User Recommendation for Stack Exchange

Priyank Mathur Siamak Shakeri Dibyajyoti Ghosh
priyankm@stanford.edu siamaks@stanford.edu dibghosh@stanford.edu
Abstract

Recommendation systems have become very common and can be found in some form in most of the services we use. These
range from movie recommendation on Netflix, product recommendation on Amazon, pin recommendation on Pinterest to
expert user recommendation on Quora, job recommendation on LinkedIn and so on. Traditionally, these systems are built
using some form of collaborative filtering combined with content analysis and latent factor models. In this project, we aim
to utilize the underlying graph structure and network properties of the dataset to identify features for machine learning
based user recommendation system. In particular, we envision using node2vec [5] to provide node embeddings that are
expected to capture some of the important network features. Our objective is to recommend the most appropriate user
when a question is asked in Stack Exchange forums.

1 Introduction

Q&A sites like Quora, Stack overflow, Stack exchange, Yahoo Answers have been around since early days of online communities. Collectively
these forums represent a wide spectrum of crowd sourced and curated contents in various domains of interest e.g. mathematics, physics,
computer science to sociology, finance, gardening, origami, arts, cuisines etc. However a major shortcoming for these communities is that at
any given instant there are more users who ask questions than those who have sufficient domain knowledge to correctly and satisfactorily
answer questions. Some of these forums have come up with clever ways of incentivizing experts through reputation points and badges but it
leaves a lot more to be desired. Discoverability of open questions is a daunting challenge.

We would like to address discoverability of open questions for expert users in these forums. By recommending right group of users for a
question we can maximize chances of questions being answered satisfactorily. User’s expertise when used with deep learning based vector
representation of users has not been previously explored. We believe that we can capture a more complete picture by extracting features from
node representations in a network model that embeds social and categorical context.

2 Related Work

There has been a lot of interesting research in the area of user recommendation in Q&A communities. Lada Adamic et al [1] analyzed Yahoo
Answers characteristics across multiple categories. They used Motif Analysis, SCC and Ego Networks to analyze network structure, and to
gain insight. In their network model each node is a user. A link exists from user A to B, if A has answered a question from B. Although this
approach delivered good insights, it failed to embed quality of the answer provided. For example it ignores if an answer has been selected as
best answer or not. They also ignored the number of the votes that an answer has received or features that embed social behavior of the network
e.g. answerer to asker interactions were not considered.

Gideon et al [2] proposed a recommendation system for Yahoo Answers and they heavily relied on feature extraction. They used content
signals extracted from question text, and social signals, extracted from user-user interactions such as asking, answering, voting, etc. Addition
of bias features to both questions and users in order to grasp state of the question and overall mood of the user is a novel aspect of this work.

Jure et al [3] focused on a less highlighted aspect of Q&A communities, namely, defining its future value in terms of how quickly and accurately
answer-seeker is directed to correct content. For domain-experts value of communities is contingent upon connecting them to less answered but
important questions. Their work formulated processes to define future relevance of Stack Overflow. This paper claims that answer arrival
dynamics within as little as an hour of posting a question can be an effective predictor of long term page views of the given question. They
also claim that number of answers to a given question is a powerful latent feature for future page view trend prediction. Something they
haven’t explored in this paper is the effect of cross-domain answering dynamics. E.g. a Java programming language expert answering Python
programming questions. Or for that matter, how question type can affect its longevity and chance of it being answered sufficiently.

Szpektor et al. [4] have explored question recommendations in Yahoo Answers Q&A community by advocating three guidelines for better
chances of getting questions answered - remove user bias i.e. treat all users as equal, recommend questions outside user’s active area of
interest and serve questions fast and fresh. Authors have used adaptive topic sampling algorithm to generate recommendations of questions to
users. They claim that such an approach can maintain diversity of questions apart from the ones generated based on personalized user profile.
Diversity of recommended questions based on user’s geolocation would be a curious extension of this work.

3 Data

3.1 Data collection

We are using question and reply data set from Stack Exchange website [6]. The data has been divided into sub domains like math, physics,
computer science, data science etc. For each sub domain, information is provided about posts, votes, users, post relations etc. More details
about the data set and schema can be found at [7].

For this project, we mainly worked with the data for Stack Exchange’s math community. This data set contains /,584,856 posts that include
652,128 questions. Most questions in this data set have an accepted answer which is an answer that has been deemed by the question asker as
being sufficient and correct. We use this field to determine the target user for each question. We also experimented with physics dataset. This
dataset is relatively smaller with 205,134 posts that include 91,962 questions. Unless mentioned otherwise, all results and graphs used in this
report are derived from math’s dataset.

3.2 Data preparation

‘We modeled user recommendation in Stack Exchange as a classification and a ranking problem. The dataset is split into a training, validation
and a test set for best results. For each question, we try to predict the user who will provide the accepted answer. The candidate selection
process for each question looks at the following features for each user and scores them:

1. If the user did provide the accepted answer for the question under consideration
2. Number of votes the user’s answer, if any, received for that question

3. Jaccard similarity between the tags for the question and all the tags that the user has provided an answer for

We then combine these scores to come up with the top 5 users as the candidates for each question. This process ensures that the correct user is
always one of the five shortlisted users. Ideally, this problem could be solved using a 2 level classification scheme. At the first level, we choose
a subset of the users using a simple and an efficient method. At the second level, we identify individual users to recommend. However, to
reduce the scope of the problem, we pre-select the candidates and assume that in the real world scenario the shortlisting procedure would be
good enough to zoom in to the set of relevant users.

After candidate selection process, we divide the dataset into a training and a test set based on the creation date of the question. All the questions
before "2015-06-01’ form the training set and all the latter ones are in the test set. This process gives us 15796 training data points and 47146
test data points. The full training data set is then further divided into 77000 final training examples and 4796 validation examples. Once we
have this split, we use various methods discussed further in the report to generate representations for each question and its candidate users.
These representations are finally fed into a machine learning model that will make predictions about the likeliness of a user giving the accepted
answer.

3.3 Evaluation

The final recommendation model would output a score or a probability for each candidate user for a given question. These scores can be
interpreted, and therefore, evaluated in two different ways. We can use these scores to rank users to come up with the order of recommendation.
In this case, a metric like mean reciprocal rank would be used. In addition, if we consider the top ranked user as the final prediction, then this
becomes a classification problem. A common way to evaluate classification results is through accuracy values. These metrics can determine
how accurately can we rank the users such that the ones at the top of the list are most likely to supply the best answers for a given question. In
this project, we will report both these metrics. However, since mean reciprocal rank depicts how the model performs on average and not just at
the top of the result list, we will use it as our primary performance indicator.

4 Networks

As discussed earlier, we focused on only using network properties and node representations as features for our user recommendation algorithm.
Most previous approaches [2] have focused on content analysis combined with some form of collaborative filtering to develop recommendation
systems. However, they failed to utilize the implicit information stored in the structure of the underlying networks.

We constructed the following 2 networks from the training data set’s time frame and performed analysis on them.

1. User user network through posts
This is an undirected and unweighted network consisting of all the users in the training data set as nodes. Users that answer the same
question have edges between them. This network has 37834 nodes and 327993 edges.

2. User tag network
This network is also undirected and unweighted where a node can be a tag or a user. An edge exists between a user and a tag if the
user answers a question marked with that tag. This network has 33605 nodes and 368506 edges

4.1 Network study

We performed detailed investigation of the above mentioned networks to identify features that might help us during user recommendation.
In addition, we also performed some qualitative analysis to determine if these metrics actually captured meaningful information. We used
Gephi[12] for network analysis on the two networks.

4.1.1 Community Detection

Figures 1b and 1a show the community detection done on both networks using clustering algorithm in [13]. Each color represents a community.

(a) user-tag (b) user-user
Figure 1: community detection
In the user-user network, a total of 4880 communities where detected. However only 8 of them have higher than 1% of the total nodes. As it

can be seen from the figure, this network is not highly modular, and communities are highly connected. This stems from the fact that answerers
usually have a wide range of technical skills, thus they answer questions from various domains of expertise.

In user-tag graph, a total of 8 communities were detected, and node count ranges from 3% to 23% in each community. Similar structure as
user-user network can be seen here as well. They have distinct communities with strong interconnection.

We used community membership of each user in both graphs as an input feature to the classifier for user recommendation.

The same community detection approach was applied to the physics community dataset, and similar results were seen. In user-tag network,
7 communities were detected with each community comprising 5% to 22% of the users. Similar to math community dataset, for user-user
network in physics dataset we found a larger number of communities, 1101 in total with only 13 comprising more than 1% of the whole
population. This shows similar community structure in math and physics communities.

4.1.2 Pagerank and HITS

101 Pagerank distribution of user-tag graph 102 Pagerank distribution of user-user graph
T T T T T T T T
users pagerank | : « + user-user pagerank
+ + tags pagerank
102}
107}
[~ =
S S
3 10%} 3
2 2
g B
5 # 5 10*
- "4
§ 10% E &
[3 [
o (=2
© o
Q Q &
STI] S
107}
10 ; i . i 10 i ; i i
10° 10! 102 10° 10* 10° 10° 10! 102 10° 10* 10°
X X

Figure 2: Pagerank distribution for user-tag and user-user graphs in log-log scale

We explored link structure of both networks to assign weights to nodes. Because of the nature of these networks, these weights can be interpreted
as expertise or authoritativeness of the user in their respective domains. These properties are important factors in our recommendation algorithm.
Kleinberg’s HITS algorithm[14] and PageRank algorithm by Brin and Page[15] are two very well known approaches in this space. We ran
page-rank analysis on both user-user and user-tag graph with e = 1.0E — 4 & probability = 0.85 and used (node, pagerank) tuple to generate
page-rank distribution. These plots are presented in figure 2. For user-tag graph pagerank values are more widely distributed as opposed to
user-user graph. Y-values ranges from

y € [L.OE — 6,1.0E — 1] (1)

3

in user-tag graph and
y € [1L.OE —6,1.0F — 2] 2)

in user-user graph. Similarly, we ran HITS for both graphs with ¢ = 1.0E — 4. Hub and authority distribution data for both networks are
presented in appendix section in figure 9.

4.1.3 Structural analysis

In our analysis, we asked a few structural questions about both user-tag and user-user networks. These include - who are these top 10 users
in the both graphs by pagerank, HITS or eigencentrality score; what are top 10 tags in user-tag graph and how they compare across various
scoring systems; do the top users in graphs form communities among themselves; how many of the top 10 users by pagerank or HITS score are
common between the graphs; how does the last measure change if we consider top 10 percentile users instead; and finally, if and how these
measures will help us validate our final recommendations?

We found that { calculus’, "linear-algebra’, 'real-analysis’ } are the three most central tags by pagerank, HITS and eigencentrality measure
while {’calculus’, *probability’, ’integration’, ’sequences-and-series’, "linear-algebra’, *algebra-precalculus’, ‘real-analysis’ } makes it to top
10 tags list by all four measures we ran on user-tag graph, namely pagerank, authority score, hub score and eigencentrality. Table 1 shows the
top 10 tags using the four measures.

Table 1: Top 10 tags by structural statistics

Tag, Pagerank Tag, Authority score Tag, Hub score Tag, Eigen-centrality score
calculus, 0.0122 calculus, 0.1848 calculus, 0.0382 calculus, 1.0

probability, 0.0101 linear-algebra, 0.1663 linear-algebra, 0.0343 linear-algebra, 0.8775
linear-algebra, 0.0100 real-analysis, 0.1660 real-analysis, 0.0343 real-analysis, 0.8612
real-analysis, 0.0086 algebra-precalculus, 0.1509 algebra-precalculus, 0.0312 algebra-precalculus, 0.7779
algebra-precalculus, 0.0085 sequences-and-series, 0.1445 | sequences-and-series, 0.0298 | sequences-and-series, 0.7171
combinatorics, 0.0068 integration, 0.1411 integration, 0.0298 integration, 0.7120
geometry, 0.0067 limits, 0.1346 limits, 0.0278 probability, 0.7039
integration, 0.0063 analysis, 0.1325 analysis, 0.0274 limits, 0.6566
soft-question, 0.0060 functions, 0.1319 functions, 0.0272 geometry, 0.6455
sequences-and-series, 0.0058 | probability, 0.1299 probability, 0.0268 analysis, 0.6445

In user-tag graph, top 10 users belong to three communities. These communities also hold majority of the top 10 percentile users as well. For
top 10 users in user-user graph, community formation was more evenly spread out with a 30 : 20 : 20 : 20 : 10 percent split. However, top 10
percentile users overwhelmingly belong to two communities with 36% and 31% split. Higher pagerank in user-user graph implies either a
given user answered a large number of questions by volume or answered a fewer number of popular questions. Thus community distribution in
this graph for top 10 or top 10 percentile users (by pagerank score or authority score) should implicitly capture expert users. One may assume
that correlation between the 2 graphs is inconsequential. However, we argue that an expert user is one who has higher number of edges with
popular tags and also has answered more questions in general or answered more popular questions leading to more tags to user connection in
reverse. We found that about 40% of top 10 percentile users are common in both user-user and user-tag graphs across all the scoring measures.
In particular, users with id’s {1827, 39174, 6312, 12042, 11667, 8508} feature in the top 10 list for both graphs.

We started our analysis with an assumption that patterns discovered by classical approach of central actor detection by structural analysis of
graphs should also be reflected in the learning based expert detection. However, as described further in the report, classical metrics do not
perform well when compared to node2Vec.

4.2 Node2Vec

Emergence of deep learning as one of the most efficient machine learning techniques has mostly benefited NLP and computer vision tasks.
Node2vec [5] algorithm transfers some of the techniques in those domains to network analysis. This method allows us to learn vector
representation of nodes that capture the inherent structure of connections within the network. The training process involves two steps -

1. In the first step, we generate multiple random walks for each node in the network. Consider that a random walk traversed an edge
(t,v) and v is the current node. The transition probabilities of the nodes z that can be considered next is then given by -

%ifdtz =0
Tyz = Wyz X 1 lfdtz =1
%ifdm =i2

Where w,,; is the edge weight for the edge v to « and d;. is the shortest path between ¢ and z. These walks are governed by
following parameters:

(a) Return parameter p - This parameter controls the probability of returning to a node in a random walk. High value of p will give
a lower likelihood to returning to a node.

(b) In-out parameter g - This parameter controls how far is the random walk allowed to go from the current node. Higher values of
q reduce the likelihood of the random walk from going too far out.

2. The second step involves running a model like GloVe[8], CBOW[9] or SkipGram[11] on the random walks generated above to learn
the distributed representation of the nodes.

Intuitively, one can imagine the representations generated from the user-user network to capture information about user similarity or user
communities that answers similar questions. Similarly, the embeddings from the user-tag network should capture information about user
expertise and tag similarities.

Node2vec on networks

To generate these vectors from the networks, we ran a grid search over the parameters p and g to find the best combination. We set the other
hyper parameters to their (snap) default as - vector dimension: 128, walk length: 80 and number of walks per node: 10.

In this experiment, for each question, we used the average vector of its tags as the question’s representation. Each candidate user representation
was generated by the concatenation of their vectors from the 2 networks. Once we had this data, we ran a logistic regression classifier [10] to
train a model on it. We used the validation set’s mean reciprocal rank to evaluate the quality of the vectors. The following plots show the
results from the grid search.

Grid search for parameters (p, q) of user-tag vectors Grid search for parameters (p, q) of user-user vectors
0632
06330
'zl el
o~ o~
(=] o
0628 06315
n n
(=] o
0624 06300
ac°® a°
06285
= 0620 =
o o~
o o 06270
< 0616 o«
q

Figure 3: Grid search for user-tag (left) and user-user (right) network vectors

For the user-tag graph, we get p = ¢ = 1 and for user-user graph, we get p = ¢ = 0.25. In the user-tag graph, a relatively high value of p
implies that same nodes would be rarely sampled during random walks, while high value of ¢ will ensure the walks do not go out too far.
This implies structural equivalence, where nodes that have similar roles lie close to each other in vector space, is preferred for this graph.
This is expected as user-tag graph is a bipartite graph. Borrowing some terminology, tags here play the roles of hubs and users play the roles
of authorities. In case of user-user graph, low values for both p and g will allow reasonably deep explorations with restarts of the network.
This implies that vector representation which places interconnected nodes closer together is preferred for this graph. Since an edge in this
network means that users answered same questions, such a vector representation will capture user communities that are likely to answer similar
questions.

To analyze the quality of the vectors generated from these graphs, we performed k-means clustering on the resultant node vectors. To identify
appropriate number of clusters(k) for each network, we searched for the best k by plotting a cost vs. k plot and choosing k corresponding to
the inflection point. The visualizations of the clusters can be seen in figure 4. We used PCA to reduce the dimentionality of the vectors. For
both the graphs, we can clearly notice different, though sometimes overlapping, communities that exist in each graph.

Table 2: Examples of tags in each cluster

Machine Learning/Optimization | Statistics Geometry Calculus Networks
regularization probability-distributions | spheres limits trees
hadamard-product law-of-large-numbers rectangles integration coloring
convex-analysis stochastic-analysis 3d calculus graph-theory
lagrange-multiplier statistics geometric-construction derivatives hamiltonian-path
constraints bayesian-network computational-geometry | definite-integrals | clustering
machine-learning markov-chains circle random-graphs
regression covariance convex-hulls network
convex-optimization expectation euclidean-geometry network-flow
numerical-optimization probability-theory triangle graph-isomorphism
game-theory monty-hall quadrilateral planar-graph

In addition, from some of the tag clusters, we can clearly identify the "topic" for that cluster as depicted in table 2. This indicates that the
vectors from node2vec can successfully capture useful information about not only the network structure, but also some implicit information
like similarity of tags.

Figure 4: Clusters for tag (left) and user (right) vectors

5 Methodology and experiments

Our objective is to explore the importance of network based features for users and tags when it comes to recommending users. These features
are fed into a machine learning model to predict the appropriate user for each question. Figure 5 below describes the process at a high level.
We conducted several experiments, each with a different feature set or model to achieve the best performance. Each experimental setting is
further described below. All the results are tabulated in table 3.

We used validation set to determine which experiments performed well based on the training set, and measured performance on the test data
only for the best models. In addition, to test performance on the test data, we trained the model on the entire training plus validation set (15796
examples).

The choice of machine learning models for our experiments included logistic regression and gradient boosted trees. Logistic regression is a
popular and fairly good linear model that works well when we have relatively large data sets, as in our case. However, being a linear model, it
does not identify inter feature interaction patterns. Gradient boosted decision tree is an ensemble model that allowed us to learn non-linear
decision boundaries. It also helped us reduce the variance by combining many different smaller decision tree models to provide the final
prediction. In order to ensure we are studying the effects of features and not of the classifier, we used default settings for both the models as
documented at Logistic Regression and Gradient Boosting Classifier.

Question encoder Question User User feature extractor

p tation p

Encoder

SVD etc.) </ et d B
= | j
S:;g:: E$ <::] node2vec node2vec

Image souce Nips:iigaplogs nesiagcommuniy deiecion |

Machine learning
algorithm

l

User
recommendation

Figure 5: Recommendation pipeline
We experimented with several different feature sets and models as detailed below -

1. Baseline - We created a reference baseline model for the task using only a single feature, namely Jaccard similarity. Jaccard similarity
is a measure of set overlap. In this model, we computed Jaccard similarity between the tags assigned to the question and tags for
which each candidate user has provided an answer for. Candidate users were then ranked in order of their decreasing similarity with
the question and the top ranked user was predicted as the recommended user. As expected, being very simple, this model did not
perform well.

2. Node2Vec - As mentioned in section 4.2 , this set of experiments only used node embeddings generated by running node2vec on
the two graphs. The hyper parameters p and g were chosen as the best performing pairs from the grid search done in 3. For each
question, we used the average vector of its tags as the question’s representation. Each candidate user’s representation was generated
by the concatenation of their vectors from the 2 networks. We experimented with both, a logistic regression and a gradient boosted
tree model with this feature set.

3. Graph features - We created several graph based and other features for questions and users for this experiment. For the question,
features consisted of

 Tf-1df features of the question title followed by SVD to retain 50 most relevant components
 Tf-1df features of the question body followed by SVD to retain 50 most relevant components
 Favorite count of the question, which represents number of times someone followed the question
For the users, the representation consisted of one-hot-vector encoded community ids, page rank and HITS scores from section 4.1.
4. Combined feature set - Here we combined all the graph based features discussed above to form representations for the users and

questions.

The results from the experiments above are documented in table 3 and are further analyzed below.

6 Results and analysis

As can be seen from the results, we can achieve much better performance than our baseline in all of the experiments. Looking at the results from
node2vec (experiment 2), we see that node embeddings alone were able to provide very good performance. In comparison, even though graph
features (experiment 3) consisted of features from many different analysis, were not able to reach a similar level of performance. Surprisingly,
even when using all the features combined (experiment 4) and a powerful model like gradient boosted trees, we could only get as good as the
node2vec experiment alone. This indicates that node2vec captured information like node importance, node connectivity, similar clusters better
than individual traditional graph analysis methods.

Our best model from the experiments used node2vec vectors as features and gradient boosted decision trees classifier. We further analyzed the
predictions we made on the test set by this model. For each question, we used the score from the model to rank the candidate users. Below is
the distribution of the ranks of the correct answer for each question.

2500

1500

1000

=}
o
=]

15 20 25 30 35 40 45 50
Figure 6: Rank distribution for test set

We notice that more than 75% of the time, the correct answer will be suggested in the top 2 results. Given that we only considered graph
features to generate representations, we believe we were able to successfully demonstrate the importance of network features, in particular of
node2vec embeddings, while predictions.

6.1 Error investigation

We performed additional investigation of the test set questions where the correct answer appeared at rank 4 or 5, which we call the bad questions
set and compared it to questions where correct answer appeared at ranks 1 or 2, called the good questions set. Since we only used graph based
features, we wanted to identify if the bad performance can be explained by some network characteristics or not. We only look at the user-tag
graph since question representation can not be generated using only user-user graph for experiment 2.

First, we take a look at the tags for the 2 sets. We find that there is very little overlap between the tags from the two sets, as indicated by jaccard
similarity of only 0.39. This may imply that there are certain tags for which it is easy to identify best users in the vector space, either due to
fewer neighbors or due to closeness to them. Diving further down, we compared some statistics for the tag sets as shown in figure 7. We found
that scores like pagerank, hub, node degree etc. are, on average, lower for the good question’s tags than for the bad question’s tags. This may
appear counter-intuitive at first, but we attempt to explain it as follows. Higher degree, hub score etc. indicate that a node will have more
neighbors, which in this case means users. More users may indicate that we will have lesser confidence when we try and identify expert users

7

Table 3: Performance summary

Model Mean reciprocal rank Accuracy

Training set | Validation set | Test set Training set | Validation set | Test set

Baseline 0.3027 0.3025 - 0.0365 0.0342 -

Node2Vec + LR 0.6536 0.6332 - 0.4298 0.3959 -
Node2Vec + GBT 0.6852 0.631 0.6907 0.476 0.3969 0.4835

GF +LR 0.5015 0.4914 - 0.4589 0.4825 -

GF + GBT 0.5239 0.4878 - 0.5182 0.4908 -

Node2Vec + GF + LR 0.6586 0.6309 - 0.4369 0.3961 -
Node2Vec + GF + GBT 0.6856 0.6357 0.6899 0.4762 0.4051 0.4807

LR - Logistic regression, GBT - Gradient boosted trees, GF - Graph features

for that topic. Another explanation might point to our training procedure, where we chose 10 random walks per node, which might not be
sufficient for nodes with higher degrees.

120 00014
bad set bad set
= good set 00012 = good set

100
00010
00008

0
0.0006

00004
0.0002

0 00000
-0.01 0.00 001 002 003 004 005 -2000 0 2000 4000 6000 8000 10000

Figure 7: Comparison of tag statistics - hub score (left) and degree (right)

A similar analysis of the metrics for user nodes gives more expected results, as shown in figure 8. We again created 2 sets - users that gave
accepted answers for good questions set and the bad questions set. Looking at the authority score and degree distributions, we notice that users
in the good set have higher scores and degrees. In contrast to our argument above, even if higher degree for a user results in lesser confidence
in its expertise, we feel that the information from the vectors from the user-user network overcomes this.

300 0014
bad set bad set
= good set 0012 = good set

20
0010
0008

150
0006

100
0004

0.002

0 0000
-0004 0002 0000 0002 0004 0006 0008 0010 0012 0014 -100 0 100 200 300 400 500 €00 700

Figure 8: Comparison of user statistics - authority score (left) and degree (right)

6.2 Physics Community

To study if our approach was generalizable, we experimented with applying our recommendation pipleline to the physics data set. Table 4
shows the results. As it can be seen, the values are very close to the results from the math community (3) with performance being slightly
better. As with the math community, there is more than 10x improvement in the performance when using node2vec, compared to the baseline.

Having similar performance results in math and physics community datasets proves that our approach is not specific to the math community,
and can be applied accross various question answering social networks.

7 Conclusion and future work

Our objective in this project was to recommend the most appropriate user when a question is asked in Stack Exchange forums. In addition, we
wanted to investigate a new method wherein we only considered features learned from the underlying networks in the data set. Based on our

8

Table 4: Performance summary - Physics Community

Model Mean reciprocal rank Accuracy
Training set | Validation set | Test set Training set | Validation set | Test set
Baseline 0.302 0.296 0.351 0.049 0.042 0.065
Node2Vec + LR 0.705 0.669 - 0.505 0.440 -
Node2Vec + GBT 0.772 0.665 0.764 0.603 0.430 0.599

experiments, we see that node2vec features performed much better than other hand crafted features computed using traditional graph analysis
methods. Even though we only considered this small feature set, we were successfully able to rank the candidate users such that the correct
answer was present in the top 2 results 75% of the time. We believe we can now successfully assert the importance of doing graph analysis for
this task. Having similar performance results in both math and physics communities proved that our approach is rather generic.

The results achieved in this project can be improved upon in several ways. Building more and different kinds of networks like directed,
weighted graphs from the data can help improve the current model. Using other features in the data set like answer scores, text, user rating etc.
can provide additional useful information to the learning model. Of course, combining this method with traditional recommendation systems
would be another great exploration.

Acknowledgments

We are grateful to the following people for resources, discussions and suggestions: Prof. Jure Lescovic and Ben Ulmer.

Individual contribution

1. Priyank Mathur - Data curation and training/validation/test set preparation; node2vec training, exploration and analysis; machine
learning setup and experiments; result/error analysis; report writing.

2. Siamak Shakeri - Related work study, community detection analysis, question feature extraction, experimentation and analysis of the
physics data set, report writing.

3. Dibyajyoti Ghosh - Related works study, Gephi and network analysis tools exploration, graph data and plot generation, graph data
analysis, community detection analysis, report writing.

References

[1] Lada Adamic et al. Knowledge Sharing and Yahoo Answers: Everyone Knows Something. WWW ’08. http://wuw-personal .umich.
edu/~ladamic/papers/yahooanswers/fp840-adamic.pdf.

[2

—

Gideon Dror et al. I want to answer; who has a question?: Yahoo! answers recommender system. KDD *11. http://dl.acm.org/
citation.cfm?id=2020582.

3

—

Jure Leskovec et al. Discovering Value from Community Activity on Focused Question Answering Sites: A Case Study of Stack Overflow.
KDD ’12. https://www.cs.cornell.edu/home/kleinber/kdd12-qa.pdf.

[4

—_

Szpektor et al.. When Relevance is not Enough: Promoting Diversity and Freshness in Personalized Question Recommendation. WWW
’08. http://www2013.w3c.br/proceedings/p1249.pdf.

[5] A. Grover, J. Leskovec. node2vec: Scalable Feature Learning for Networks. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2016.

[6] Stack Exchange https://archive.org/details/stackexchange
[7] Stack Exchange Dataset https://i1a800500.us.archive.org/22/items/stackexchange/readme.txt
[8] Jeffrey Pennington, Richard Socher, Christopher D. Manning GloVe: Global Vectors for Word Representation http://nlp.stanford.

edu/projects/glove/

[9] Kenter, Tom, Alexey Borisov, and Maarten de Rijke. "Siamese CBOW: optimizing word embeddings for sentence representations.” arXiv
preprint arXiv:1606.04640 (2016). https://arxiv.org/abs/1606.04640

[10] Logistic Regression https://en.wikipedia.org/wiki/Logistic_regression

[11] Guthrie, David, et al. "A closer look at skip-gram modelling." Proceedings of the 5th international Conference on Language Resources
and Evaluation (LREC-2006). 2006. http://wuw.cs.brandeis.edu/ marc/misc/proceedings/lrec-2006/pdf/357 _pdf .pdf

[12] Gephi: The Open Graph Viz Platform https://gephi.org/
[13] Blondel V, Guillaume J, Lambiotte R, Mech E Fast unfolding of communities in large networks.J Stat Mech: Theory Exp 2008:P10008.

[14] Kleinberg, Jon M., et al. "The web as a graph: measurements, models, and methods." International Computing and Combinatorics
Conference. Springer Berlin Heidelberg, 1999.

[15] Page, Lawrence, et al. "The PageRank citation ranking: bringing order to the web." (1999).

Appendix

HITS authority distribution

HITS authority distribution

10°

HITS authority distribution of user-user graph
T T T T

lA A user-userauthority]

=
o
[
T

=
o
~
T

=
o
[
T

=
1
[
T

=
o
[
T

10°

10°

10°

HITS authority distribution of user-tag graph

10°

x

4

+

user-tag authority

10*

i
10? 10°

HITS hub distribution

HITS hub distribution

HITS hub distribution of user-user graph

10°

10°

10°
107}]
1024 . 1
107} : ? E
. -"q

10 . : 1
10°} E
10-6 L

10° 10t

X
10° HITS hub distribution of user-tag graph
- T T T
o o user-tag hub

107

-2
10 <
107}
10
10°
10 '

10° 10*

Figure 9: HITS hub and authority distribution for user user and user tag graph in log-log scale

10

