CS 224W Final Project
Link Prediction on Crunchbase Investment Network

Yanshu Hong, yanshuh@stanford.edu
Jiayu Wu, jiayuwu@stanford.edu

INTRODUCTION

In this project, we are interested in predicting future
VC investments from past investment data. We found a
theoretical framework (“link prediction”) and a relevant
dataset from Crunchbase that fit our needs. We aim to
evaluate different link prediction methods surveyed from
literature on the CrunchBase dataset, synthesize and hope-
fully improve upon some of the methods, and also develop
a few first-hand insights into the VC-startup ecosystem and
its dynamics.

Our motivations behind this project are threefold. First,
solving the link prediction problem in the context of in-
vestment network is valuable because it helps us better
understand investment activities. Second, while in class
we learned link prediction on Facebook undirected social
network, due to the bipartite nature of investment graph,
it is interesting to see how we can apply the link predic-
tion methods to such a graph. Third, we think that the
CrunchBase investment dataset is a rare-find and it worths
a thorough analysis.

The results we obtained are half positive and half neg-
ative. Most predictors outperform the random predictor,
indicating a certain correlation between the structure of the
investment network and individual investments. However,
even our best predictor achieves a F1 score of merely 1%.
This, to some extent, confirms the old saying that “invest-
ment is an art, not a science”.

RELATED WORK

Link prediction problem for social networks is clearly
defined by Liben-Nowell and Kleinberg (2007). We would
like to adopt their definition as a working foundation for
our project. Consider an undirected graph G where all edges
are annotated with timestamps (can be interpreted as the
time an edge is added). Further suppose we have four
timestamps to, t(, t1, tj such that tog < t{; < t; < t|. The
link prediction problem is to predict from graph G with
only edges created between time [to, t(] to new edges that
will be created between time [t1,t}]. For simplicity, we do
not consider new nodes that are added through time and

restrict the vertex set only to nodes that are present in G at
£

Liben-Nowell and Kleinberg discuss various methods
for link prediction. The core idea is to devise a scoring
function for all node pairs. With this scoring function, we
can make predictions by taking, say n, node pairs with the
highest scores. Liben-Nowell and Kleinberg survey a wide
range of scoring methods and pigeonhole them into three
categories:

(1) methods based on node neighbors: common neigh-
bors, Jaccard, Adamic/Adar, etc. These methods are
“local” in the sense that they only look at the immediate
neighbors of some node.

(2) methods based on the ensemble of all paths: Katz,
hitting time, SimRank, etc. These methods are more
“global” as they extract information from the entire
graph topology instead of the immediate. For example,
the Katz method considers a weighted sum of the
number of paths with length [between two points for
all [. Weight for larger [is set to be smaller as intuitively
a longer link explains less the “proximity” of two nodes.

(3) meta-approaches: LSA, unseen bigrams, etc. These
methods are meant to further improve efficiency
and/or accuracy of the methods in the first two cate-
gories.

In the same paper, five co-authorship networks are used
for experiment. A random predictor that randomly predicts
selects pairs of authors that do not share edges in the
training graph is used as the baseline. The results show
that although the raw accuracy of the above-mentioned
methods is relatively low, they perform significantly better
than the random predictor, which indicates that graph topol-
ogy indeed provides some useful information regarding
graph evolution. The best scoring function they find out is
Adamic/Adar.

Since our CrunchBase dataset models investment rela-
tions as a bipartite graph (companies and investors are
nodes while investment relations are edges), the general
methods proposed in Liben-Nowell and Kleinberg’s paper
are not tailored specifically to bipartite graphs. In particular,
because two nodes that are not connected by an edge in
a bipartite graph share no common neighbors, the whole

category of neighbors-based methods does not work in
bipartite graphs.

The paper by Kunegis et al. (2010) and that by Allali
et al. (2011) signal two general directions to solve the link
prediction problem for bipartite graphs:

(1) run path-based methods on the bipartite graph.
Kunegis et al. convert most path-based methods into
polynomial functions of the adjacency matrix. Suppose
A is the adjacency matrix of any graph, A’('z) 4 denotes
the number of paths of length ¢ from node = to node
y. Since in a bipartite graph, we are only interested in
paths of odd length, we can constrain the polynomial to
consist of only odd powers. This will be one major class
of methods that we implement in this paper.

(2) convert into a regular graph. We can convert a bipartite
graph into an unweighted or weighted regular graph.
For example, if we have a bipartite graph between au-
thors and papers, we can turn that into a co-authorship
graph. In our case, we can turn the bipartite graph into
a co-investment graph (with all nodes as investors). We
can also use the neighbor-based scoring methods to add
weights onto the edges. Moreover, Allali et al. propose a
way to predict internal links for bipartite graphs, where
a link is internal if its addition does not change the
structure of the converted regular graph (called the
projection). We'll also try this method.

Other papers like Li and Chen’s (2013) propose machine
learning methods to solve the link prediction problem. We
did not find this paper particularly convincing, so we decide
to design our own machine learning approach that takes
properties of companies and investors as well as properties
of the network as features. All methods are described in
greater detail in the Models and Methods section.

DATA

The investment dataset is provided by crunchbase.com.
The dataset contains 168,648 venture capital investment
records, ranging from May 1977 to December 2015. Each
row in the dataset (as a .csv file) represents one invest-
ment. For each row, we are interested in columns such as
company name, company category, location/region of the
company, investor name, location/region of the investor,
funding round, funding time, raised amount and etc. We
parse the .csv file into python objects (class Company,
class Investor,class Investment) and create refer-
ences between them. Note that we really wish to know
the exact amount of money each investment involves, but
such information is not directly provided within the dataset.
We know the total investment amount for some investment
rounds, but we have no way splitting the round amount into
individual ones.

To solve the link prediction problem using this dataset,
we built an undirected bipartite graph from the dataset
using NetworkX, with all edges going between investors
and companies. We have 30,726 companies and 66,368 in-
vestors in total. Note that there are 836 companies that are

2

also investors, but we keep them as separate nodes in two
clusters of the bipartite graph.

We use investments from 2010-2014 as the training data,
and investments from 2015 as the test data. The bipartite
graph for training is built only from investors and com-
panies that are present between 2010-2014. We ignore all
new nodes (investors and companies likewise) created in
2015. In order to reduce the graph size (so as to make
computation tractable) and make the graph less sparse, We
filtered out most investors and companies with low degrees.
The specific methods we use are described in detail in the
Evaluation section.

PRELIMINARY ANALYSIS

Before we proceed to solve the link prediction problem
on the dataset, we would like to have some preliminary
understanding of the network. Thus, we will draw from
concepts that we’ve learned throughout this course and
present some network statistics.

10° . .

104} .

103}

102}

10°

Fig. 1: Degree Distribution for Investors

From Fig. 1, We notice that the degree distribution for
investors (size of the portfolio) follows the power-law dis-
tribution. A small number of investors have made a large
chunk of all investments. Indeed, many start-ups turn to
famous venture capital firms to seek seed funding, and thus
the brand name of an investor is essential in the venture
capital space. In comparison, the degree distribution for
companies (number of investors) is slightly more equal than
that for investors. When we make predictions, adjusting
our models to reflect the two empirical degree distributions
might be helpful. The investors and companies with the
highest degree are shown in Table 1 and Table 2.

According to Table 1, we see that top investors have
made a large number of investments and the number of
investments decline exponentially as the investor’s ranking
lowers. According to Table 2, we see top companies receive
a comparable number of investments, and in general, a

company’s degree is much lower than that of an investor.
Therefore, when we consider whether to predict an edge
between an investor and company (and when we decide the
ratio of investor nodes to company nodes when we build
the training graph), we should take into consideration the
imbalance between the average degree of an investor and
the average degree of a company.

Investor | Degree
Sequoia Capital 1033
Wayra 936

500 Startups 932

New Enterprise Associates 902
Intel Capital 861

Y Combinator 862
Accel 779

Kleiner Perkins Caufield 727
Start-Up Chile 727

SV Angel 625

TABLE 1: Top 10 investors with highest degree

Company | Degree
Uber 64
DocuSign 61

Fab 61
Pinterest 60
Practice Fusion 59
Mattermark 59
ecomom 59
EndoGastric Solutions 57
Hackers/Founders 57
PTC Therapeutics 57

TABLE 2: Top 10 companies with highest degree

Now, we will look at the category breakdown of in-
vestors’ portfolio companies.

According to Table 3 and Table 4, we see that two famous
venture capital/incubator firms, Y Combinator and 500
Startups, have very similar portfolio structure. The top 10
categories for these two investors almost overlap. However
at the same time, we notice that their portfolio companies
are extremely diversified among different categories, which
suggests that using information about a company’s category
might be able to improve the prediction accuracy slightly,
but too much.

Category | Percentage
Software 5.48%
Curated Web 4.43%
Mobile 3.90%
E-Commerce 3.14%
Enterprise Software 2.71%
Analytics 1.76%
SaaS 1.67%
Social Media 1.52%
Games 1.38%
Advertising 1.33%

TABLE 3: Top 10 Categories, Portfolio Breakdown for Y
Combinator

Category | Percentage
E-Commerce 4.28%
Mobile 4.22%
Software 3.39%
Curated Web 3.26%
SaaS 2.52%
Enterprise Software 2.43%
Advertising 2.36%
Marketplaces 2.20%
Social Media 2.11%
Analytics 1.66%

TABLE 4: Top 10 Categories, Portfolio Breakdown for 500
Startups

To understand further the connections between investors
and between companies, we transform the original bipartite
graph into two undirected graphs, one for investors and
the other for companies. In the co-investor network, two
investor nodes share an edge if they have invested in the
same company; likewise, in the co-company network, two
company nodes share an edge if they have been invested
by the same investor. We calculate the average clustering
coefficient for both projected graphs. Given Table 5 (see next
page), we see that both graphs exhibit community structure.

The statistics on the investment network show that apart
from the graph structure itself, domain knowledge and
information may be incorporated to our model in order to
improve prediction. For example, when we are considering
a possible investment, we can check whether a company is
in the sector an investor has made significant investments
in. In the next section, we’ll first present prediction methods
based only on network structures. THen, we’ll detail our de-
sign of the machine learning approach that aims to combine
contextual information with network properties.

MODELS AND METHODS
Internal Link Method

As mentioned in Related Work section, Allali et. al.
notice that there is a special subset of links that when added
to the bipartite graph, does not change the graph projection.
They propose a method that aims to predict only the internal
links. We first implemented this method.

The projected graph in our case is the co-investing graph.
The nodes are investors and edges exist between two in-
vestors that have invested in at least one common company
(two investor nodes have common neighbors in the bipartite
graph). We use the Jaccard-coefficients of the two investor
to model the edge weights between nodes in the bipartite
graph. In particular, the Jaccard-coefficient is defined as the
following;:

_ NN N @)
[N (u) UN ()]

where N (u) denotes the set of all neighbors of node w.

Jaccard(u, v)

It has been shown in the paper that one link in the
bipartite graph (I, C) (where I is an investor node and C
is a company node) is an internal link if all neighbors of C'

[Co-investor Network [Co-company Network

Avg. Clustering Coefficient |

0.624 | 0.480

TABLE 5: Average Clustering Coefficient

are connected to I in the projected graph. The internal link
prediction method first thresholds the projected graph on
its edge weights by a threshold 7. The resulted graph G,
only have edges with weight at least 7. The method then
considers all missing links (I, C) in the bipartite graph and
test if at least one node in N(C) is connected to [in G,. If
there is, the edge is predicted.

The number of predicted edges is controlled by the
threshold .

To accelerate the computation, we made a small tweak
to the original algorithm. Instead of enumerating over every
pair of missing link in the bipartite graph, we enumerate
over all existing edges in the training graph. For an existing
edge (I, (), we then enumerate over every pair of missing
link between N (I) and N(C). By the definition of internal
links, it is not hard to see that the tweaked algorithm is
still exhaustive. However, since the training graph is very
sparse, this tweak could achieve a considerable performance
gain.

Node-based Method

The internal link methods are only able to predict links
that are internal. Not all new links are necessarily internal,
so the internal link method can be defective, by design. The
more general framework for the link prediction problem
is the scoring-based method as used by Liben-Nowell and
Kleinberg. The scoring-based method assigns a score to each
missing link (I, C) and predicts the top k links with the
highest score or thresholds the list with a score cutoff 7. In
our implementation, we normalize all scores with the largest
score (of all potential links), to make it easier to choose T
(r <1).

Since most scoring functions based on node neighbors
do not work on a bipartite graph (for example, I and
C will have no common neighbors), the only node-based
scoring function that we can still use here is the preferential
attachment scoring function. In particular, it defines,

score(u,v) = |N(u)| - |N(v)|

The preferential attachment method uses this scoring func-
tion.

Path-based Method

Another set of scoring functions is the path-based ones.
They consider beyond the immediate neighbors of each
node and try to incorporate information based on the en-
semble of all paths between them. The intuition is that the
more short paths there are between two nodes, the stronger
connected these two nodes are. Therefore, it is more likely
that there will be a new link between these two nodes.

One path-based scoring method is the Katz scoring func-
tion (1953). It is defined over the collection of all paths,
exponentially damped by length. In particular, with the
damping factor 3,

Katzg(u,v) = Z B|paths, (u,v)|
=1
where paths, (u,v) is the collection of all paths from u to v
with length [. In our case, we are interested in paths between
nodes on different sides of the bipartite graph. So the paths
can be only of odd length. Therefore, for the link (I, (), its
Katz function is defined as,
Katzg(I,C) = Z B |paths, _,.(1,C)|
i=0

Suppose we know the diameter of the graph d. We can
calculate the Katz function with ¢ summing up to (d — 1)/2.
Or, according to Kunegis et al., the Katz scoring function can
be written in closed form using the adjacency matrix of the
graph, A. They call it the Odd von Neumann Pseudokernal.
Define,

Ks(A) = BA(I — B2A%) ™"

We have,
Katzg(I,C) = [Kg(A)|1,c

We will use both the finite formula and the pseudokernal
method to calculate the Katz scoring function.

Machine Learning Method

To use any machine learning method, we need to first
construct features for each edge.

We divide features into three categories: graph features,
investor features and company features. Graph features are
information we can obtain from the investment graph itself.
For example, we use degree of investor, degree of company,
preferential attachment score and Katz score as graph fea-
tures. Company features are what we can obtain from the
CrunchBase dataset other than the investment graph itself.
For example, whether the company was founded recently,
how many rounds of funding the company has had, and
its geological information. Likewise, investor features are
information specific to the investor but not directly available
in the investment graph. For example, we consider the
five most favorite sectors of an investor based on its past
investments.

The challenge of formulating the problem as a machine
learning problem lies in the the nature of link prediction
problem, because we want to predict those edges that we
already know do not exist in the training graph. This means
that we need to test whatever model we train on all missing
edges of the training graph to get the predictions. But if

this is the case, we are not left with any negative example
to train out model. Since if we also train on the negative
edges (with label 0) and positive edges (with label 1) of the
training graph, we are training and testing on the same data!
Therefore, the naive approach of labeling and training does
not work for our link prediction problem. We propose two
slightly more sophisticated methods.

The first method is an edge-based prediction method.
Just like cross-validation, we split the edges that do not exist
in the training graph into two sets, A and B. We use set
B (labeled 0) along with all existing edges in the training
graph (labeled 1) to construct a balanced training dataset
(the size of B is similar to the number of edges). We then
train a model on this training set, and finally use the model
to predict edges in a different set A. We train a number
of models using different splittings such that each of the
edges that do not exist in the training graph gets exactly
one prediction and the corresponding model is trained with
the data that does not include the edge itself.

The second method is a company-based prediction
method. The essential idea of the second method is to first
learn which companies are going to be popular in the test
period, and then try to predict edges between them and
investors that are most interested in them. The hypothesis
behind this method is that a popular startup may attract
attention from a couple of venture capital investors, and
thus several venture capital investors may collaborate and
invest in this startup together, which results in several new
edges connecting to the same company. In this method, we
apply the first method to each investor, from which we
estimate what probabilities one investor will invest in one of
the companies in the test period. Then we aggregate results
from all investors, and find out the most popular companies.
Now since we have decided on one end of the edges we are
going to predict, we need to figure out the other end. For
each of these popular companies, we select the investors that
we think are most interested in that company, where interest
is measured by predicted probability, to finally confirm our
predicted edges.

We utilize random forest classifier in both of the meth-
ods. Random forest is an ensemble method that utilizes a
number of decision trees and bootstrapped samples. It has a
low variance because its output is the average of the output
of its trees and at each splitting in a tree, it only considers a
random subset of features.

Hyperparameter selection and tuning is also a major
issue in our machine learning methods. First, for our edge-
based prediction method, we need to decide how many
models we train, equivalently how to split the possible
edges to different set As and Bs. If the number of models we
train is too small, then we may have a biased predictor as we
utilize too small part of the training data; if the number of
models we train is too large, then the running time for this
method may be an issue. Furthermore, for each splitting,
we also need to carefully control the number of negative
examples (label-0 edges) in order to avoid the imbalanced
data problem. Second, for our company-based prediction

5

method, we need to decide how many popular companies
we want to consider and for each popular company, how
many most interested investors we should consider. In
addition, there are also some hyperparameters related to the
random forest model. For example, we can tune the number
of trees and the number of features we intend to use at each
tree splitting.

EVALUATION

In an effort to lighten the computation and densify the
graph, we select a subset of popular investors and a subset
of popular companies based on node degree. Since in the
Preliminary Analysis section, we've seen that the top degree
for an investor is more than 10 times the top degree for a
company, we decide to take 10 times more companies than
investors. Therefore, the trimmed training graph consists
of around 100 popular investors, around 1,000 popular
companies, and all investments between them within the
time period of 2010 to 2014. Reaping all nodes with degree
zero, we end up with a bipartite graph with 96 investor
nodes, 874 company nodes and 2878 investment edges.

There are 24735 investments in total made in 2015,
among which only 470 (1.9%) are between investors and
companies whose nodes are in the training graph. Excluding
multiple investments and re-investments, there are 116 new
investing relations made in 2015. In other words, with the
same node structure, the bipartite graph constructed from
2010-2014 will have 116 more edges in 2015. These edges
are the ones that we wish to predict. We run all methods
described in the Models and Methods section and calculate
performance statistics (precision, recall, and F1) against the
answer set. In particular, since the diameter of our training
set is 8, the finite Katz scoring function is essentially,

Katzg = BA + (BA)3 + (BA)S + (BA).

We will also consider a random predictor as a baseline.
A random predictor predicts £ links randomly from the
set of all possible investor-company links missing from the
training graph. Suppose there are M such missing links, and
the correct answer contains A links. The expected number of
true positives the random predictor will get is kA/M. Thus,
the expected precision is A/M and the expected recall is
k/M. The F1 score is defined as,

- Precision - Recall

' Precision + Recall

Ak
= M aw

Since k < M, F1 < 2A/(A+ M). With our data, we have
M = 96 * 874 — 2878 = 81026 and A = 116. Therefore, the
random predictor will have an expected precision of 0.14%
and a F1 score at most 0.28%. We expect our methods to
perform at least better than the random predictor.

METHOD THRESHOLD NUMPRED. TPOS. PRECI. RECALL F1 0.00% 0.50% 1.00% 1.50% 2.00%
Random 0.14% 0.28%
0.10 52382 12 0.02% 10.34% 0.05% ™
Internal Link 0.12 48086 7 0.01% 6.03% 0.03% n
0.16 38005 5 0.01% 4.31% 0.03% |]
T — 0.15 4883 14 0.29% 12.07% 0.57%
0.20 2398 4 0.17% 3.45% 0.32%
B =1 0.15 2572 11 0.43% 9.48% 0.82%
Katz 0.20 1562 5 0.32% 4.31% 0.60%
B =005 0.15 2646 11 0.42% 9.48% 0.80%
0.20 1621 6 0.37% 5.71% 0.69%
g =01 0.15 1033 10 0.97% 8.62% 1.74%
van Neumann 0.20 600 5 0.83% 4.31% 1.39%
Pseudokernal B =005 0.15 2581 11 0.43% 9.48% 0.82%
0.20 1570 6 0.38% 5.71% 0.71%
Machine Learning (edge-based) 1706 5 0.29% 431% 0.54% - - =9
Machine Learning (company-based) 871 4 0.46% 3.45% 0.81%

Fig. 2: Evaluation Results

RESULTS AND ANALYSIS

We evaluate all five methods described in the Models
and Methods section. For each method, we try different
thresholds to trade off between precision and recall. For the
Katz (finite) and Odd von Neumann Pseudokernal method,
we try two different damping factors 3, 0.1 and 0.05. We
show the results in Fig. 2.

The best F1 score is achieved by Katz scoring method
with Odd von Neumann Pseudokenal, damping factor
B = 0.1 and threshold 7 = 0.15. It outperforms the random
predictor 6.2x. However, none of the methods we tried here
achieves satisfactory performance in absolute terms. This
shows the inherent difficulty of this problem.

Surprisingly, the internal link predictor performs even
worse than the random predictor. Per calculation, out of 116
new links, only 48 are internal. From the sheer number of
predictions made by the predictor (in order to get > 1 true
positives), we could infer that the predictor has a hard time
distinguishing candidate edges. Refer back to the original
paper, we see that internal link prediction works much
better on graph with 10° nodes and 10° edges. So, our graph
might just be too small for link prediction to work. And
investment relations might not exhibit the “triangle-closing”
tendency as a file-provider network or user-tag network do.

Since the path-based scoring methods are expected to
leverage more information than node-based ones, Katz (fi-
nite) scoring function indeed performs better than prefer-
ential attachment. Also, setting 3 = 0.1 works better in all
these cases than setting 5 = 0.05, potentially because long-
stretched relations (paths with length 3, 5, 7) can be impor-
tant indicators within the investment network. However, it
is not clear why the pseudokernal method performs almost
twice better than the Katz (finite).

Despite we used extra contextual information about
companies and investors, our machine learning methods
only give mediocre results in terms of F1 score. On top of
tuning the hyperparameters, we found that the company-
based method using 10 most popular companies and 100

most interested investors for each company achieves the
best results among the machine learning methods. We notice
that although there are only 116 edges actually formed in
the test period, some companies, for example, Airbnb, are
involved in more than one investment (with more than
one investor). We still see the tendency that a minority of
companies get a majority of investments. Without saying,
the task of finding the most popular companies is essential
to get correct predictions. Yet, even the question which
investors would invest in these popular companies is not
an easy one to answer.

U-test Results

To better understand whether one scoring function ul-
timately works or not, we design a U-test to see whether
the score distribution of the correct new edges given by the
scoring function is actually special. In other words, if we
plot a histogram of the scores of all missing edges in the
training graph, will the correct answers have their scores
concentrate in one location on the histogram? To test this,
we calculate the scores of all 116 correct predictions and
put them into set A. Then we randomly choose 3 times
more missing edges in the training graph and form their
scores into set B. If our prediction framework were to work
(choose the top k scores), most, if not all, scores in B should
be lower than all scores in A. We employ Mann-Whitney U
test to see how different the scores of true edges (set A) are
from those of random edges (set B). The perfect case will
give us a U-stat of 0. The lower the U-stat is, the better a
scoring function distinguishes the correct new edges.

| U-stat p-value
Pref. A. 144685 2.4 x 1070
Katz 132330 1.4 x 10~8
van Neumann | 20086.5 0.4691
Random 20122.0 0.4804

From the results above, we see that the U-stats of pref-
erential attachment and Katz (finite) are indeed lower than

that of the random predictor. This shows that the former two
scoring functions actually help distinguishing the correct
new edges. However, the U-stat by Odd van Neumann
Pseudokernal is not that different from random. This casts
doubt onto the result that this method outperforms all other
methods in term of F1 score. It is possible that Odd van
Neumann Pseudokernel gets lucky specifically with our
data. But given its 2x improvement over Katz (finite), and
the high p-value of the U-stat, this claim also needs to be
taken with care. Future work is needed.

Last but not least, we would like to give some specu-
lations why all our methods perform poorly on absolute
terms. We hope that these speculations could signal direc-
tions for future research.

Sparse Graph

The bipartite graph of investors and companies is very
sparse. For investments between 2010-2014, we have more
than 20,000 investors and more than 20,000 companies,
while we only have 50,000 investments. Given that we
only have around 1/8000 number of edges of the complete
graph, link prediction is really hard, because we do not have
too much positive information to start with and random
guessing almost never hits. In this paper, we decide to filter
out nodes with low degree in order to have a denser graph.
Though the density factor of the trimmed graph increases to
1/29, it is nevertheless still sparse by normal standard. We
could include more nodes into the graph to bring in more
information, but it will make the graph even more sparse,
and the prediction even harder.

Information Loss

An investment relation may not only depend on the
graph structure itself. For example, the graph structure may
not capture the preference information of an investor be-
cause some investors prefer investing in seed rounds while
others prefer investing in pre-IPO rounds.

Furthermore, it is widely believed that networking be-
tween people is essential in the venture capital and startup
space. Thus a decision on investment may heavily depend
on the personal relationship between the founders and the
venture capitalists. In addition, there are many early-stage
investors who state that they are not investing in a company,
but rather the founding team of that company. Therefore, the
human capital aspect of a startup may play a major role in
attracting investments. Future work on this topic could also
consider data from social networks.

Unpredictability of Venture Investments

It takes a long time for an investor to decide a venture
investment, from sourcing a deal, due diligence, negotiating
the term sheet, to acquiring approval from the investment
committee. Each step is difficult to predict, let alone the
end result of the process. Many believe that venture capital

7

investment is more of an art than science, for example,
many angel investors invest in companies based on their
past experience and their connections. Intuitions play an
import role in this field, rather than a rigorous scientific
model. Therefore, the inherent unpredictability makes the
link prediction problem extremely difficult.

TEAM WORK

We did an equal split on the work. Jiayu found the
dataset, performed preliminary analysis, designed and im-
plemented the machine learning method. Yanshu pro-
processed the dataset, designed data framework, designed
and implemented the internal link method, node-based
method and path-based method. Both work on the reports.

REFERENCES

Oussama Allali, Clémence Magnien, and Matthieu Latapy.
Link prediction in bipartite graphs using internal links
and weighted projection. In Computer Communications
Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on,
pages 936-941. IEEE, 2011.

Nesserine Benchettara, Rushed Kanawati, and Celine Rou-
veirol. Supervised machine learning applied to link pre-
diction in bipartite social networks. In Advances in Social
Networks Analysis and Mining (ASONAM), 2010 Interna-
tional Conference on, pages 326-330. IEEE, 2010.

Jérome Kunegis, Ernesto W De Luca, and Sahin Albayrak.
The link prediction problem in bipartite networks. In
International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-based Systems, pages
380-389. Springer, 2010.

Xin Li and Hsinchun Chen. Recommendation as link pre-
diction in bipartite graphs: A graph kernel-based machine
learning approach. Decision Support Systems, 54(2):880—
890, 2013.

David Liben-Nowell and Jon Kleinberg. The link-prediction
problem for social networks. Journal of the American society
for information science and technology, 58(7):1019-1031, 2007.

