.50 | 0.45 | 0.73
6.11 098 | 0.54 | 0.49 | 047 | 0.67
6.12 || 099 | 0.61 | 0.49 | 0.34 | 0.53
All 098 | 0.60 | 0.59 | 0.56 | 0.85
TABLE T

ROLE ACCURACY FOR EACH PATCH

[Pach [1T | 2 | 3 [4] 5 |
6.07][129/130 [54/62 [10/19 [1/1 [N/A
6.08 || 129/130 [51/60 [13/19 | 0/1 | N/A
6.09 || 125/130 [50/65 | 11/17 [N/A | N/A
6.10 || 129/131 | 47/66 | 8/18 | 1/2 | N/A
6.11 | 128/131 | 47/62 | 13/14 | N/A | N/A
6.12 || 130/131 | 49/61 | 10/15 | N/A | N/A
All || 129/131 | 52/64 | 12/19 | N/A | N/A

TABLE II

CONDITIONAL ROLE ACCURACY FOR EACH PATCH

Lastly we visualize our plots in various two-
dimensional eigenspaces induced by the spectral cluster-

ing. Let a champion be associated with index 7. Supposed
we wish to visualize it in the eigenspace associated
with the first and fourth eigenvectors (in descending
order of associated eigenvalue). Them its x-coordinate
would be the ¢th element in the first eigenvector and
its y-coordinate would be the ith element in the fourth
eigenvector. In Fig. 3 we take the network created from
all ranked games in our dataset, plot the champions
in the eigenspace associated with the first and second
eigenvector, color the champions according to their spec-
tral cluster, and omit the edges (our network is fully
connected). In Fig. 4 we do the same with the first
and fourth eigenvectors. As you can see, the gold and
silver clusters are inseparable in the first figure but easily
separable in the second figure.

We conclude that spectral analysis is extremely ef-
fective for clustering, visualizing, and scoring champion
roles. While our dataset does provide roles which cham-
pions fulfill in each ranked game, it does not provide
these roles for other games. Hence, spectral analysis
could produce useful features for normal games and
special game modes such as Dominion.

V. EXPERIMENTS OVER TIME
A. Weighted Cluster Analysis

Algorithm: The standard clustering coefficient algo-
rithm uses unweighted edges between nodes and is
defined as

_2.TA

=5,
where a triangle is a fully connected set of three nodes,
represented by 7a and a triple is a set of three nodes
that contains at least two edges, represented by 7. This
method can also be applied to our weighted graphs by
using a threshold to binarize our edges. If the weight is
above the threshold, the edge exists, otherwise the edge
does not. This threshold is typically set to 0, but we can
vary it to remove low-frequency edges.

The weighted clustering coefficient algorithm given by
Opsahl and Panzarasa is similar to the above algorithm,
but instead of simply counting triples and triangles, it
scores them. If we define w(7) as our scoring method,
then our weighted clustering coefficient algorithm is
defined as

C

o= 2w(m)

2 w(T)

For a given center node n in a triad or triple, we
take the two edges connected to n calculate a score
using the arithmetic mean, geometric mean, maximum,
or minimum. In addition, we preprocess our edges by
applying a threshold much like the simple clustering

CS 224W PROJECT REPORT, AUTUMN 2016

Oo oo o:
O @ Q
o - .
°
© : 8@6%@'& %
o Oh.“

Fig. 3 Clusters plotted using the first and second
eigenvectors using all patches. The silver and gold
clusters are hard to separate.

[] Oo *
00 .. .‘
 oppes © 28 oo 3 AR
Lt A -t
[

Fig. 4 Clusters plotted using the first and fourth
eigenvectors using all patches. The silver and gold
clusters are easily separated.

algorithm. However, instead of binarizing, we keep our
values and set values below the threshold to 0.

Findings: For our investigation, we have applied four
algorithms: the simple clustering coefficient algorithm,
a thresholded algorithm, a weighted simple clustering
algorithm, and a weighted thresholded algorithm. We
began by testing how changing the threshold affects the
clustering coefficient.

As threshold increases, all of the clustering coef-
ficients decrease. However, at around a threshold of
0.005, we see that weighted blind and weighted ARAM
start to deviate from the other curves. Upon further
analysis of the clusters, it seems that in both of these
graphs, as threshold increases, we’re left with a cluster
of highly connected champions as well as less connected
peripheral champions. This explains why we still see

1.0 - - - - - - - -
— ARAM

— - Weighted ARAM [
— Ranked 1l
— - Weighted Ranked

0.9 p

0.8

€ :
£ 07 — Blind H
£ - - Weighted Blind
2 06 .
]
2os5t
s
3 o4f
8]
03|

0.2

01 1 L 1 L 1 L 1 L
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
Threshold (% of matches)

Fig. 5 Threshold vs Clustering Coef for Patch 6.10

the unweighted clustering coefficients decrease rapidly.
In ranked games, we don’t see this pattern at all. This
is likely due to the ban process. Many of the highly
clustered champions in blind pick, such as Elise, Braum,
and Cassiopeia, are mostly banned in ranked games,
preventing them from being in games and becoming
more connected on the network.

We also examined changes in the clustering coeffi-
cient of individual champions between patches. For our
timeframe, we chose our initial point as patch 6.07 and
our end point as patch 6.10, and used weighted simple
clustering on ranked games. To evaluate how much they
changed, we ranked the clustering coefficients and then
found the change in clustering coefficient between the
patches. Over these three patches, many champions were
buffed or reworked. Of the champions that were buffed,
most saw an increase in their clustering coefficient, as
they were picked more often and used in more team
compositions. As for reworks, they also generally had
large variance in clustering coefficient, though they were
not necessarily positive, as some champion identities
changed and players could not find a niche for the re-
worked champions. Table 1 has a few notable examples.

Champion | Changes | A Rank
Anivia Rework 69
Fiddlesticks | Rework 63
Vladimir Rework 49
Zyra Rework -13
Rumble Buffed -32
Malzahar Buffed -63
Syndra Rework -79
Zac Buffed -93
Vel’Koz Rework -97

ABLE TIT

CHANGE IN CLUSTERING COEFFICIENT BETWEEN PATCHES

CS 224W PROJECT REPORT, AUTUMN 2016

VI. SKILL CLASSIFIER

Another goal of this project is to be able to leverage
our champion select networks in order to predict the skill
tiers that games are played in. To do this, we model our
question as a regression, using various features that we
can extract from champion select to predict the average
skill tier of all ten players in the game.

A. Features and Response Variables

Riot stores the peak rank that each player in a League
of Legends game has achieved in the current season.
In order of increasing skill level, the tiers are: [UN-
RANKED, BRONZE, SILVER, GOLD, PLATINUM,
DIAMOND, MASTER, CHALLENGER]. These tiers
are then mapped to numbers, corresponding to their
index in the ordered list of tiers, so UNRANKED would
have a level of 0, while CHALLENGER would have a
level of 7. To calculate the average skill level of each
game, we then average the skill levels between all 10
people in the game.

To create our features, we began by using one-hot
vectors for many of the simple properties of networks.
We began with a one-hot vector for the presence of each
of the 10 champion in a game. This is based on the
idea that as player ranks change, their preferences for
picking different champions also changes. In addition to
that, we added a feature space of teammate-pairs, which
are represented in a network as an each edge between any
two champions that were selected on the same team. We
also used a feature space of opponent-pairs, which are
edges between any two champions selected on opposite
teams. While this may not be as relevant in lower level
matches, we believe that as skill level increases, these
features may play a bigger role, since this helps capture
the interactions between champion select picks.

We also leveraged some of our previous experiments
to construct features. To use our spectral clustering
results, we summed up the scores for each role for each
champion in a game, and added this as a feature. Even
though every team consists of 5 players in each of the
designated roles, the champions they pick may be more
versatile. It’s possible that with different skill tiers, we
may see a preference for picking more champions that
serve certain niches in a team composition. In addition to
role scores, we used the sum of the weighted thresholded
clustering coefficients for each champion as a feature, as
well as the total degree of each champion in the training
network and summed the degrees of all champions found
in a game. These features give us an idea of how central
or clustered the champion picks in each game are.

B. Training and Testing Data

To train and test our features, we split up our data
in a 4:1 test:train ratio. We randomly sampled our train
and test sets and evaluated each new model 50 times. In
order to maximize our training sample size, we also used
both ranked and blind pick games. We also did analyses
using data over multiple patches (from 6.07 to 6.12), as
well as analyses using data from only a single patch.

C. Models

We trained our features and responses on two different
models. The first was a linear model regressor that was
fitted by minimizing 12 loss using stochastic gradient
descent. Our second model was a Random Forest Regres-
sor, which we hoped would help capture more nuanced
interactions between champion picks. For both of these
models, we leveraged the scikit-learn library. For all of
these, we evaluated our models using mean squared error
loss.

D. Results

Our initial testing was done on all of the patches
combined, in order to have the largest dataset possible.
Initial testing showed that our Stochastic Gradient De-
scent Regressor performs better than random Forest on
our dataset. The baseline implementations was to pick
the mean of the skill levels of the training data for all
predictions in the test data. We then compared this to
a model trained with various combinations of features
from above, and found that we had the best performance
when using the champion selection pairs, and when we
used all of our features.

Mean Squared error

Base T&E All

Champs Team

Enemy

Fig. 5 Mean Squared Errors based on Features

The mean squared errors for many of our feature com-
binations are shown in Figure 5. Our baseline model’s
mean squared error goes off the chart, with an error
of 1.078. Similarly our errors for just using Roles or

CS 224W PROJECT REPORT, AUTUMN 2016

Clustering coefficients are very high, similar to the
baseline. As shown by the graph, we have a decent im-
provement in performance when using direct champion
picks. Furthermore, we see even more improvements
when we add more features, but have the lowest loss
when we use only pairs of champion picks, showing that
the interactions between champion picks may offer more
insight into the average skill level of a game.

To get a closer look at which features are indicative
or higher or lower skill level games, we extracted all of
the coefficients in our SGD Regressor and looked at the
highest and lowest coefficients.

Type Feature Coefficient
Role Support 0.327
Champ Janna 0.292
Enemies Caitlyn vs. Sivir 0.119
Teammates | Caitlyn and Blitzcrank 0.103
Enemies Zed vs. Lissandra 0.091
Teammates Xerath and Orianna -0.83
Enemies Fiddlesticks vs. Jhin -0.091
Champ Master Yi -0.244
Champ Teemo -0.247

TABLE IV

HIGHEST AND LOWEST COEFFICIENTS FROM REGRESSOR

Many of these coefficients can be explained by the
opinions of high level players and patterns found in
professional gameplay. The high coefficient features gen-
erally correlate with patterns of professional play, while
the low coefficient features are the opposite. For exam-
ple, playing supportive champions, especially Janna, are
often noted to be good ways to improve ones skill, but at
the same time, they are also stereotyped as boring, and
thus are usually associated with higher skill players. On
the other hand, Master Yi and Teemo are often played
for their simplicity or aesthetics, but are never selected
in professional or high level play due to their one-
dimensional playstyle, and they have some of the lowest
coefficients in our regressor. The high coefficient enemy
pairs show many of the traditional counter-picks found in
the game; Lissandra can completely negate most of Zed’s
utility, while Sivir can block every skill from Caitlyn.
On the other hand, Jhin is very immobile and does
poorly versus champions like Fiddlesticks. Thus, we see
a low coefficient associated with people who select Jhin
into Fiddlesticks. We see similar patterns with teammate
pairs, where Caitlyn and Blitzcrank synergize well and
have a high coefficient, while Xerath and Orianna fill the
same role, and thus do not synergize well on the same
team, and have a low coefficient.

VII. CONCLUSIONS

Overall, this investigation consisted of three major
sections. The first was an exploration of our dataset
involving hypothesis testing; we did this mainly through
spectral analysis. This allowed us to see that our data
has informational data within it, as well as explore some
well-known trends in League of Legends champion roles.
The next part of our project involved looking at changes
in weighted clustering coefficients over time. Once again,
this was primarily fueled by exploration and hypothesis,
and we were able to find many strong correlations be-
tween large champion changes and reworks, and changes
in their clustering coefficients. Finally, we created a
regression model to predict the average skill level of a
match based on the champion selection by both teams.
In here, we were able to leverage many of the simple
network features, such as champion nodes present or
teammate or enemy edges, as well as introduce features
generated from our exploration. These additional features
included champion selection roles from spectral analysis,
champion degrees, and weighted clustering coefficients.
With this final model, we were not only able to increase
our performance in predicting skill level of games,
but we were able to look at the coefficients to learn
about what features are specifically indicative of higher
or lower level games. In the end, not only were our
experiments successful in finding trends and matching
our expectations based on our experiences with the game,
but we were able to learn more about how champion
selections interact with each other and how they change
over time and between different skill levels.

REFERENCES

[1] Von Luxburg, Ulrike. “A tutorial on spectral clustering.” Statistics
and computing 17.4 (2007): 395-416.

[2] Tore Opsahl, Pietro Panzarasa. “Clustering in weighted net-
works” Social Networks 31 (2009): 155-163

[3] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, Michael W.
Mahoney. “Community Structure in Large Networks: Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters .”

[4] Eck, Nees Jan van, and Ludo Waltman. "How to normalize
cooccurrence data? An analysis of some wellknown similarity
measures.” Journal of the American Society for Information
Science and Technology 60.8 (2009): 1635-1651.

Ted: Weighted and Thresholded Clustering,
changes, Skill Classifier

Sean: Data Mining, Spectral Analysis

Bryant: Writing up related work, moral support

Patch

