Final Report: The Effects of External Stimuli on
Influence Estimation

Kent Blake, Stephanie Palocz, Matthew Volk
Stanford University, CS224W Final Project

1 Introduction

The proliferation of large-scale social networks in
recent years has provided companies with new mar-
keting opportunities through targeted advertising. In
particular, the marketing industry has devoted signifi-
cant research towards what has become known as the
influence maximization problem. The problem is as
follows: given a social network with many highly-
interconnected users, if you can advertise to only k peo-
ple, who make up a small fraction of the total people
on the network, how do you pick the k people who
will share and spread your advertisement such that the
largest possible number of people on the network see
it?

The greedy influence maximization algorithm in-
troduced by Kempe et al. [6] has become a standard
tool for approaching this problem. However, this model
fails to account for how a strong external stimulus, like
a historic event or groundbreaking news story, may
change influence outcomes in a network. We hypoth-
esized that such an event could have a dramatic effect
on the network’s structure and event propagation pat-
terns. In order to test this, we tested the effectiveness of
Kempe et al.’s algorithm on a Twitter retweet network
of tweets regarding the discovery of the Higgs boson
particle from the three days prior to the announcement
of the discovery versus a similar retweet network for
the three days following the discovery.

For this project, we worked on generating and test-
ing a model that can learn propagation probabilities
given a list of actions and a network of unweighted
relationships (here Twitter “follow’ relationships). We
started by implementing a baseline weight-learning al-
gorithm and a basic testing framework based on the
work of Goyal et al. [4] We first trained on tweets
from before the Higgs Boson discovery to generate a
weighted graph of influence probabilities and tested the

accuracy of our probabilities using tweets from after
the discovery. Then, we trained and tested using differ-
ent subsets of tweets from after the discovery. We also
did this with two before- and after- lists of randomly-
generated tweets. We anticipated that training on tweets
from after the announcement would be more effective
than training on tweets from before the announcement,
but interestingly, the two approaches had approximately
the same performance, and both performed worse than
the model run on randomly-generated data. There are
multiple conclusions that could be drawn here, but in
this case, we believe that the lack of a difference is de-
scriptive of the graph structure of our data and Twitter
as a whole.

2 Literature Review

Although there is not much literature discussing in-
fluence maximization specifically in connection to ex-
ternal events, there is significant literature discussing
influence maximization in general. As such, we based
our preliminary model on the following existing frame-
works, while noting possible factors to leverage in our
own improvements.

2.1 Definitions

Kempe et al. [6] present a framework based on
submodular functions that generalizes well to the
influence maximization problem, as they define it.
Further, they prove that a relatively straightforward
greedy algorithm of their own design will always
yield a solution within a factor of (11— %), or about
63%, of the optimal solution. They also prove that,
in practice, their greedy algorithm outperforms the
previously-ubiquitous heuristics that looked at degree
centrality and distance centrality alone. The following
notation is derived primarily from [6] and [2]. To build
up the arguments of Kempe et al., we begin with a few

definitions.

Let G = (V,E) be a graph consisting of a set V of
vertices and a set E of edges. Depending on the net-
work being analyzed, these edges can be directed or
undirected. For the specific application to a social net-
work presented in this project, each node e € E can be
thought of as a user account and each edge v € V can
be thought of as a connection.

Next, we have a timestamped list of actions
performed on the network, a relation Actions(User,
Action, Time), which contains a tuple (v,a,t) indicating
that node v performed action a at time ¢. From these
two definitions, we can define propagation of actions.

Definition 1: Action Propagation. An action a € A
propagates from user u to user v iff: (i) (u,v) € E; (ii)
I(u,a,t,),(v,a,t,) € Awitht, <t, !

In our model of action propagation, for a particular
action a, all nodes are considered either active (if they
have performed a) or inactive (if they haven’t). Once
a node becomes active, it cannot return to the inactive
state.

The last definition is our influence function, 6(S).
¢ maps finite sets S to integers.The input is a initial set
of activated nodes and the output is the final number
of activated nodes (after sufficient time has passed that
no new nodes will become activated). The goal of this
framework is to approximate this function as closely as
possible.

2.2 Diffusion Models
There are two basic diffusion models referenced in
the literature [4, 6], presented below.

Linear Threshold Model. Under this model, each
node v is influenced by each of its neighbors u. The
probability that a particular node v will take action
a at time ¢ is modeled as a monotonically increasing
function of how many of its neighboring nodes have
taken a before ¢. Each neighbor u is given a weight
w,,, such that

Z Wyu < 1.

ueNeighbors(v)
Each node v has a threshold 6,, for which it becomes
INB: This definition is based heavily on work in [4], with our

own modifications to generalize it. Specifically, we remove [4]’s
tracking of friend / follow requests.

active iff the following inequality holds true:

Z f(Wv,u) > 0,.

ucNeighbors(v)

where f corresponds to some function (the iden-
tity function in [6] but probability distributions
in [4]). Conceptually, then, each of v’s neighbors
influences them with a weight w,,, and each user
v has some willingness to conform 0,. Time steps
in discrete “rounds,” and in each successive round
we “activate” nodes for which the above inequality
holds. By definition, all nodes that have been
activated remain activated. Once all actions in the
action list have been accounted for, the simulation
terminates, yielding a list of activated nodes.

Independent Cascade Model. Under the indepen-
dent cascade model, we start with a set U C V of
active nodes. Then, we procede through a series of
rounds. In each round, every newly active node u
has a probability w, ,, of activating each of its neigh-
bors v. Unlike in the linear threshold model, each
newly activated node has one and only one chance
to activate nearest nodes. The process ends when
no more activations are possible.

2.3 Approximization Model

The primary contribution of Kempe et al. in [6] is
proving that their greedy algorithm can approximate the
true solution using the following greedy approach: start
with an empty set and repeatedly add the element of V
that gives the largest marginal gain. As long as the over-
all influence function is both monotonically increasing
and submodular, this greedy approach can approximate
the answer within a factor of (1 = %)

2.4 Optimizations

Goyal, Bonchi, and Lakshmanan [4] build on the
work of Kempe et al. Using the definition of action
propagation presented above, they generate a directed
propagation graph (a directed acyclic graph) for each
action a. This graph shows the spread of the action a.
From this propagation graph, they generate influence
probabilities for each edge in the graph, which identi-
fies the most “influential nodes as well as action influ-
enceabilities and user influenceabilities. They provide
pseudocode that we will replicate.

Mathematically, they introduce an instance of the
Linear Threshold Model. There are two parameters that

must be learned: (1) the unique influenceability thresh-
old indicating how “stubborn” each user is, and (2) the
unique influenceability of each action, which indicates
the weight of a action promoting further action.

Interestingly, they build on the idea of weights pre-
sented in [6]. They introduce functions f(w,,) that
more accurately model the real world. f in this con-
text can be static (some function of the weight) or dy-
namic (some function of the weight and the time). The
dynamic case is particularly interesting to us because
it allows one to model the “cool-off” period associated
with a particular post. After a certain period of time,
the probability that neighboring nodes will see the ac-
tion and repeat it decreases drastically.

Next, Goyal et al. present models that can learn the
necessary hyperparameters for an entire graph given a
list of actions taken in the network. These algorithms
only need to take two linear passes over the action lists
to train themselves. They predict trends (once just pre-
dicting the end result and once predicting the progres-
sion of time to reach the end result) then test these pre-
dictions against actual data, using ROC curves as a met-
ric. We will be using adaptations of these models and
testing frameworks on a completely different network
(Twitter).

2.5 External Stimuli

The existing models assume that activity propa-
gates exclusively from an active node to its neighbors,
but in the real world external stimuli can have a strong
effect on information propagation. This is especially
relevant for networks like Twitter in which a big news
story could increase user engagement in general and po-
tentially cause deviations from expected influence pat-
terns with users who have the quickest access to new
information becoming much more influential than ex-
pected.

For example, in their study of tweets from the seven
days surrounding the announcement of the Higgs bo-
son particle, De Domenico et al. [3] observe that spatial
and temporal factors play a large role in Twitter activ-
ity, with high activity before the official announcement
from users within 20km of the event and frenetic tweet
activity during the announcement. They also model the
information diffusion network of mentions and retweets
over the seven day period and are able to reproduce
the collective behavior of 500,000 users by employing
a memoryless model with variable activation rates in
which users are significantly more likely to be active
when most of their friends are active at the same time.
This supports the idea that temporal factors play a sig-

nificant role in information diffusion when people are
discovering and sharing information about an external
event, and that such an external event can have a large
impact on social media use in general It also suggests
that a linear threshold model which considers the to-
tal number of activated neighbor nodes at a given time
could be more effective than an independent cascade
model in predicting influence within this sort of net-
work.

3 Dataset

We used the Higgs boson dataset from [3], which
was built by collecting tweets from July 1, 2012 to
July 7, 2012, the days before and after the July 4th an-
nouncement of the discovery of the Higgs boson parti-
cle. For our problem, we focused on the retweet data
provided by De Domenico et al. [3], which consists of
the id of an original tweeter, the id of a retweeter, and
the timestamp of the retweet.

Since we were interested in comparing influence
maximization results before versus after a significant
external event, we partitioned the retweet data into all
retweets occurring before the July 4th announcment
and all retweets occurring after the July 4th announce-
ment. This partition has 111,105 retweets from 46,283
sources before the announcement and 243,827 retweets
from 142,046 sources after the announcement. Notably,
there are over 3 times as many tweet sources present af-
ter the announcement than before. This makes sense
given our partition criteria - people are much more
likely to tweet about the Higgs boson after the an-
nouncement has taken place than beforehand - but it is
somewhat problematic for our training algorithm, since
we had no way to learn probabilities associated with
these extra tweeters based on our “’before” dataset and
were thus forced to use default values. This issue was
mitigated by some further partitioning, but there were
still many nodes in our testing sets that were not present
in our training sets.

Another important feature to highlight in these
retweet lists is that many users (in fact, the vast ma-
jority of users) only participated in one retweet event
over the time period in question. Given the event-
driven context for this data, the low-degree nature of the
graph is understandable. When a large external event
takes place, many people who do not normally retweet
may be motivated to engage with social media, but will
likely not engage a large amount, maybe only tweet-
ing or retweeting once. However, this feature makes
it difficult to accurately predict the relative likelihoods

Degree Distribution

=
o
°

e o Before Announcement
s e o After Annoucement
101 .
.
e
L]
n 1072 °
U L]
'g L]
= oo
o
5 10
£ ¢
2 %,
& 104} W
L)
’ L]
SogUmpee oo
105} . e® ®weome® o °
- e oem e o0
10° n " " .
10° 10! 102 103 104 10°
Degree
Fig. 1. Degree distributions for the retweet events, partitioned to

before and after the Higgs boson announcement

of future retweet events between two given users, since
we often have no prior information about the users in
question when attempting to make a prediction.

Our model also takes into account the underlying
network of follow relationships between the tweeting
and retweeting users mentioned in that event list. In
this network, each node represents a Twitter user, and a
directed edge indicates that the source of the edge fol-
lows the destination. The network has 456,626 nodes
and 14,855,842 edges, with a clustering coefficient of
0.1887 and a 90th percentile effective diameter of 3.7.

3.1 Null Models

In addition to the Twitter dataset, we generated two
null model datasets with which to compare our results.
Each of these other datasets is comprised of two lists of
retweet events, one corresponding to the retweets from
before the Higgs boson announcement and one corre-
sponding to the retweets from after the announcement.
Each list contains approximately the same number of
retweet events as its corresponding list from the origi-
nal Twitter dataset partition (within 7%).

These null model lists were generated using a basic
infection model. We repeatedly select a node »n at ran-
dom to be the source of a tweet, and each of its follow-
ers then retweets it with some probability P(n). Once a
follower node has retweeted the original tweeter, their
retweet can itself be retweeted by any of their follow-
ers, giving the possiblity of an extended retweet cascade
just like in the Higgs boson dataset. For one of our null
model sets, P(n) is a fixed constant (0.1). For the other,
P(n) is proportional to the number of followers n has
(P(n) = in-degree(n)/(max degree in the graph)).

3.2 Further Partitioning

We predicted that the structure of our retweet graph
after the Higgs boson announcement would be signifi-
cantly different than before the announcement. To test
this theory, we further partitioned our list of “after”
retweets into two halves. Because there were about
twice as many “after” retweets as “before” retweets,
this additional partition gives us 3 retweet lists of
roughly equal size. We then denoted one “after” retweet
list as a training list, and the other as a testing list. We
run each version of our algorithm over our data sets
in two different ways: first, we train on the “before”
retweet list and test on the testing “after” list, and sec-
ond, we train on the training half of the “after” retweets
and test on the testing half. For our null models (where
we generate the before and after lists using the same
technique), we did not expect a meanningful difference
between these two. For our real-world data, though, we
expected the after-after configuration to perform better
than the before-after one, assuming that the training and
testing data had more structural similarity. If this pre-
diction was correct, it would support our hypothesis that
the structure of the network after the external event is
fundamentally different from the structure of the net-
work before the event.

4 Calculating Influence Probabilities

Although the referenced approaches to finding the
influence-maximizing subset of a graph’s nodes are rig-
orous and relatively robust, they all rely on having a
pre-generated weighted graph of influence probabili-
ties. Since a retweet graph over a short time period
provides only partial information about how some users
influence some of their followers, we needed a method
to estimate influence probabilities for each user on each
of their followers. We tested two approaches for gener-
ating influence probabilities:

4.1 Baseline Probability Function

Our original baseline approach to influence prob-
ability calculation was that of Goyal et al. [4], which
employs the following probability function: the esti-
mated probability for edge (u,v) (where v retweets u)
is simply the number of times u retweeted v divided by
the number of times u retweeted any of its neighbors.
This is the most common algorithm in the literature for
calculating influence probabilities. However, since our
retweet graphs were sparse (with nearly 70% of nodes
having a degree of 1), this resulted in most of the influ-
ence probabilities being set to 1, which means that our

model ends up predicting that a retweet will occur in ev-
ery possible situation. Clearly, this is a flawed approach
for our scenario, so we moved on to a less common but
potentially more applicable model.

This model can be defined more rigorously: first,
we define the influenceability of a node u by another
node v, or infl,,. infl,, is a score between 0 and 1
inclusive that indicates how likely u is to perform an
action if v does. Formally, this is defined as:

) a|3av,t : prop(u,v,a,t) == True
infi(a) — 1 (0 |
u

(D

where prop(u,v,a,t) evaluates to True if u performed
action a at time ¢ after v performed the same action. In
other words, this is the number of times u# was poten-
tially influenced into performing an action by v divided
by the total number of times it performed the action.

From this, we can generate the probability of a node
u performing an action based on which of its influencers
have. Equation 2 defines the probability of u perform-
ing an action given a set of infected influencers S. It is
simply the difference of 1.0 and the product of its influ-
enceability by the other nodes.

pu(8) =1-TT(1 = infl,y)

ves

2

4.2 Beta Distribution Approach

To address the sparseness of our retweet graph, we
used the approach described in Lei et. al [7] to calcu-
late influence probabilities. Since the exact influence
probability P;; of user i on user j is not known for all
users, we model this using a beta distribution for each
edge (i,) such that P;; ~ B(o;,B;;). Initially we set
o;;=1, B ; = 1 for each of these distributions, indicat-
ing that in the absence of prior information user F;; fol-
lows a uniform distribution. As we traverse over the list
of all edges (i, j) in the follower graph, we update these
0;;; and B;; as follows:

If j retweeted i: P;j ~ B(0y; + 1,B;;)

If j follows i but did not retweet i: P;; ~ B(a.;;, Bij+

1)
Thus the distribution for each edge counts the num-
ber of successful and failed activations passing though
that edge smoothed by our sinitial estimates of o;; =
1,B;; = 1. Finally, for each edge (i, j) we sample from
B(0.;j,B;ij) to obtain an estimated value for each influ-
ence probability. This technique gave us a much better
spread in our probability distribution.

4.3 Computational Costs

One roadblock we hit while calculating influence
probabilities was the sheer number of nodes in our
dataset. Our baseline algorithm in particular was af-
fected by this size, since it operates in O(n?) time as op-
posed to O(n) time for the beta distribution model. We
used the Stanford Barley machines to mitigate this is-
sue, but the overall scope of all our conditions in combi-
nation was still computationally infeasible. Therefore,
we ran our baseline probability algorithm on only 25%
of our retweet lists for all datasets, to keep the space
and time complexities to a more reasonable level.

5 Evaluation Methods

The true influence maximization problem (in which
we select the most influential k nodes in the graph,
given our calculated influence probabilities) is a well-
defined problem, but it generates test output that is diffi-
cult to compare and is significantly more computation-
ally costly. Influence maximization generates a list of
the k£ most influential nodes. Given two such lists, it is
difficult to compare in a meaningful way how “similar”
the two performed at their job, because even if the two
sets have no intersect, the two sets might correspond to
nodes that have a large spread amongst them. Similarly,
changing just a few elements of such a set might drasti-
cally change the spread of the overall set. Therefore, for
the majority of our data, we evaluated our results using
the evaluation algorithm developed by Goyal et al. [4],
which we call Predictive Evaluation, seen in the code
sample below (TP=True Positive, FN=False Negative,
FP=False Positive, TN=True Negative).

5.1 Predictive Evaluation

Predictive Evaluation iterates through each {node,
time} pair in the actions list in chronological order.
The performed flags are updated, where a perform
value of 0 indicates that u never performs the action
but at least one of its neighbors does (it never gets in-
fected), a value of 1 indicates that u performs the action
after at least one of its neighbors does (it does get in-
fected), and a value of 2 indicates that it is the first node
in its neighborhood to perform the action. We update
these flags and probabilities and, finally, compare the
computed probabilities against thresholds to generate a
confusion matrix.

PredictiveEvaluation Algorithm

performed = {}
probabilities = {}

for each <v, time> in
chronological order
if v in performed

performed[v] =1
else
performed[v] = 2
for u (v, u) in graph.Edges ()

if u in performed
increment probabilities[u]
as in Equation 2
else
set probabilities([u]
as in Equation 2
performedfu] = 0

for <u, p> in performed

prob = probabilities[u]

if (p == 1 and prob >= thresh)
TP++

if (p == 1 and prob < thresh)
FN++

if (p == 0 and prob >= thresh)
FP++

if (p == 0 and prob < thresh)
TN++

5.2 Traditional Influence Maximization

Additionally, we ran the true influence maxi-
mization algorithm for a single setting - our beta
distribution-based algorithm on the real-world Twitter
data. Since the beta distribution approach was by far
the more meaningful influence probability calculation
approach, we felt that this was the most important set-
ting in which to use both metrics. For this, we used the
greedy approach from Kempe et al. [6] to find the set of
k nodes that maximized the spread of the set, as defined
by the spread estimation technique from the SIMPATH
algorithm [5].

The SIMPATH algorithm defines the spread of a set
S, 6(S), as the following:

Given a set S of nodes in a graph G = (V,E), is
defined as the sum of each node u € S on subgraphs
induced by V — S + u. Mathematically, this is:

o(S)=Y 0" (u)

ues

where the superscript indicates the subgraph consid-

ered.

6 Results

Overall, our results were not exactly as expected.
Our baseline algorithm performed more or less equally
across all situations, which is understandable given its
simplicity and general inability to cope with a graph
structure as sparse as ours. However, our beta distribu-
tion approach’s results did not confirm our hypothesis
that prediction abilities would be stronger when train-
ing on data from after the Higgs boson announcement
than when training on data from before the announce-
ment - we got comparable results for both scenarios.

6.1 Baseline Algorithm Results

Although our baseline probability algorithm
seemed to do all right at first glance, upon further
inspection, it actually did quite poorly. For all condi-
tions, its F-scores were consistently high, indicating
strong predictive power. However, as it turns out, these
F-scores were identical for every threshold value we
examined (in the range from O to 0.9), and did not
change when we chose to train on “after” data rather
than “before.” In fact, the model’s prediction was the
same for almost every situation - it almost always
predicted that a retweet event would occur. These
results held true across both the real data and our null
models.

Mathematically, this makes sense, given that the
calculated influence probability for a given edge is 1 if
anode’s only retweet took place along that edge. Given
the low degree of most nodes, there are many edges
with probability 1 assigned to them. As a consequence
of the equation used in the evaluation process to pre-
dict the probability of a retweet, the model will predict
a retweet with probability 1 if any edge with influence
probability 1 is present in the set of edges between the
current node and infected nodes. Thus, if the model
makes a prediction at all, it will almost always predict
aretweet. Since our testing event list is heavily skewed
towards the presence of a retweet event, this will give us
an artificially high success rate, even though the model
is not actually predicting in an intelligent or effective
way.

6.2 Beta Distribution Results

Our beta distribution based model gave much more
reasonable results than the baseline model. It per-
formed far better for the randomly generated null model
data than for the other two datasets, while the next best

Table 1. F-scores for each baseline model configuration run. F-scores were the same for all thresholds in every case.
Training set x data source | Random (p=0.1) | Degree-weighted | Real world
Before 0.9998875 0.99907640 0.94642248
After 0.9998875 0.99907640 0.94642248

F1 Scores For Randomly Generated Graphs, p=0.1

L=

e e e Trained before event
e ¢ o Trained after event

Q
S
g
°

F1 Score of Learned Model
o o o o o
& 8 9 8 8

o
©
b

0.0 0.2 04 0.6 0.8 1.0
Threshold for LT Model

Fig. 2. F1 scores as a function of threshold for the beta distribution
based model run on randomly generated data, with quadratic best-fit

lines.

results were for the degree-weighted generated graphs
and the poorest performance was on the real world data.
However, for each overall dataset, there was not a sig-
nificant difference between training the model on “be-
fore” data and training it on “after” data. This lack of a
difference is expected for our null model datasets, since
the “before” and “after” data were generated in exactly
the same way as each other. With the real world data,
though, this lack of a difference is not expected - we
predicted that the “after”’-trained model would perform
better than the “before”-trained one.

For all datasets, the precision scores were consis-
tently 1, and the only variation in performance between
threshold values came in recall. Thus, we have plotted
F-scores as a function of threshold, to give a more clear
representation of performance across different thresh-
old values than a typical ROC curve would offer.

We also ran influence maximization on our beta dis-
tribution model for our real world data, generating a list
of the 15 most influential nodes in our test data both
when trained on “before” data and when trained on “af-
ter.” Unfortunately, there was no overlap between these
two lists of most influential nodes. Since both train-
ing situations performed comparably for our Predictive
Evaluation metric, we have no way of evaluating which
list of influential nodes is likely to be more accurate.

F1 Scores For Degree-Weighted Graphs
11

eee Trained before event
eoo Trained after event
10
]
8 0.9
o
o
9}
€08
©
Q
-
S 0.7}
o
2
o
5 06}
~
- L]
0.5
0.4 " . " .
0.0 0.2 0.4 0.6 0.8 1.0

Threshold for LT Model

Fig. 3. F1 scores as a function of threshold for the beta distribution
based model run on degree-weighted generated data, with quadratic

best-fit lines.
F1 Scores For Real-World Graphs
1.0
e e o Trained before event
0.9 ° ° e e o Trained after event

o
©

e
~

F1 Score of Learned Model
o o
o0 o

o
IS

0.3

0.0 0.2 04 06 0.8 1.0
Threshold for LT Model

Fig. 4. F1 scores as a function of threshold for the beta distribution
based model run on real world data, with quadratic best-fit lines.

7 Discussion

As we have seen, our results do not support the
claim that the Twitter graph structures before and af-
ter the Higgs boson announcement were significantly
different. Our model had roughly the same predictive
power no matter which data subset we used for train-
ing. Does this mean that our hypothesis was wrong?
It’s certainly possible. However, there are other possi-
ble explanations if we look at the distinctive - and rather

problematic - traits of our real-world data.

In particular, the sparseness of our retweet graph
both before and after the Higgs boson announcement
presented a real challenge for our model. With the
majority of nodes having degree 1, our models have
no choice but to assign most nodes the same influence
probabilities. Without more edge data in a training set
relative to the number of nodes in the set, it is difficult to
differentiate between the influenceabilities of different
nodes no matter what model we use. The beta distribu-
tion approach was better equipped to handle this lack of
information, but it, too, was forced to operate using the
same limited prior knowledge in the majority of cases.
The presence of so many additional nodes in the “af-
ter” data that were not present in the “before” data also
made things harder, as we were forced to use default
values when making many predictions.

As discussed in section 3, these problematic dataset
traits are in part explainable by the dataset’s event-
driven nature. Important external events are likely to
trigger small amounts of engagement from large num-
bers of people on social media, as people learn of the
event, engage with it, and then typically lose interest
rather quickly. This general trend fits our data well,
with its large number of nodes participating in a sin-
gle retweet event following the Higgs boson announce-
ment, so it might be the case that this sort of data is
representative of social media patterns related to exter-
nal events.

However, these traits rendered our baseline algo-
rithm ineffective immediately, and they may also have
caused problems for our beta distribution model even
before taking more subtle alterations of the graph struc-
ture into account. Without more event-driven datasets
with which to compare, it is difficult to know how char-
acteristic these traits actually are, and it is also hard to
say how disproportionate their impact on these results
may have been. It could be that this dataset structure
makes it difficult to calculate relative influence using
Twitter data in general and event-related data in partic-
ular, without saying anything about differences in influ-
ence before and after an event has taken place. In that
case, it would take more algorithm refinement before
we are in a position to properly consider our original
question.

8 Conclusion

Influence maximization is a challenging task in the
best of circumstances. When we introduce significant,
network-changing events to the picture, it becomes only

more complicated. As we have shown, predicting the
most influential nodes in a network after some external
event is not necessarily more or less effective depend-
ing on whether you examine the structure of the graph
before or after the event has taken place. However, it is
unclear whether our model’s disagreement with our hy-
pothesis is truly due to a lack of dissimilarity between
the before and after networks, or whether it is simply
caused by some inherent flaws in our dataset and in so-
cial media data in general.

Overall, lack of data is a frustrating problem when
researching these types of scenarios. Although social
media is no longer a new concept, it remains difficult to
find well-curated datasets describing social media use,
especially surrounding large external events. External
events can often be hard to predict, which makes gath-
ering such data difficult. Even in the absence of external
events, social media exists on such a large scale that ob-
taining meaningful data that can be analyzed with mod-
erate processing power is a challenge. Without much
data, it is hard to make meaningful progress in gener-
ating data models. As such, it is not surprising that the
current models are not very robust, nor that we were not
able to get conclusive results. It is worth noting, though,
that this area of research is still rather young. As more
data becomes available, we expect that the ability to op-
timize these techniques will improve as well.

9 Contributions
We’re comfortable being graded equally for each
part of the project - we feel that we each did equal work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

Bakshy, E., Hofman, J. M., Mason, W. A., &
Watts, D. J. (2011, February). Everyone’s an in-
fluencer: quantifying influence on twitter. In Pro-
ceedings of the fourth ACM international confer-
ence on Web search and data mining (pp. 65-74).
ACM.

Chen, W., Wang, Y., & Yang, S. (2009, June). Ef-
ficient influence maximization in social networks.
In Proceedings of the 15th ACM SIGKDD Inter-
national conference on Knowledge discovery and
data mining (pp. 199-208). ACM.

De Domenico, M., Lima, A., Mougel, P., & Mu-
solesi, M. (2013). The anatomy of a scientific ru-
mor. In Scientific reports, 3.

Goyal, A., Bonchi, F., & Lakshmanan, L. (2010,
February). Learning Influence Probabilities In So-
cial Networks. In ACM WSDM. ACM.

Goyal, A., Lu, W., & Lakshmanan, L. V. (2011,
December). Simpath: An efficient algorithm for
influence maximization under the linear threshold
model. In 2011 IEEE 11th International Confer-
ence on Data Mining (pp. 211-220). IEEE.
Kempe, D., Kleinberg, J., & Tardos, E. (2003).
Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge
discovery and data mining (pp. 137-146). ACM.
Lei, S., Maniu, S., Mo, L., Cheng, R., & Senellart,
P. (2015, August). Online influence maximization.
In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining (pp. 645-654). ACM.

Myers, S. A., Zhu, C., & Leskovec, J. (2012,
August). Information diffusion and external influ-
ence in networks. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge
discovery and data mining (pp. 33-41). ACM.
Ritter, A., Mausam, Etzioni, O., & Clark, S.
(2012). Open Domain Event Extraction from
Twitter. In Proceedings of the 18th ACM
SIGKDD international conference on Knowl-
edge discovery and data mining (pp. 1104-1112).
ACM.

