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1 Introduction

There has been much recent progress on the in-
fluence maximization problem. The problem is
to find a small set of nodes that will result in
the greatest spread of influence to other nodes in
a given network. Most generally, for a directed
graph (V, E), objective function f : 2 — R and
cost function ¢ : 2V — R, the problem is to com-
pute

max

max f(9)
subject to ¢(S) < C

(1)

The functions f, g depend on the model or the
specific instance of the problem. Klempe et al.[2]
have shown that in general, influence maximiza-
tion is an NP-hard problem, and known approx-
imations are still very time consuming on large
graphs. Influence maximization has many diverse
real world applications. For example, Leskovec et
al.[3] find the placement of a small number of sen-
sors in a water distribution network to detect con-
taminations as quickly as possible. In the same
paper, they find small sets of blogs which cap-
ture as many information cascades as possible.
Thus, further optimizations to known approaches
for the influence maximization problem would be
useful to a wide range of fields and real world
problems.

A common model for influence maximization
is the Independent Cascade Model (ICM). In this
model, associated with each edge is the probabil-
ity of the source node influencing the destination
node, provided that the source is itself active. In
this model, f is taken to be the expected num-
ber of influenced nodes as a result of the seed set

being activated at the outset. Often times, g is
taken to be the number of nodes in the set. A no-
table example when this is not the case is the field
of viral marketing, in which one may spend vari-
able amounts of resources at each node, hoping
to start the largest possible cascade of influence
in the graph using their given total resources.

Our work in particular will focus on the ICM
and will take the simple g from above. We pro-
pose and implement two algorithms for finding
high influence subsets of a graph. Our first algo-
rithm is an optimization of an algorithm which is
guaranteed to yield at least a factor of (1-1/e)
times the optimal solution, while our second algo-
rithm is entirely novel. We test them against the
well known CELF algorithm on the KDD CUP
2008 Dataset in order to find the most influential
high energy physics (theory) papers published on
Arxiv in 2001, 2002 or 2003 and compare the al-
gorithms’ speeds and results.

2 Mathematical Background

A set function f : 2 — R is called submodular
if for any AC B C U and any s € U,

f(AU{s}) — f(A) = f(BU{s}) — f(B).

The function f given by the ICM model has
this property, which we prove in theorem 1 be-
low. Given cost function g(S) = |S| and sub-
modular function f, the optimization problem (1)
can be solved up to a factor of (1 —1/e) using the
greedy algorithm.[5] See the pseudocode for the
algorithm below:

In order to be able to apply the algorithm to
our model with the guarantee of near optimality,



Algorithm 1 KK-Greedy(G k)
1: S+ o
2: for1 <i<kdo
3: S SUargmax,y f(SU{v}) — f(5)
4
5

: end for
: Return S

we must demonstrate the submodularity of our
function.

Theorem 1. Let G = (V, E) be a directed graph
and let p : E — (0,1] assign probabilities to its
edges. The function f : 2V — R where f(S) is
the expected number of infected nodes under the
Independent Cascade Model is submodular.

Before proving this result, we note that the
main principle behind the proof — a probability
technique called coupling — is the basis of our two
proposed influence maximization algorithms. In
the proof, the random variables Y (S) which de-
pend on random subgraph G’ are said to be cou-
pled. Our algorithms sample such random G’ to
estimate marginal influences and find high influ-
ence sets of nodes.

Proof. Enumerate the edges of G as E = {e;}¥,
and let X = (X;,1 <i < N) be a random vector
with each coordinate i.i.d. U((0,1)). Define G’ =
(V',E’) to be the random graph with V/ =V
and E' = {e € E : X; < p(e;)}. Let Y(S) be a
family of random variables, each one associated
with a subset S C V, where Y(S) is defined to
be the number of nodes that can be reached in G’
from nodes in S. I claim that f(S) = E[Y(5)].
For any path from wu to v, the probability of this
path existing in G’ equals to the probability of a
successful chain of influence along the same path
in G, because P(X; < p(e;)) = p(e;). Then the
probability that a node is reachable from S in
G’ is equal to the probability that an influence
cascade reaches that node from S in G. This
is sufficient for the claim to hold true. All that
remains is to see that for any A C B C V and
any s € V, Y(AU{s}) —Y(A) > Y(BU{s}) —
Y (B). The LHS of this inequality counts nodes in
a particular instance of random G’ reachable from
s but not from A, while the RHS counts nodes in
the same instance of G’ that are reachable from

s but not from B. Since A C B, the inequality
must hold. Taking the expectation proves the
theorem. O

We see now that the greedy algorithm gives a
good approximation of the optimal solution in our
case. The only problem is that it is still very slow.

3 Related Work

3.1 Cost-effective Outbreak Detection
in Networks

Leskovec et al.[3] propose an optimization to the
KK-Greedy algorithm for the influence maximiza-
tion problem which exploits the submodularity
of the problem. Although they use a slightly
different objective function from ours, it is simi-
lar in that it is the expected value of a random
process propagating across edges of the graph,
which makes it challenging to compute. This
makes naively applying the KK-Greedy algorithm
extremely inefficient, because each computation
f(A) is expensive. One of the big results of the
paper is “Lazy Forward” cost selection which re-
duces the number of computations of f needed
to run the algorithm. This version of the algo-
rithm is called CELF. The speed improvement is
up to a factor of 700. Below is the pseudocode of
this algorithm and a brief explanation of the main
idea. It maintains a priority queue Q(u, u.mg,
u.iter) sorted by u.mg in decreasing order, where
u is a node, u.mg is the most recently computed
marginal influence of u, and u.iter is the iteration
in which that marginal gain was computed.

If the node chosen in the main loop in line 9
of Algorithm 2 had marginal influence computed
in the current iteration of S, then it must have
the maximal marginal influence of all the other
nodes, even if their gains were computed in previ-
ous iterations. This is because, by submodularity,
the gains those nodes will have on the current set
must be no larger than the gains on the smaller
set from the previous iteration. In this way, one
can eliminate many costly computations of f and
still produce the same output as the KK-Greedy
algorithm, which is at least a factor of (1 — 1/e)
times the optimal.



Algorithm 2 CELF(Gk)
1: S+ o
2 Qo
3: foru eV do
4 umg+ f({u})
5 u.iter<— 0
6: Q < (u, u.mg, u.iter)
T
8
9

: end for
: while |S| < k do
u = Q[0]

10: if u.iter== |S| then
11: S =SuU{u}
2 Q=Q\{u}
13: else
14: umg= f(SU{u})— f(S5)
15: u.iter= | S|
16: Resort Q)
17: S  SUargmax,cy f(SU{v})— f(S)
18: end if
19: end while
20: Return S

3.2 CELF++: Optimizing the Greedy
Algorithm for Influence Maximiza-
tion in Social Networks

Goyal et al.[l] proposes an improvement on
CELF that further exploits submodularity, dub-
bing this new version of the algorithm CELF++4-.
The main change is that the priority queue
from CELF now stores Q(u, u.mgl, u.prev_best,
u.mg2, u.iter), where u.mgl is the same as u.mg
in CELF, u.prev_best is the best node found
before u in the current iteration, and u.mg2
is the marginal gain of u with respect to S U
{u.prev_best}. The idea is that u.mg2 can be
computed in the same Monte-Carlo simulation as
u.mgl is, so it is not costly to add. The payoff
is that, when we run the main while loop from
CELF, when u.iter== |S| — 1 and u.prev_best is
the node added to S in the previous iteration, we
have already computed the marginal gain of u in
the current iteration so we can access it at u.mg2
instead of having to compute it.

In short, CELF++ reduces the number of times
the objective function f needs to be computed
compared to CELF by using one Monte Carlo
simulation to compute several marginal gains si-

multaneously and storing this additional informa-
tion to be used later. This algorithm has been
tested by previous work and an improvement of
35-55% over CELF has been observed.

3.3 Improved Algorithms of CELF and
CELF++ for Influence Maximiza-
tion

Lv et al.[4] proposed a further improvement on
the greedy approach to solving the influence max-
imization problem. Their optimization tried to
predict nodes which will provide no marginal
gain in future iterations because they will al-
ready be influenced by the current seed set. By
keeping track of such nodes and removing them
from the set of candidates to add to the seed
set, Lv obtained a performance improvement.
This optimization was applied to both CELF and
CELF++ and compared to the original two algo-
rithms on an Epinions dataset. Of the four al-
gorithm variants, lv_.CELF is reported to be the
fastest.

What is most notable in this paper, aside from
the Lv optimization itself, is that CELF consis-
tently outperformed CELF++4, despite the re-
sults of [1]. We find this result to be consistent
with out work.

4 Coupling Approximation

The above papers primarily focus on decreas-
ing the overall number of times that f must be
computed through Monte-Carlo simulation. One
thing that has not been given as much consider-
ation is how to compute f more efficiently in the
first place. We propose the following alternative
to Monte-Carlo approximation of f, which we re-
fer to as “coupling approximation,” named after
the probability technique used to prove theorem
1, which inspired this approach.

Given parameter N and a graph G = (V, E)
with influence probabilities p : E — (0, 1], pre-
compute i.i.d. random graphs {G,}_; according
to the distribution of G’ from the proof of theo-
rem 1. To compute f(S) for a given set S, we
determine the number of nodes reachable from S
on each G, using breadth first search and take



the average.

Given a set S and precomputed {G,}_,, this
algorithm is equivalent to a Monte-Carlo approx-
imation with NV iterations. The only difference
between the two is the time at which random
numbers are generated to determine, in the cur-
rent simulation, whether influence passes along a
given edge or not. This does not change the ex-
pected value of the output for a given iteration, so
running N iterations of Monte-Carlo simulation
approximates f(.5) exactly as well as the coupling
approximation with parameter V.

Using the coupling approximation requires
storing NV graphs as adjacency lists, so it increases
the memory complexity by O(N(|E| + |V])). All
optimizations of the KK-Greedy algorithm com-
pute f({u}) for every node u € G to find the
first node (node 1) in the seed set, which means
that we generate a random number for each edge
in G at least once per iteration when we utilize
Monte-Carlo simulation. This is exactly the com-
putational complexity of finding {G,}_,. How-
ever, using Monte-Carlo simulation means that
the computations of f required for finding nodes
2 through k of the seed set necessitate further
random edge crossing computations. It is in this
way that the coupling approximation improves
run time at the cost of memory.

5 Sampling with Recombina-
tion

The idea of using precomputed graphs {G,}N_,
to more quickly compute marginal influences in-
spired a wholly new potential solution for the in-
fluence maximization problem. The basic princi-
ple is to sample random graphs {G,, })_, as before
and run a variant of the greedy algorithm to find
a high influence subset of k£ nodes on G,,, with the
caveat that the probabilities assigned to edges on
G, are all 1, for all n. We use CELF to find the &
nodes on a given G,. Computing f(S) on G, no
longer requires Monte-Carlo simulation because
we are in a deterministic setting, so a breadth
first search approach suffices for direct computa-
tion. Thus, we can efficiently sample seed sets
K, = (u1,...ux) corresponding to G,.

The next part is to recombine {K,}"_, into
one set of k nodes which is the output of the al-
gorithm. There is some flexibility in how to com-
bine n sets of size k into one. Our implementa-
tion naively orders nodes appearing in {K,}N_,
by number of appearances and selects the first &.
We expect the runtime of this algorithm to far
surpass the runtimes of CELF and other greedy
variants, but there is no longer any mathemat-
ical guarantee on the optimality of the output
set of k nodes. We check experimentally whether
or not sampling and recombination can compare
to CELF, which is guaranteed to be a factor of
(1 —1/e) within the optimal, in performance.

6 Data Set

The data set we are using is the KDD CUP
Dataset which contains information of high en-
ergy physics (theory) papers published on arXiv
from 1992 to 2003. The primary metadata we use
is the citations which are listed in the format of
[paper cited from| [paper cited to] which provides
a straightforward way to generate the network of
all the papers. The full data set has 27770 nodes
and 352807 edges. In order to more reasonably
test our algorithms, we chose a subset of the orig-
inal data set corresponding to the subgraph gen-
erated by papers written in 2001, 2002 and 2003.
This trimmed data set results in a graph with
5647 nodes and 44727 edges. We also performed
further experiments on smaller random graphs.

7 Preliminary Tests

We started by implementing several algorithms
in python to determine which ones are worth ex-
ploring further. All tests, including our main
results, were performed on a 13” MacBook Air
with 2.7GHz Intel Core i5 processor with 8GB
of RAM. This limited setup means that not all
algorithms can proceed to the final, more exten-
sive testing. The algorithms we wrote in python
were the KK-Greedy algorithm, the CELF opti-
mization, the CELF++ optimization, and CELF
using coupling approximation instead of Monte-
Carlo estimation.



All these algorithms need to compute the ex-
pected marginal influence of a node u given a seed
set S. We implemented three versions of this
computation: one for the case that every edge
(u,v) guarantees that u infects v whenever u is
itself infected, while the other two versions as-
sociate a probability of infection with each edge.
In other words, when all probabilities assigned to
edges are equal to 1, we can just use breadth first
search to deterministically compute the marginal
gain. We use the deterministic case to test our al-
gorithms for accuracy on small graphs and to set
rough benchmarks on the runtime of the random
case. We also use this version of the computation
extensively in coupling approximation.

When not all probabilities are 1, we use Monte-
Carlo or coupling approximation. They both let
the influence expand from S until it terminates,
and then do the same for u, counting how many
nodes u successfully influences which S would not
have. If u is in S’s influence set, in that particu-
lar run v would net a marginal gain of 0. We do
Monte-Carlo for N = 10,000 iterations and the
expected marginal gain f(SU{u})— f(S5) is taken
to be the average. We use N = 10, 000 iterations
following Goyal in his paper on CELF++.[1] As
we noted before, the accuracy of the coupling ap-
proximation with parameter N is the same as
that of NV iterations of Monte-Carlo simulation,
so we use parameter N = 10,000 for coupling
approximation.

We tested these implementations on two Erdos-
Renyi graphs, one with |V| = 50, |E| = 625 and
the other with |V| = 150, |E| = 1875. We chose
the ratio of |E|/|V| to roughly match the ratio in
the KDD Cup Dataset. The parameters of the
influence problem are k£ = 5 and uniform proba-
bilities of 0.1 for the source of an edge influencing
the destination. This is the same probability that
Goyal[1] assigns to edges in his experiments on ci-
tation networks. The runtimes are summarized in
the table below in minutes. We use CELF ¢ to de-
note CELF where we use coupling approximation
and CELF to denote CELF with Monte-Carlo es-
timation.

The fastest algorithm was CELF c. Using cou-

pling instead of Monte-Carlo estimation resulted
in a 83% — 86% decrease in runtime. We were

(50,625) | (150,1875)
KK-Greedy 6.2 49.6
CELF 5.2 37.0
CELF++ 5.3 41.8
CELF ¢ 0.87 5.1

surprised to see that CELF++ was consistently
slower than CELF. This conflicts with Goyal[l]
but is consistent with Lv[4]. Based on the run-
times above, we decided to port two of these algo-
rithms to C++ for more extensive testing and to
ultimately run them on the KDD Dataset: CELF
and CELF _c. We additionally implemented sam-
pling and recombination in C++.

8 Results

Using coupling approximation resulted in a sig-
nificant speed-up in CELF, as compared to using
Monte-Carlo estimation. The precise speed-up
depends on the parameter k£ — the more nodes
we seek out, the more times we must estimate
marginal influence. Below is the plot of runtime
in minutes against number of papers selected in
the trimmed version of the KDD Cup dataset:

5 Runtime vs Number of Papers Selected
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Figure 1: Plot of runtimes using Monte-Carlo and
using coupling

Note that selecting just the first node or so is
slightly less efficient with coupling approximation



than with Monte-Carlo estimation because the
precomputation of the graphs ends up being more
intensive. For k = 20, using coupling resulted in
a 39.2% decrease in runtime.

We also ran sampling with recombination on
the trimmed dataset for £k = 10 and k£ = 20. The
following tables compare the runtimes in minutes
and the influences of the output sets of nodes for
these k. We label sampling with recombination
as S&R.

k=10 | k=20
CELF 15.2 42.9
CELF.c | 10.9 26.1
S&R 10.0 16.9

Figure 2: Runtimes

k=10 | =20

CELF | 597.284 | 785.864
CELF c | 597.436 | 786.35
S&R 076.487 | 774.415

Figure 3: Final Influence

Of note is that CELF produced the same high
influence set of nodes no matter which influence
estimation we used — the discrepancies in the final
influence are due to the random error in estimat-
ing it. We see that sampling and recombination
does provide a speed boost over CELF. This im-
provement is a lot more significant for the larger
value of k. The cost in terms of the influence
of the output set is about 1.5 — 3.5% decrease
from what a greedy approach yields. We conclude
that sampling and recombination could be worth
future investigation, especially since our recombi-
nation function could easily be improved.

We ran some further tests to determine that
the runtime improvements and relative final in-
fluences were not just a product of our particu-
lar data set. Specifically, we generated 10 Erdos-
Renyi graphs with 150 nodes and 1875 edges (the
same as in the preliminary testing section) and
ran all three algorithms on these graphs.

CELF using coupling approximation took 20%
less time on average than CELF with Monte-

Carlo estimation. The standard deviation was
4.5 percentage points. Both algorithms generated
the exact same set of nodes in every iteration —
unsurprising because coupling and Monte-Carlo
are mathematically equivalent — so the resulting
influences were the same.

In comparison, sampling with recombination
took on average 71.4% less time than CELF
(with Monte-Carlo estimation), with a standard
deviation of 1.1 percentage points. However, sam-
pling with recombination produced a final influ-
ence that was 1.4% less than that given by a
greedy approach, on average. The standard devi-
ation was 0.8 percentage points.

9 Conclusion

The results on the random graph agree with the
trends we saw on the trimmed KDD Cup 2003
data set. Using coupling instead of Monte-Carlo
results in faster runtime, and sampling with re-
combination far exceeds CELF no matter how we
estimate influence. However, with our naive re-
combination function, the last algorithm results
in a slight decrease in influence of the final out-
put.

10 Future Work

Our experiments suggest that sampling with re-
combination does between 96.5% and 98.5% as
well as greedy approaches, while providing an un-
deniable runtime improvement. Our recombina-
tion algorithm naively took the most commonly
appearing nodes from the samples. It is possible
that a more intelligent approach to selecting the
final & nodes from the N samples could yield a
higher influence set while maintaining the same
runtime advantage. In our future work, we will
implement and test different recombination meth-
ods to see if the performance can improve past
greedy approaches. We do not have any mathe-
matical guarantees for sampling with recombina-
tion. Thus, an additional direction we will take
is to try to find a recombination function which
can result in some form of optimality guarantees.
If we are unable to do this, more extensive test-
ing of the algorithm on different kinds of datasets



would be useful in determining the reliability of
the approach.

Another thing that could bear more extensive
testing is how k affects the speed boost that cou-
pling approximation provides over Monte-Carlo
estimation. We saw on the trimmed KDD Cup
Dataset that coupling gets better as k increases.

11 Work Division

For purposes of grading this project, Dai and
Boris have agreed that they have done equal work
on the project.
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