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1. Introduction

Bitcoin is a new cryptocurrency that has slowly been on the rise. While it started more as a niche project, it
has since evolved into a currency with actual value used to perform actual transactions in the real world. A user on
Bitcoin has one or more public addresses, each with their own private address attached to them. In order to receive
Bitcoins, the user gives out one of their public addresses. To send them, they sign a transaction with their private
address. The transactions of all users are stored in the block chain, a chronologically ordered list of snapshots of the
Bitcoin network taken every ten minutes. Because of this, Bitcoin gives us a unique opportunity to study financial
systems in a way that was impossible before, as transactions were private affairs with no public records. We
examined Bitcoin transactions throughout time to find the mechanisms of network growth, and a way to generate a
synthetic model with similar properties. We pursued our project in three steps. First, we took detailed
measurements at uniform instances of time. From there, we created different graphs to see if we could isolate out
different components of the network that may be growing differently. Second, we tried to understand the
evolutionary mechanism underlying the transaction network. Last, we developed a mathematical model based on
our metrics from the first step and generated a simulation network using this model.

2. Related Work

The researchers who gathered our data examined several key statistics of the Bitcoin network to learn more
about them from an economic standpoint. They discovered that the degree distribution follows the power law, and
that the clustering coefficient is more than it would be in a randomly created network. They also studied the
preferential attachment model of the network to discover that the rich do indeed get richer™™. In our study of the
bitcoin network, we replicate their results on the degree distribution and connectivity of the graph, and find a
preferential attachment model we can use to simulate a new bitcoin graph. They also use some linear algebra to
perform Principal Component Analysis on some matrices they constructed from the dataset®), but we will not be
focusing too much on this aspect of their research and will instead be exploring some ideas of network analysis and
simulation methods used by different teams of researchers studying other networks.

We also looked at other papers examining other networks. One paper we looked at analyzed the network
data from FLICKR, LinkedIn, Answers and Delicious, and proposed an entire model for evolution of social
network. The evolution contains three steps - node arrival process, edge initiation process and edge destination
selection process®!. The models and methods discussed in this paper were relatively simple but powerful, so we
decided to use them to analyze our data, studying patterns in node arrival and edge initiation in our Bitcoin network
and coming up with our own model for these processes. Another paper detailed the process of studying an evolving
network!™. Using this paper as a guideline, we decided which measurements to take, what graphs to make, and what
types of analysis we should do. In addition, they described a method to generate a model with the same properties,
on which we based our process for simulating another bitcoin network. And our final paper investigated the dynamic



characteristics of an evolving social network to uncover the underlying mechanism of evolution in a dynamic social
network, breaking it down into three distinct steps. First, find measurements to understand how the network evolves.
Second, extract useful characteristics from the metrics and construct a network model. Lastly, run a simulation on
the network model and summarize its behavior and discover interesting properties®!. This paper provided detailed
guidance in understanding the evolution of dynamic networks, and we applied the same approach to analyzing the
evolution of transaction network on Bitcoin.

3. Data Collection

We directly downloaded our data from ELTE BitCoin project!l.

There are two sets of data. The first dataset contains all BitCoin transactions starting from the first BitCoin
transaction on 1/3/2009 to 12/28/2013. In this dataset we are using the following files:

1. txtime.txt, which includes all transaction IDs and timestamps.
2. txedge.txt, which tells us the sending address and receiving address for each transaction.
3. degree.txt, which contains the node degree of all nodes

There is another set of data which contains all transactions before 10/19/2014. We decided to not use this
data set because it does not contain timestamps and there is no way for us to split it into smaller chunks. It is
impossible for us to simulate all transactions from 12/28/2013 to 10/19/2014 and fit the graph in memory.

For the original dataset, due to computation limitation, we decided to only consider transactions between
5/28/2013 to 12/28/2013 for simulation. We initialize the base graph using transactions from 5/28/2013 to
11/28/2013, and transactions between 11/28/2013 to 12/28/2013 as the test set to evaluate our simulation
performance against. The data prior to 5/28/2013 are used in network analysis, but not in model simulation.

4. Problem Definition and Network Statistics

We define the problem as the following: The BitCoin transaction network is a directed graph because each
transaction has senders and recipients. Nodes are defined as address IDs, and edges are defined as the transaction
between two addresses.

Starting from an empty graph, when a transaction arrives there could be multiple senders and recipients
involved. We connect each sender to each recipient. The edges are the cross product between senders and recipients.
For sender nodes and recipient nodes in each transaction, “new nodes” are defined as nodes that are not in the
existing graph; “old nodes” are nodes that already exist in the graph. After each transaction, we add all nodes and
edges to the graph and repeat the process until there are no more transactions.

The graph of the whole dataset has 129178908 edges for 29771436 transactions. 59.1% of the edges were
old nodes sending to old nodes. 40.4% of the edges were old nodes sending to new nodes. 0.339% of the edges were
new nodes sending to old nodes, and 0.132% of the edges were new nodes sending to new nodes.

Figure 1 and Figure 2 show in-degree and out-degree distribution in BitCoin network on a log-log scale. It
is very clear that in-degree strictly follows the power law. The out-degree distribution has a peak on degree 2, which
suggests that the out-degree is most likely to be 2 rather than 1. This pattern will later affect how we model the
number of recipients in each transaction.
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5. Network Analysis, Findings and Model Construction

5.1 Transaction generation

The first thing we want to measure is how fast the network grows. For the BitCoin network, this can be
measured by how many transactions occur in a month. The reason we use a monthly graph is because it is the largest
scale that we can analyze - the yearly graph is way too large and the weekly graph has too many fluctuations. Figure
3 is a monthly graph for the number of transactions where the y-axis uses a log scale. As we can see, this graph
roughly follows a line, and we can make the assumption that the network grows exponentially.
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As aresult, we fit a linear model y = kx + b, where y is the logarithm of number of monthly transactions,
and x is the number of months passed since the first BitCoin transaction. After further investigation, we decided to
fit the model only using the data in the last 7 months because the network grows at different rates throughout time.
The actual number of transactions is 1975945, and our predicted number of transactions is 1948456. There is a small
difference of 1.4%.



5.2 Determining number of senders

After determining the number of transactions, we examined how many senders and recipients are involved
in each transaction. Figure 4 shows the distribution for sender counts in one transaction, and Figure 5 shows the
distribution of recipient counts in each transaction. We decided to first select the number of senders for a transaction
because a straight line is easier to model.
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We model the distribution using the power law; the log-probability of select a sender number is linear with
regard to logarithm value of the number.

The equation is log(P(X =x)) = k*log(x) + b

We used tail pruning, cumulative distribution and expectation maximization to find the values of k and b.
The fitting result is k =-2.6711961619 and b =-0.533973482704, which is shown as the black line in Figure 4.

5.3 Determining number of recipients given sender count

After we have determined the number of senders, we need to figure out the number of recipients. The first
question we want to ask is - is the distribution for number of recipients dependent or independent on number of
senders? We have generated three graphs (Figures 6-8) for recipient number distribution given 1, 2 and 3 senders,
and all of them seem to follow a similar pattern. Interestingly, this pattern is similar to node out-degree distribution
and number of recipients distribution. As a result, we can be quite confident that the number of recipient distribution
will be independent from the number of senders. Also, it follows the same pattern as Figure 5, just with different
maximum values.
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Another thing that we have realized is that the minimum and maximum number of recipients changes as the
number of senders change. We can see from the graphs above that the slopes are getting steeper as number of
senders increase. We have created two graphs (Figures 9 and 10) for the range that number of recipients can take.
(Note that we have found and fixed a bug in our code, so the graphs look different from the ones in milestone.)
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As we can see, the maximum number distribution (log-log scale) follows a straight line. But the minimal
number is always close to 1. We have fit a linear model for maximum number
log(P(X =x)) = k=*log(x) + b where the coefficients are k =-1.36426904827, b = 9.69072177648.

As aresult, our model would be: given a number of sender, we generate the max number of recipients
based on power law, and set the min number to be 1. The number of recipients are selected based on out-degree
distribution in Figure 5 normalized by maximum number.

5.4 Determine number of new senders and new recipients

Given the number of senders and recipients, we want to figure out what is the proportion of new nodes.
However, given number of senders and recipients, the probability of new senders and new recipients seems to be
very noisy. Some example data points are presented in Table 1.

Sender recipient pair New sender and new recipient distribution
(3,527) (0,21):1
(7,47) (0, 1):2,(0,4): 1
(72, 42) (0,42): 1
(641,2) 0,1):2
(5, 1495) (0,133): 1
Table 1



It seems like there is no good model for such joint distribution, thus we have to make two assumptions. The
first is that the number of new senders and the number of new recipients are independent. The second is that each
new node are independent from each other. Then we started to look at the distribution of sender count and recipient

counts given a new sender node or a new recipient node. Figures 11 and 12 show the distribution of sender count
and recipient count for new sender nodes. Figures 13 and 14 show the distribution of sender count and recipient

count for new recipient nodes.

108

Distribution of num senders for new receivers

107F

108}

10°

104}

Proportion

103}

102

10*

10°
10°

10°

10*

Distribution of num senders for new senders

102
Number of senders

Figure 11
Interestingly, given a new sender, the distribution of sender count and recipient count is very similar to
Figure 4 and 5, which is the number of senders and number of recipient distribution. As a result, we come to a
conclusion that the probability of a sender to be new is independent from sender and recipient count.
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On the other hand, given new recipient, the sender count distribution and recipient count distribution are
very different. It is more likely for new recipient to show up when the number of senders is either very large or very
small. The distribution seems to follow a downward line and then an upward line. However, for our model, we
decide to still use uniform distribution. One reason is that the distribution is quite noisy in the middle and two lines
may not be good enough. The second reason is that since most transactions only have a small number of senders, the
uniform distribution is good enough as long as it applies to most transactions with few nodes involved. Finally, this

provides us with a simple model that would not be hard to implement and test.



As aresult, by learning from the existing graph, we decided to use 0.00316093237904 as the probability of
a sender to be new and 0.336722278848 as the probability for recipient node to be new.

5.5 Preferential attachment

In this section, we will study how new edges are introduced into the network. Similar to the experiment in
section 4.1 in Leskovec et al®®!, we want to determine, when a new node joins the network, whether the destination
node of a new edge is chosen proportional to the destination’s degree. We decide to plot p,(d) as the probability that
anew edge chooses a destination node with degree d. The formula in Leskovec et al®®! is given as:

;[e,:(u,V)Adr-l(V):d 1

pld) =
; [{u:d- (u)y=d}|

We divide our data into monthly graphs with ¢ € [0, 6] where ¢= 0 corresponds to 05/28/2013. We then
compute the degree distribution as displayed in Figure 15. We can clearly observe a linear relationship between
p.(d) and d. Therefore, we can conclude that the Bitcoin network follows the preferential attachment model.

Given the Bitcoin network is a directed graph, similarly, we also need to study the relationship between
source node of a new edge and its degree. We decide to compute the degree distribution p,(d)' using the same
formula as above but with edge direction flipped:

Yle~(uy)\dy(u)=d]

pld) =+
;l{u:d—l(”):d}’

The distribution in Figure 16, still exhibits a weakly linear relationship between p,(d)’ and d.

In summary, both source and destination nodes are more likely to get attached to an edge with higher
degrees in the Bitcoin transaction network. Hence, in the simulation, specifically step 5, we decide to choose the
source and destination nodes, in our case senders and recipients, proportional to their degrees.
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Using an approach similar to the one in 5.2, we fit the equation log(P(X =d)) = k*log(x) + b, where
k=0.95577536, b=—13.39918393 for Figure 15. In Figure 16, k=0.96687774, b=—13.16216966 .



6. Simulation Algorithm

Here is the algorithm we use to simulate BitCoin network between 11/28/2013 and 12/28/2013:

1. We generate the total number of transaction based on the exponential model.

2. For each transaction, we randomly select the number of senders according to power law.

3. Given number of senders, we determine max number of recipient from our power law model and set min
number as 1. We normalize the number of recipient distribution based on the max number, then select the

number of recipients randomly according to the distribution.

4. For each sender node, it has 0.00316093237904 probability to be a new node. For each recipient, it has
0.00316093237904 probability to be a new node.

5. We choose existing senders and existing recipients proportional to node degree. Ideally we should have a p
where with probability p the node is chosen uniformly random and with (1-p) node is chosen according to
node degree, but we do not have time to tune with different p values due to the large number of

transactions.

6. After the sender nodes and recipients nodes are selected, we add new nodes to the existing graph, and add
edges between each pair of sender and recipient..
7. Repeat for the number of transaction times.

7. Simulation Results and Analysis

Although we wanted to simulate multiple times and take the average, we were unable to do so because the
number of transactions is very large and each simulation would take hours to complete. Eventually we were only

able to simulate once for a 1 month period instead of 10 times for 10 months.

7.1 Number of transactions

As mentioned in 5.1, the actual number of transaction is 1975945, and our predicted number of transaction
is 1948456. We have achieved a very close prediction, which only differs from the real number by 1.4%.

7.2 Nodes, edges and network diameter

Real graph Simulated graph
Nodes 3031288 3441156
Edges 10986324 7655108
Diameter 25.5428182905 8.24465871597

Table 2

Table 2 shows the difference between simulated value and the real values. We can see that the number of
nodes are close, but there is a huge difference between number of edges and network diameter. Our simulated
network is more connected and more condense. The reason is that all old nodes are selected based on node degree.
As aresult, there are more repeated edges in our simulation than the real network. If we have more time, we will try
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with different p values for uniform node selection, and it will definitely increase number of edges and increase
network diameter.

7.3 in-degree and out-degree distribution
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Figures 17 and 18 shows in-degree distribution and out-degree distribution for real network and our

simulated network. It is clear that our simulation does represent the real world degree distribution.

7.4 Number of sender and number of recipient distribution
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Figures 19 and 20 shows number of sender distribution and number of receiver distribution for the real
network with all transactions and our simulated model. It is not surprising that our model successfully captures
characteristics in both graphs. Note that the real graph (green) has lower value for minimum proportion because the

total number of transactions is much larger than the number of transactions in our simulation.



8. Conclusion and Future Work

In conclusion, our model has successfully captured how a transaction affects the growth of the BitCoin
network. We have made close prediction on the amount of growth, number of transactions, senders and recipients
of transactions and how new nodes appear for BitCoin network. Even though we made many independence
assumptions in our model, we are still able to achieve a good result for number of nodes, in-degree distribution and
out-degree distribution.

The aspects that our model does not take into consideration are mostly the internal structure of the BitCoin
network. We have not modeled the V-shaped sender number distribution given new receivers, and the probability p
that leads to uniform distribution in node selection. Other things that we can explore in the future include seasonal
fluctuation, community structure, node BitCoin balance and edge occurrence counts.
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