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Abstract—The protein-protein interaction (PPI) network provides an overview of the complex biological reactions vital to an organism’s
metabolism and survival. Even though in the past PPI network were compared across organisms in detail, there has not been
large-scale research on how individual PPI networks reflect on the species relationships. In this study we aim to increase our
understanding of the tree of life and taxonomy by gleaming information from the PPl networks. We successful created (1) a predictor of
network statistics based on known traits of existing species in the phylogeny, and (2) a taxonomic classifier of organism using the
known protein network statistics, whether experimentally determined or predicted de novo. With the knowledge of protein interactions
at its core, our two models effectively connects two field with widely diverging methodologies—the phylogeny and taxonomy of species.

1 INTRODUCTION

1.1 Motivation

T HE wide availability of protein-protein interaction (PPI)
networks across vast number of organisms provide an
unique opportunity to increase understanding of the rela-
tionships between species. The taxonomic and phylogenetic
trees describe the similarity in physical characteristics and
evolutionary relationships between the species, respectively.
Since the advent of molecular biology, new techniques
emerged that can facilitate the traditionally classification of
species based on morphological and fossil evidence, such as
the molecular clock hypothesis [1], genomic phylostratigra-
phy [2] and molecular phylogeny [3].

Past studies indicated that the protein-protein interac-
tion networks of species is a reflection of the evolution of
both individual proteins and the organisms as a whole. This
suggest that the information gleamed from the networks can
be used to classify or predict species in relations with their
evolutionary trajectories and taxonomic classification. This
leads to our observation that the protein-protein interaction
network is effectively a bridge between the phylogeny and
taxonomy of species, and the conclusions made on protein
networks can be used to gain insight or make prediction
in both directions between phylogeny and taxonomy. In
this study, we would use overall network statistics (like
clustering coefficient) of PPI networks for different species.

1.2 Problem Definition

Briefly our work proceeds as follows: first, we explore how
the various network statistics compare and differ through-
out the tree of life and get deep insights into how protein
interactions have evolved over time. Following this, given
the position in the tree of life, we build a predictor for
protein network statistics. Finally we create a taxonomic
classifier which takes as input the protein network statistics
(either experimentally determined or obtained de novo with
the predictor) and returns the predicted taxonomy of the
species.

* All authors contributed equally.

As the construction of PPI networks remains a painstak-
ing task, typically biologists determine phylogeny and the
taxonomic classification of a new species before the PPI
network is created. Constructing PPI networks also requires
huge amounts of financial and research resources. The
potential of our model lies in the calculation of various
protein network statistics before any protein interactions
are determined, as long as the phylogeny of an organism
is understood. With the help of our predictor, biologists can
predict statistics about the PPI networks of new species by
just knowing its phylogenetic position. These predicted PPI
network statistics can aid in constructing the PPI networks
or finding loopholes/mistakes in the constructed networks.
The predicted values can also be used to further predict
interesting properties of the species such as its taxonomy (a
method which we developed in this work).

We then study the relationship between PPI network
characteristics and taxonomy of the species by building a
species classifier that determines the taxonomy given the
PPI network statistics of the species. The classifier can be
used for systematic and automated taxonomy assignment
based solely on protein network statistics and to check the
taxonomy determined through other methods.

The combination of the predictor and the classifier can
prove to be another interesting and high impact tool. Given
the phylogenetic position of a species we can use our
predictor to predict its network statistics; then using these
predicted network statistics, our classifier can determine
the taxonomy of the species thereby bridging phylogeny
to taxonomy through PPI networks. Even though we use
the PPI network data to build this predictor and classifier,
we can find the taxonomy of a species given its phylogeny
without knowing any information about its PPI networks.
Such a tool can explore the interdependence between the
logically distinct fields of Taxonomy and phylogeny and
provide a bridge between the fields.



1.3 Protein-protein Interaction (PPl) Networks and its
Reflection on the Evolution of Life

Protein-protein interactions (PPIs) are vital to the operation
of all cellular functions. Proteins are chains of amino acids
linked by peptide bonds—the combinations of which yield a
vast array of molecules with countless shapes and sizes. Pro-
teins act alone or together to perform chemical transforma-
tions; transmit signals; and provide structure/organization,
transport, and recognition among many other cellular roles.
However, previous studies have been done on multiple
aspects of the protein network evolution and its relationship
with Information obtained from PPI network databases
enables creation of interaction networks, and allows for
systematic investigation of the complex biological activi-
ties within the cell. With the increase in research on PPIs
and advancement in computational tools, interaction net-
works have been constructed and analyzed for thousands
of species.

1.4 Making Sense of the Diversity of Life:
Phylogeny and Taxonomy

In this study we consider two vastly different classification
schemes biologists employ in their study of species relation-
ships: phylogeny and taxonomy.

A phylogenetic tree describes evolutionary relationships
of a group of species, and a phylogenetic tree depicts the
evolutionary relationships among organisms, while each
branch points indicate when new species emerge from a
common ancestor. Therefore, each node in the phylogenetic
tree is an actual species and all non-leaf nodes are ancestors
of one or more organisms. Phylogenetic trees are usually
based on morphological or genetic homology and are build
by comparing anatomical traits, genetic difference and by
using molecular clocks.

Taxonomy, on the other hand, is the study of organisms
with the goals of classifying living and extinct organisms
according to a set of rules [4]. The rules specify a hierarchy of
groups, which form the non-leaf nodes of the tree, whereas
the organisms are assigned to the tree leaves based on simi-
larities and dissimilarities of their characteristics. Taxonomy
is usually richly informed by phylogenetics, but remains a
methodologically and logically distinct discipline.

Our understanding of species taxonomy is constantly
updated based on the increasing understanding of evo-
lutionary relationships between species. Advancements in
molecular biology also aid in our study of species rela-
tionships, including the use of molecular clocks (rates of
change in RNA or DNA sequences) and identification of
orthologous proteins across the phylogeny. As a result in
this study we are going to consider both the taxonomy and
the phylogeny tree in our quest of a automatic classification
of life, and compare the viability of our model under various
goals and settings. The predictor and the classifier we build
can act as a link between them through PPI networks.

2 RELATED WORK

Major research directions related to our theme involves
study of protein networks, phylogenetic tree and taxonomy.
But,to our knowledge, this is the first study attempting to
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bridge the knowledge of taxonomy and phylogeny using
protein networks.

2.1 Emergence of Protein Nodes in Networks

Past research on protein network evolution has focused on
single species network by observing how the protein nodes
arise in the evolutionary timescale. This is done by assigning
an evolutionary age to each protein node using techniques
like phylogenetic stratigraphy [2]. Research has shown that
in the course of evolution, the protein nodes are added to
the network in accordance with the preferential-attachment
model [5], [6]. Further research provides details on protein
nodes emergence mechanisms like gene duplication and
gene loss [7], [8] or the divergence model [9]. Even though
these studies tend to focus only on a single species and so
are of interest primarily in the biological context, they can in
fact supplement and support our observations during our
comparison across the phylogenetic tree using hypotheses
formed from protein emergence models.

2.2 Protein Network Structure Evolution

Phylogenetic trees are usually based on morphological or
genetic homology. Research on protein network evolution
has also focused on the high level structure of protein net-
works. Some studies identify motifs and community struc-
tures that are commonly preserved in the evolution process
[10], [11], and others have looked at the high level structural
graph statistics in terms of the entire graph [12]. The studies
suggest that proteins evolved earlier are more likely to stay
on as local clustering structures [13], and that the overall
statistics of the graph is with a power law dynamics with
the evolution [14]. This suggest that our attempt to compare
graph statistics is based on the valid assumption that graph
characteristics is related the way that the interactions links
arise, and since the rudimentary species have a less-evolved
network we can expect the network statistics can also reflect
the fact.

2.3 Protein Network Alignment Informs the Phyloge-
netic Tree

Protein network alignment methods [15], [16], [17], [18]
can inform our approach and suggests way to effective
summarize the comparison of networks across species.
These methods attempt to assign node-node relationships
for homologous proteins in different species [19], [20], and
report a similarity score [21] that can suggest evolutionary
relatedness between species.

2.4 Evolution of Protein Network Topology

Our work comparing protein network across species is
unique in its focus on the phylogenetic relationships of
species and its relatedness with the protein networks them-
selves. The work in previous studies [22], [23] is focused
primarily on the comparison of protein networks, and how
it relates to the evolutionary relationships we’ve come to
understand between the species. To this end the methods
have been applied to generate an alternative phylogenetic
tree based solely on the topological characteristics of the



protein networks [24] using tree construction methods such
as the average distance algorithm applied to similarity score
between all the PPI networks, without regards to individual
gene/protein evolution. This complements our observation
that the summary statistics of networks can provide infor-
mation on the species and its evolution.

3 APPROACH
3.1 Data collection
Protein-protein Interaction Networks

STRING v10 is the data source of choice for studies con-
cerning PPI networks across multiple species, and version
10 of the database include PPI networks for more than 2000
species. There are multiple ways to define edges between
the protein nodes, including functional relationships found
with experimental means, known biological pathways, ex-
isting studies suggesting functional codependence, and de
novo computational prediction.

We restrict our investigation to the more significant
species within the dataset determined by the number of
published work on the species when searching through
PubMed. By limiting our work to species with more than 100
published work, we choose to focus on the 427 most studied
organisms since they are of higher interest to biologists
and have more complete protein networks. The problem
remains, however, that the bias in network completeness
(missing nodes in some of the species networks) might in-
troduce artifacts in the result of our study. We therefore plan
to take steps to ensure that the biases are not interpreted as
part of our experimental conclusion.

Further, the data set also contained edges for protein
protein interactions that were anticipated to be existing and
not actually found in biological studies. These edges were
removed as we wanted to extract features from the true
network without any assumptions or predictions.

Phylogenetic Tree of Life

In recent times, there has been ample work on the problem
of constructing phylogenetic trees from molecular sequence
data of species [25], [26], [27]. The STRING database itself
provides a phylogenetic tree of species as accessory data
to the interaction networks. Since the usage of identifiers
is consistent across the interaction networks and the tree
of species, it is a natural choice to work with the STRING
tree of species. Figure 1a shows the STRING tree of species
annotated with the three domains (Archaea, Bacteria, and
Eukaryota).

The STRING tree of species, however, does not provide
any information on the similarity of species that are con-
nected by an edge in the tree. To enrich the STRING tree of
life with such information we use the tree of life developed
in [28]. Since the species identifiers used in [28] are not
consistent with those used in STRING, we use heuristics
(based on lineage of species) to generate a mapping between
the two sets of species identifiers.

Taxonomic Hierarchy

The NCBI has made available the Taxonomy Browser tool
[29] which allows convenient browsing of genome informa-
tion as well as taxonomic lineage of species. The species
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identifiers used in Taxonomy Browser are consistent with
those used in STRING. Thus, to collect information about
taxonomic hierarchy, we

1) query the Taxonomy Browser with all the species in
the STRING database,

2) scrape the lineage of species from the results HTML
generated, and

3) build a directed tree by adding the lineages as paths
in the tree.

The final tree is further processed (as described in section
6), before being used for construction of our taxonomic
lineage classifier.

3.2 Network Statistics

In the following section, we give a brief summary for each
of the PPI network metrics that form the basis of our study,
and are included as features in our classifier and predictor.
With some exploratory work we found that the following
set of features gave the best results.

1) Number of nodes: This captures the number of
protiens in the species and in turn the complexity
of the species.

2) Number of edges: This captures the number of
types of protein-protein interactions, again indicat-
ing the complexity of the species.

3) Average degree: On an average, how many other
proteins does a protein in this species interact with.

4) Maximum degree: How many proteins does the
most active protein in this species interacts with.
This refers to the protein with the least specificity.

5) Density: This is the ratio of number of edges to
the number of possible edges in the network. This
indicates the average specificity of proteins.

6) Number of connected components: This captures
groups of proteins that donot interact with one
another.

7) Fraction of nodes in largest connected component:
These capture the complexity of biochemical reac-
tion in species.

8) Full diameter: Diameter is the longest of all shortest
paths in the network.

9) Global clustering measure: It is ratio of number of
closed triads to sum of closed and open triads.

10) Clustering coefficient: The clustering coefficient of
a node is defined as the fraction of existing edges
among all the possible edges between the neighbor
nodes.

11) 2-star density: Ratio of number of 2-stars present to
number of 2-stars possible in the network.

12)  3-star density: Ratio of number of 3-stars present to
the number of 3-stars possible in the network.

13) Entropy and Gini coefficient of degree distribu-
tion: Multiple studies focusing on single species PPI
network have shown that proteins emerge in accor-
dance with the preferential attachment model [5],
[6], [30]. Even though in our study of protein net-
works we compare degrees between network, not
protein nodes, we can expect the same properties of
network growth in preferential attachment. We're
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Fig. 1. Heatmaps for spatially visualizing the variation of various network statistics over species in the phylogenetic tree of life. Only selected figures

(f) Spectral norm

for network statistics which show interesting patterns are included for this report.

interested in seeing how the average degree grows
with respect to the evolutionary years and advance-
ment in evolution. To compare degree distributions
across networks, we collect meta statistics over the
distribution like mean, gini coefficient, entropy, etc.

14) Assortative mixing : This captures preference for a
node to be attached with a node thats similar to it in
terms of degree.

15) k-cores features: A k-core of a graph is a maxi-

mal connected subgraph of the graph in which all
vertices have degree at least k. We compute the
maximum k, such that k-core exists and use that k,
number of nodes in that subgraph, number of edges

in that subgraph as features.

We believe the above features would rightly reflect the
complexity of protein-protein interactions and other bio-

chemical pathways of different species.



average degree vs distance from root
T —%

10° T
® o Bacteria
© o Archaea
® o Eukaryota
2k a2 i T 4
A A SRR RN
=) o4 ‘e [ Rad
3 :
Q
o
o
g
® 10 poe b R
- : ; ;
1.0 1.5 2.0 2.5 3.0
distance from root
(a) Average degree
30 Diameter vs distance from root
= a o !
® e Bacteria o6 o
25l|® @ Archaea |[...... .. FAE e —
@ .9 @
© o Eukaryota o® o®
oo O
s o®
20 Teeeees @D @OWOO - @ - E
: @ © 0® [}
= ®we_o o
] : ® o ®
[7] . ® oe®
€ 15F- ey @OW - @ @ s E
© § ®ee )
a
°®
L 2N )
0 I | I
1.0 L5 2.0 2.5 3.0
distance from root
(c) Diameter
102 2-star density. vs distance from root
¥ T [@ !

® o Bacteria
3[|e o Archaea | ... e
® o Eukaryota °

=
o
&
®
I

2-star density.
= =
o [
o IS
T
q
: o
Y
® ¢
.o‘ °
e &
°o® ®
o ‘@%"
@ S48% |
®
) §
®
[
@
®
UK

o g....]
e W Qo :
= &
1070 feoeee b = G E
L) 0@ ©
207 b %8 ® o ...l
: e
10~S 1 1 1
1.0 1.5 2.0 25 3.0

distance from root

(e) 2-star density

Global clustering coeff. density

edge entropy

10°

density vs distance from root

T

® o Bacteria
® © Archaea :
© o Eukaryota e

10t b

Cg@(go@: C@O . )

1073
1.0

distance from root

(b) Density

0.50

Global clustering coeff. vs distance from root

T

0.45 H

0.40 H

@ o Bacteria
® o Archaea
® o Eukaryota

0.35

0.30

0.25

0.20

0.15

0.10

0.05

distance from root

(d) Global clustering coefficient

. edge entropy vs distance from root
® e Bacteria : ‘
ogll® @ Archaea
® o Eukaryota
0.6 ks b
0.4 g
@ [
@% e
0.2 feessonusnse o
0.0 oo Eenenas D e,
-0.2 L ! L
1.0 1.5 2.0 2.5 3.0

distance from root

(f) Edge entropy

Fig. 2. Variation of select network statistics with distance of species from the root in the phylogenetic tree of life.

4 ANALYZING THE DATASET

We devoted a large amount of effort on the exploratory
analyses of the dataset, and we were able to report some
of the important observations we gathered. We focus on the
following analysis in this section:

1) Spatial visualization of variation of network fea-
tures across the phylogenetic tree: to help us iden-
tify macro-level relationships and form hypothesis
about observed patterns.

2) Variation of network features at different stages
of evolution: we aggregate the network features

4.1 Visualization of network features on the Phyloge-

for all species at the same number of branch hops
from the root in the phylogenetic tree, and report
the variation of these aggregates with the number

of branch hops.

netic tree

To show how the various network metrics varies throughout
the entire phylogenetic tree, we generate heat maps of the
phylogenetic tree with each point showing the magnitude

of the various network characteristics (see Fig. 1).



We observe that there are obvious differences between
species in the Eukaryota domain and the other prokaryotes
(Archaea and Bacteria). This suggest that we should achieve
at least moderate success in our effort to classify organism
based on PPI network statistics.

While we omit a statistical evaluation of the hypothesis
that network properties are different across different do-
mains of species, we outline such a procedure. A simple
null model for comparison would be the phylogenetic tree
with its node labels (and corresponding values of network
statistics) shuffled randomly. The differences in size and
distribution of clusters (computed by binning the network
statistic values into small number of bins and using any of
the spectral clustering algorithms) shall give us a meaning-
ful quantification of our hypothesis.

4.2 Variation of network features with degree of evolu-
tion
The tree of life with edge weights obtained from [28], gives
us a measure of dissimilarity of all pairs of species that are
connected by an edge. Since the phylogenetic tree encodes
evolutionary information such as ancestry and common de-
scent, we use the tree distance (sum of weights of edges on a
path) of a species from the root of the phylogenetic tree as a
proxy for its degree of evolution. It is observed that Bacteria,
in general, are further away from the root than Eukaryotes
and Archaea—which can be reasoned since Bacteria were
among the very first living organisms to appear on Earth.
In search of interesting patterns, we studied the variation
of network statistics of species with the distance from the
phylogenetic root of that species as described above. A
selection of interesting results is presented in Figure 2. It
can be seen from the figures that Archaea are species with
lowest distance from the phylogenetic root, and Bacteria are
located farther away from the root along with Eukaryota.
While we did not observe a simple dependence of any
network property on the distance from root: we remark that
the average degree, density, 2-star density tend to decrease
as species move farther away from the root, whereas there is
a weak opposite trend for other statistics such as diameter,
global clustering coefficient, and edge entropy. Further, in
all the included figures, it can be seen that there is a rather
apparent distinction between different domains based on
various network statistics. For Bacteria and Archaea in
particular, we can see the variation of network statistics
within the domain is relatively small. These observations
lead us to conclude with confidence that it is possible to
classify species into taxonomic groups (at least at the level
of domains) using only the network statistics of their PPI
networks.

5 PREDICTING NETWORK STATISTICS FROM Po-
SITION OF SPECIES IN PHYLOGENETIC TREE

As we identified statistics that are meaningful representa-
tion of the protein networks, our next step is to build a
predictor of the same statistics based on features gleamed
based on the phylogeny of species. We construct and test
our model by splitting the 427 species we included into the
train set and the test set with a random 80/20 split. Network
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statistics of the nodes in the train set is presumed to be
known, whereas statistics of the test set are those we set out
to predict. The prediction is based on the known position of
species in both the train and test sets on the phylogenetic
tree of life. Position refers to the exact location of the species
in the tree - the parent and the children can precisely define
it. Lets look at the features that can capture the position of a
node in the tree.

5.1 Feature Extraction
5.1.1 Sibling Feature

To calculate the sibling features, for every species we find
the latest ancestor that contains more than one descendants
in the tree; these descendants are considered the ”siblings”
of the species node in question. We then take the mean of
all the network statistics of these siblings to generate a set
of sibling features that can be used to predict the network
statistics of the particular node.

> stats

Stats siblings

eatures,”® = —————— for every stats
/ sib |siblings| Y

5.1.2 Cousin Feature

Cousins of a node are defined as the nodes with the same
level from root in the tree as the node under consideration.
To get the cousin features, we look at the entire phylogeny
to find in the 427 species those that are of the same hops
from root as the species in question. By doing this we can
have a estimation of how the hops from root affects network
statistics of a particular species we set out to predict.

> stats

cousins

|cousins|

stats

feature —

oun for every stats

5.1.3 Caveats in Feature Extraction

During feature extraction, our first intuition is to create
features based solely on the species node position in the
phylogeny instead of taking the network statistics into ac-
count. This is motivated by the fact that a lot of the internal
nodes in the phylogeny do not include protein networks
data, so it’s impossible to obtain network statistics of these
nodes without estimation. In our attempt to create features
that summarize the position of species nodes in the tree
of life, we created a bit vector for every internal node
in the phylogeny indicating which of the 427 species are
descendants of the internal node. We found as a result that
the feature vectors are too large and too sparse (since we
include all the internal nodes as possible ancestors) and
perform poorly even with dimensionality reduction using
principal component analysis (PCA).

We therefore conclude that in order to effectively predict
the network statistics of species in the test set we need
to tap into the network metrics instead or relying merely
on ancestry in the phylogeny. This is meaningful in the
suggestion that the phylogeny itself is insufficient in accu-
rately determining the traits of protein networks, and shows
that the network nodes are highly influenced by both the
evolutionary relationships and the traits of existing network
statistics of nearby species in the phylogenetic tree.



5.2 Predictor Model Evaluation

We first divide the species into a train and test set with a
random 80/20 split. From every network statistics, we train
a linear support vector machine (SVM, linear kernel with C
= 100) model based on the sibling and cousin features of the
species in the train set. We then predict each of the various
network statistics for species in the test set using the , and
then compare the predicted values with the actual network
statistics using the relative error:

|predicted — actual|

relative error =
actual

The relative errors are then summarized across all
species in the test set, and for each type of network statistics
we obtain a mean and standard deviation of the particular
statistics (Table 1).

5.3 Analysis

With results from Table 1 we can conclude that the predictor
works well with most network statistics considered in this
study. The mean error is in the range of 10-20% for most
of the network statistics, and the standard deviation is also
considerably low. Interestingly, it seems that a few of the
network statistics are extremely hard to predict, like the
density and star density of the networks.

The reason that this model performs so poorly in a few
cases suggests that some of network statistics are quasi-
random and possibly unrelated to the evolutionary rela-
tionships. Our observation was that the star density and
the density of a protein-protein interaction network does
not have readily available biological interpretation; in other
words, they are irrelevant in the context of protein interac-
tions and biochemical reactions in an organism.

The results we obtained can also inform our under-
standing of the interaction between evolution and network
growth. As we can see in the Table 2, the diameter of protein
network, the maximum component size and a few variance
measures of the degree distribution performs remarkably
well in our model; this combined with the biological in-
terpretation detailed in Section 3.2 suggests that the graph
statistics are readily interpretable in the context of evolu-
tionary biology.

Noting that statistics like number of edges are huge
numbers and are generally orders of magnitude different
for different species, we believe predicting the number of
edges with 70% accuracy is still good result considering the
underlying nature of these statistics. Also, we can derive the
number of edges with a better accuracy by using predicted
average degree and number of nodes as they have far lower
error rates.

6 TAXONoMic LINEAGE CLASSIFIER

One of the glaring observations from the analysis in Sections
4.1-4.2 was that PPI network statistics differ significantly
across species in the Archaea, Bacteria, and Eukaryota do-
mains. It is apparent that given the PPI network statistics
of a species, it is possible to classify it with reasonable
accuracy into one of the three domains. While in the interest
of brevity, we could not include a similar analysis which

Domains { ([ Archaea | (Bacteria_] Eukaryota
Phyla { \‘ /l \‘ (Artropoda ) Chordata
Class {

Order {

Homo sapiens

Fig. 3. A partial taxonomic hierarchy shown as a rooted directed tree
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Fig. 4. Performing recursive feature elimination on the classifier for
domains shows us that highest accuracy is achieved when using all of
the 19 features.

compares network statistics across finer levels of taxonomic
hierarchy, we observe that many network statistics tend to
be similar for species in the same taxonomic group and
different for species across different groups. Naturally, we
were tempted to ask “Can a species” PPI network statistics
be used to predict its taxonomic classification?”

It should be noted that the taxonomic classification of a
species and the construction of its interaction species are
two tasks that are fairly independent of each other. Our
work aims to form a bridge between the the science of
taxonomy and molecular interaction biology. Further, if the
taxonomic lineage classifier is coupled with the network
statistics predictor (discussed in Section 5), it will be possible
for biologists to discover the taxonomic lineage of a newly
discovered species using only it’s hypothesized position in
the phylogenetic tree.

6.1 Approach

The taxonomic hierarchy is a rooted directed tree, where
internal nodes represent taxonomic groups and the leaves
represent individual species (see Figure 6). Each path from
the root to a leaf (species) represents the taxonomic lineage
of that species. Thus, the classification task requires us to
classify a species (using its PPI network statistics) into one
of such paths.

We approach the lineage classification task as a hierarchy
of classification tasks, each of which classifies a species



TABLE 1
The mean and standard deviation of the relative error of the predicted neted values are obtained with SVM models trained using features from the
sibling and cousin nodes of species in the train set, and tested using the same features obtained with species in the test set.

Mean of Relative Error

Nodes

Edges

Average Degree

Maximum Degree

Density

Number of Components
Maximum Component Size
Full Diameter

Effective Diameter

Global Clustering
Clustering Coefficient

Star Density 2

Star Density 3

Gini Coefficient of Degree Dist.
Edge Entropy

Assortative Mixing

K-cores Maximum Degree
K-cores Maximum Nodes
K-cores Maximum Edges

into finer taxonomic groups given that it has been correctly
classified to some coarser taxonomic group. In other words,
we construct one classifier for each internal node in the
taxonomic hierarchy (tree), whose role is to classify an
example into a taxonomic group represented by one of the
children of this node.

To construct the full taxonomic lineage of an example
(network statistics of a species), we use the classifiers at
successive levels as follows:

¢; = classifier., . (z)
¢o = cellular organisms (root)

where z is the feature vector (of network statistics) to be
classified, classifier., , is the classifier corresponding to
node ¢;_; in the taxonomic hierarchy, and ¢; represents a
node in the taxonomic hierarchy at distance ¢ from the root.
The lineage of the species with feature vector z is then
(co,c1,-..,Cn—1) where n is the height of the taxonomic
hierarchy.

Each of the classifiers is a SVM with linear kernel (C' =
100). classifier,, is trained on species for which i-th level in
lineage equals c;.

The set of features used for classification is the same as
those computed by the predictor in Section 5 (see Table 2).
Since the linear kernel SVM allows us to extract weights
corresponding to each feature, we performed recursive fea-
ture elimination to minimize the number of features used.
In Figure 6, it can be seen that it is best to use all of the 19
network statistics as features.

6.2 Caveats

The taxonomic hierarchy described in the previous sections
is not exactly well-structured as described. In particular,

Standard Deviation of Relative Error

0.244 0.233
0.739 0.978
0.371 0.560
0.381 0.349
13.223 14.857
1.771 7.575
0.123 0.340
0.128 0.111
0.106 0.181
0.405 0.395
0.136 0.103
1.366 2.494
14.120 41.749
0.089 0.061
0.025 0.014
0.186 0.235
0.337 0.364
0.664 0.796
2.293 4.234

1) The length of lineage is different for different
species, i.e. the height of the taxonomic hierarchy
is not uniform.

2) The levels in the lineage do not necessarily map to
the taxonomic levels of domain, kingdom, phylum,
class, order, family, genus, species.

3) For many intermediate levels of lineage that do not
correspond to any of the above taxonomic levels,
there is just one child node in the taxonomic hierar-
chy.

For the purposes of this project, we restrict our dataset to
only those species for which we can extract information for
the taxonomic levels of domain, kingdom, phylum, class,
order, family information from the lineage. We also collapse
all the intermediate levels in the lineage which do not
correspond to any of the above taxonomic levels. Since there
are not enough training examples within each genus, we
restrict our classification to the above six taxonomic levels.

6.3 Results

We perform a five-fold cross validation on the dataset
reduced to 1537 species after filtering. Note that we also
include the species with lower publication counts for this
particular problem.

The cross-validation accuracies for each of the individual
classifiers (one for each node in the taxonomic hierarchy) are
shown in Figure 5. In the figure, each blue disc represents
the accuracy of a single classifier. The plot is arranged in
order of taxonomic levels and a tree of classifiers can be
observed from the figure. We note that the classifier for
discovering the domain of a species performs exception-
ally well. While the classifiers at lower levels of taxonomy
perform relatively poor, but considering that each of them
have much lower amount of training data available and
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Fig. 5. Each blue disc marks the cross-validation accuracy of a particular
classifier whose taxonomic level is read from the X-axis. The area of the
disc is proportional to the number of training examples that were used
for that classifier. The weighted average of accuracies is plotted in red.
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Fig. 6. In contrast to Figure 5, here we show the accuracy for the full
lineage classification. AlImost 100% accuracy is achieved at the domain
level, whereas lower than 10% accuracy is achieved for the lineage
classification till the taxonomic level of family.

conceivably larger number of labels to classify into, their
performance seems to exceed our expectations.

The cross-validation accuracy for the full lineage classifi-
cation is shown in Figure 6. The plot shows the classification
accuracy up till various taxonomic levels. It can be seen that
the classifier (rather, a hierarchy thereof) performance gets
poorer as we seek to discover finer taxonomic classifications
for a species. It is worth mentioning that for a test set of
365 species, our hierarchy of classifiers was able to predict
the full lineage correctly for 15 species, while predicting the
domain correctly for 361 species.

6.4 Analysis

The results, particularly from Figure 6, lead us to conclude
that our hierarchy of classifiers can be used to predict the lin-
eage (at least partially) of a species using only the network
statistics of its PPI networks. This is particularly impressive
considering the fact that the taxonomy is constructed not
merely with the evolutionary relationships of species, but
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rather based on a set of rules on the physical, physiological
and other aspects of species traits.

With our varying degree of success applying the classi-
fication model to the different granularity of the taxonomic
hierarchy, we can identify classification rules that are more
relevant to the inherent biological process of the species. In
addition to suggesting the taxonomy of newly discovered
species, the same model can be apply even to organisms
that are already classified, and suggest alternative taxonomy
when building a newer model of classification. The classifier
can also be used to make sense of the taxonomic rules,
and can inform proposed modifications to the rules so that
they are more relevant to the biological pathways, and
complement existing molecular biology techniques in terms
of species classification.

7 CONCLUSION

With our phylogenetic predictor, we are able to provide an
automated model that predict graph characteristics de novo.
The model is unique in the way it summarizes the statistics
based solely on the characteristic of neighboring nodes on
the phylogeny, and can generate with reasonable high accu-
racy the graph traits. As the construction of PPI networks for
a new species is a painstaking process and generally occur
long after the species is well studies in both evolutionary
relationships and physiological traits, the predictor model
can serve as a useful informant for biologists both during the
discovery of newer species in cases where the PPI network
is still incomplete for an organism.

With the taxonomic classifier we constructed based on
characteristics of the protein networks of species, we are
able to suggest taxonomic hierarchy of an existing species
with varying level of success in the different levels. This is
an interesting conclusion considering that the the taxonomy
is determined generally unrelated to the physiology and
internal biochemical reactions of species. The varying level
of success, especially on the more granular level, suggest
alternative taxonomy can be in place based on the discov-
eries enabled by our model. In addition, when a biologist
can determine that network statistics of an organism with a
level of certainly, the classifier can automatically suggest the
taxonomic hierarchy of effectively especially on the higher
level.

With our work on both the phylogeny and taxonomy
of biology, we are able to connect the two fields through
the bridge of the protein-protein interaction networks. Even
though the fields of taxonomy and phylogeny are simi-
lar in their goal of making sense of the diversity of life,
they employ vastly different approaches and often draw
contrasting conclusions on the relationships between or-
ganisms. The fact that our two model connect the two
fields makes possible a all-encompassing predictor that
predicts the taxonomy of a species based on the known
evolutionary relationships, even without prior knowledge
of the protein-protein interaction networks. This conclusion
comes to suggest an inherent relatedness between the fields
of study, and we look forward to exploring the success of
our model at different taxonomic levels. We also plan to
engage in exploration in the other direction, going from
the known taxonomy of a species and try to deduce its



phylogenetic relationships towards others. Future work can
also include coming up with better features for representing
position in the phylogeny tree, using deep learning models
for learning and investigating methods to improve accuracy
of the classifier at lower levels of taxonomy despite less
training data.
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