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1 Introduction

The two decades between 1641 and 1661 were a time
of great tumult for Great Britain. Political struggles
between Parliament and the monarchy were exacer-
bated by — indeed, often expressed in the language of
— ongoing religious strife. Nine of these years (1642 -
1651) were marked by civil war. This war, however,
was not confined to the battleground. It was equally
a war of words, in which political theory, religious
doctrine, and civil discourse played a central role.
When the armed conflict ended, this ongoing discourse
continued to reshape the institutions of British power,
as “both the practical and the philosophical bases
of the British monarchy were being challenged” [15].
Luckily, this public debate over the philosophy and
theology of politics was captured by the popular press,
which was unusually active at this time.

Of the almost 30,000 documents produced during this
period, about 22,000 have been preserved in a unique
corpus known as the “Thomason Tracts.” This corpus
contains all manner of public speech — orations, mani-
festos, popular chatter, sermons, letters, and news. In
such a large and varied corpus, traditional historical
methods are not well-designed to assess broad trends,
strands of debate, and evolution in this debate over
time. To this end, nearly half of this corpus has been
made digitally available, although it has not yet been
the subject of large-scale computational analysis.

This project aims to begin the work of characterizing
such trends by observing variations in word usage fre-
quency over time. Specifically, it intends to a) identify
when individual words in the corpus experience peri-
ods of intensified usage, or “bursts”; b) observe which
terms burst simultaneously and determine how these
simultaneous bursts aggregate into broader conceptual
‘trends’; ¢) identify “landmark years” which mark ma-
jor shifts in the prevailing trends of language use; and
finally d) relate these shifts in language use to their
sociopolitical context, to observe how linguistic trends
reflect and respond to temporal events.

1.1 Data Collection and Preparation

The data consists of 9180 texts which span the years
1641-1661 (cf. Table 1). These documents were

obtained from Early English Books Ounline (EEBO), a
database which serves as the primary digital repository
of early English texts [15, 16]. Access to the full digital
corpus is restricted to use for academic purposes, and
was obtained through Stanford’s Social Science Data
and Software group [3]. Metadata that was collected
along with the text of each document includes: a)
author; b) document title; ¢) publication year; d) city
of publication; e) unique bibliographic identifier.

Because early modern English does not have standard-
ized spelling conventions, it was necessary to mitigate
some of the wide variation in spelling present in the
original documents. Dr. Alistair Baron from the Uni-
versity of Lancaster has developed a software tool to
normalize early modern English spelling [1]; this tool,
known as VARD 2, was used by the Distant Reading
Early Modernity (DREaM) group at McGill University
to generate a dictionary of 80,676 spelling normaliza-
tions [14]. I used this dictionary to normalize my own
texts, checking the normalized output against VARD
2 to ensure that the process worked on my corpus as
well. I then stemmed and lemmatized these normalized
texts using the Porter Stemmer [2]. Finally, I converted
the data into a document-term matrix (DTM), which
contains the 1000 most prevalent terms in the corpus,
as well as the number of occurrences of each of those
terms within each document.

1641 1645 | 1649 | 1653 | 1657 | 1661
god god god god god god
church | church | christ | christ | christ | king
hath christ | lord man thing | thing
lord lord man men man church
time men men hath hath thou
Table 2: Top 5 Terms by Rate of Appearance,
1641-1661

Table 2 indicates that the most frequently used terms
in the corpus remain remarkably static over time: from
the table, we see that political (‘king’, ‘law’); social
(‘man’; ‘men’); and religious (‘god’, ‘christ’, ‘church’)
themes are dominant, but the sheer prevalence of these
primary terms masks meaningful variation that would
help to make sense of how these themes evolve and
interact. To capture this variation in the document
stream, this analysis intends to a) implement a method



of identifying “bursts” in the usage of individual terms;
and b) characterize how the co-occurrence of those
bursts lends insights into broader currents of sociopo-
litical change.

2 Literature Review

2.1 Identifying Bursts

Kleinberg’s conceptual definition of ‘bursts’ is a simple
one: “a ‘burst of activity’” is one in which “certain fea-
tures rise sharply in frequency.” [11,2 ] Many models
that measure such intensifications of activity do so by
analyzing user behavior: they model a static underly-
ing network of users (blogs, news outlets, Twitter users,
etc.); and they observe how social behavior propagates
the burst of a term, news item, hashtag, or other viral
piece of text [10, 9, 8 ]. Other models characterize the
text stream directly, without relying on the underlying
authorial or user structure [13, 11]. These models sim-
ply track the frequency with which term appear in the
corpus, identifying “bursts” as those periods in which
particular words or groups of words appear at a signif-
icantly elevated rate.

The simplest way of determining what constitutes a
‘significantly elevated rate’ is to set a constant-valued
threshold 7' that applies to all terms: 7T, then,
represents the usage rate above which a term can
be deemed “bursty.” Ratkiewicz et al. adopt this
definition in their analysis of political astroturf [10];
however, this method is prone to three central prob-
lems: a) overrepresentation of high-frequency terms
which appear at a uniformly high rate throughout
the corpus; b) lack of basis for ranking the intensity
of different terms’ burst phenomena; c) unsmoothed
or ragged bursts, caused by outlier/unrepresentative
time steps which spuriously induce or terminate burst
phenomena. By contrast with the threshold approach,
other models offer algorithmic methods of identifying
bursts which overcome all three of these problems.
[13, 11]. Kleinberg provides one such algorithm:

To track ‘bursty’ behavior for a particular term a,
Kleinberg provides a method for modelling the text
stream as a finite-state automaton A. In a simple bi-
nary model, if term a is used at time ¢ with a fre-
quency higher than some threshold quantity, .4 under-
goes a phase change from baseline state gy to some
elevated state q;. This phase change signals the be-
ginning of a period of “bursty” behavior for term a.
A cost is incurred to change from the lower state gg to
the bursting state g;. This cost introduces some inertia
in the model, so that A does not register a new phase
change for each time step in which term a is dispro-
portionately represented (thus overcoming problem 3,

above). Because each term’s burstiness is measured rel-
ative to its own baseline frequency within the dataset,
high-frequency terms are not overly represented in the
weighting of burst phenomena (overcoming problem 1).
Finally, Kleinberg provides a method of using the cost
function for the optimal state sequence to rank bursts
by their intensity (overcoming problem 2).

2.2 Characterizing Burst Context

After providing methods to identify bursts, many pa-
pers also seek to situate bursts within their broader
textual or temporal context. Some such methods are
rooted in the features of contemporary social media:
Mathioudakis and Koudis, studying Twitter, use tweet
metadata and named entity parsers to locate trends of
bursting terms within the universe of Twitter users and
Twitter content. [13]. Other methods rely less heav-
ily on the infrastructure and vocabulary of contempo-
rary social media, and are thus more applicable to his-
torical data. Kleinberg and Mathioudakis/Koudas de-
scribe two similar such approaches. They both begin
by co-locating bursting terms in time: at each time
step n, K, is the set of terms which are in a burst-
ing phase. They then seek to find, within time step
n, some set L, of landmark texts’, within which a set
of bursting terms [, C K, appears in elevated num-
bers. For a word w which bursts during time n, the
sets [,, and L,, in which w is involved provide different
types of context for its bursting behavior. By look-
ing at [,,, we can observe which other words experience
bursts of elevated activity along with term w, forming
what Mathioudakis/Koudas call a conceptual ‘trend.’
Meanwhile, the set L,, contains the full document text
which houses that trend; though the full document is
not bursting during time n, its topical content can lend
insight to w’s bursting behavior [13, 11]. Kulkarni et
al. bolster this idea of using a term’s textual context
(in tandem with the term’s usage frequency) to char-
acterize periods of linguistic change. [17]

2.3 Political Theory and Computa-
tional Text Analysis

Since about 2013, political science has slowly been
incorporating computational text analysis into its
methodological tool kit [7]. However, it has not yet
gained much use within the more insulated subfield
of political theory/political philosophy. Blaydes, Mc-
Queen, and Grimmer recently made one of the first
steps in this direction, producing a paper which con-
ducted a theoretical analysis of medieval advice texts
in Middle Eastern and Christian polities using compu-
tational topic modeling [12].



3 Methods

3.1 Identifying Bursts

The Thomason Tracts are segmented by year into
twenty discrete batches, so cannot be modelled as a
continuous text stream. The finite-automaton version
of Kleinberg’s algorithm was designed for batched
data of this kind. Therefore, I will identify bursts by
adapting his framework to model my data as a finite
automaton B2 with two states o and q;.

For each word w in the corpus vocabulary (or a subset
comprised of the most frequent terms in this vocab-
ulary), for ¢ in years t € [0,21] (because the corpus
spans the two decades between 1641 and 1661), the
t*" batch is the aggregate of all words in year t. Then
d; is the total number of words uttered this year, and
r¢ is the number of occurrences of w. Let R = Z?io T
and D = E?io d¢. If B is in the base state gy in a
given time step ¢, then py — the expected number of
occurrences of w relative to the total number of words
in the time step — is simply equal to R/D. In gy, the
‘burst’ phase, p; increases: p1 = (R/D) x s where s is
some scaling factor s > 1.

Given these basic definitions and the document-term
matrix with the counts of each word w per year, we
simply select an optimal state sequence @ = (g¢;1...q;t),
where 7 is the state at time ¢, which minimizes the cost
function:

n—1 n
C(Q) = (Z T(it, it+1)> + (Z —In [dt’l'tp:t (1 - pi)dt—rt:l>
t=0 t=0

The first term in the cost function smooths the burst
sequence by penalizing transitions from the base state
qo to the burst state ¢, with a cost determined by the
smoothing parameter 7; transitions in the opposite
direction incur no cost. The second term in the cost
function rewards a close fit between the model and
observed data. Thus, the optimal state sequence is
one that is parsimonious in its transition into burst
phases, but also maps well to the observed data.

Ranking Bursts by Weight: Finally, Kleinberg of-
fers a simple method to rank the intensity of burst phe-
nomena, by determining the improvement in the cost
function attained by transitioning into state g, for the
duration of the burst [t1,t2]. He calls this score the
burst’s “weight”: higher-weighted bursts are assumed
to be more significant. He also uses this weight mea-
sure to assign a cumulative validity score over the whole
dataset, by taking the sum of burst weights over all
terms in the corpus. Thus, variations of the algorithm
(e.g. with different parameters s and 7) can be com-
pared, as they will produce different cumulative weight

scores over the same dataset: higher weight scores im-
ply stronger burst phenomena.

3.2 Selecting parameters s and 7

Scaling Parameter s: The scaling parameter s
determines the level of intensified term usage required
to trigger a phase change in the automaton. Thus,
increasing values of s increase the intensity of term
usage required to trigger the change to a “bursty”
state. Kleinberg notes that, while he uses a value of
s = 2 for the shorter time-scale data (email, conference
proceedings) he increases this to s = 8 or even s = 16
for the longer time-scale data (e.g. the centuries-long
state of the Union address records). Because my data
occurs over the fairly long time scale of two decades, I
ran the algorithm over a few values of s > 2, although
they appeared to generate far fewer bursts, with
weaker overall weight scores (cf. Table 1). I ultimately
settled on using s = 2 for the rest of my analysis.

During this phase of experimentation, I also varied
s to try and identify ”anti-bursts”, in which the
resolution parameter s € (0,1). Kleinberg only models
intensifications of term use over time. However, I
can also imagine that it might be useful to track
the decline in use of terms, relative to the uniform
baseline. I did not use these in my later analysis,
but it seems like another potentially useful way of
approaching text data, especially highly-political text
data in which abrupt declines in term use might signal
bouts of regime-directed censorship or suppression of
civil society.

s value # Bursts Tot. Weight
4 141 116636

3 261 169569

2 572 263217

0.5 704 209885

0.25 258 88736

Table 1: Varying s values

Smoothing Parameter 7: The constant 7 is respon-
sible for smoothing bursts, so that erratic bursting
behavior is penalized: a value of 7 that is close to
1 imposes a small penalty for erratic bursting, while
large values of 7 creates larger penalties. Kleinberg
uses In(n) for his value of 7, where n is the num-
ber of time steps. However, Kleinberg also models
the document stream as continuous, so that each
document arrives within a unique time step: there
is a one-to-one correlation between the number of
documents and the number of time steps, so that the
value of 7 is also representative of the overall number



of documents being analyzed. By contrast, my data
is highly batched: a very large number of documents
arrives over a very small number of time steps (9260
and 21, respectively), so that the ratio between
documents and time is very large. Thus the small
value of In(n) does not seem to adequately represent
the overall volume of text being analyzed. Indeed,
In(n) = In(21) is approximately 3, while the average
burst weight is 263; since burst smoothing is one of
the desirable features of this algorithm, I tried tun-
ing the value for 7 so that more smoothing would occur.

By increasing the value of 7, we see fewer “orphaned”
bursts, or distinct burst periods separated by non-burst
periods (see Table 2). By the same token, we also see
the average longest burst increase, as the automaton is
discouraged from leaving a burst state when two burst
periods are separated by a period of lower term usage.
Finally, there is some small loss in the total weight, be-
cause we are abstracting away from perfect congruence
with the data; however, this does not appear significant
enough to outweigh the smoothing effect of increasing
parameter 7. For the rest of my analysis, I used 7 = 56.

T # Bursts Orphans | Longest | Weight
3 571 2.15 1.91 263217
12 543 2.07 2.00 262630
28 501 1.99 2.11 260799
56 424 1.87 2.28 255119
100 350 1.72 2.48 244865

Table 2: Varying 7 values

3.3 Evaluating Burst Validity

Assessing Significance of Findings Using the idea
of burst “weight”, Kleinberg offers the ”permutation
test” as a way to determine whether the burst phenom-
ena identified in a textstream are valid or spurious.
The mechanism for this test is simple: the identifica-
tion of burst phenomena depends on the order in which
texts appear in the stream. Therefore, we test whether
we have found valid bursts by randomly shuffling
the order of documents in the stream, assessing the
“bursty” behavior of its terms, and then comparing the
sum of the burst weights for the original textstream
with that of the randomly permuted one. To make
this test more robust, we compute the average sum of
burst weights over a number of randomly permuted
corpora; we should find the average of these cumulative
weights to be lower than the cumulative weight of
our original, unshuffled corpus. If so, we can safely
conclude that our identification of burst phenomena in
the original unshuffled corpus was valid (Kleinberg 20).

As such, I constructed ten random document corpora,
in which I kept the same number of documents per

year by randomly shuffling the dates through the cor-
pus. I then determined their average cumulative burst
weights, as well as their average number of bursts, and
longest burst. Table 3 represents these findings (std de-
viations in parentheses). The average cumulative burst
weight for the randomized data is less than half that of
the true corpus, and the average number of bursts and
longest burst length are both significantly lower.

Run Type Bursts Longest Weight
True Data 424 2.28 255119
Random 303 (12) 1.44 (0.04) | 107500

(5869)

Table 3: Burst Output vs. Randomized Output

Presence of Outlier Texts Looking through the out-
put that arose from running the algorithm on the ran-
domized corpora, I noticed that a number of terms
appeared to burst in every randomized document.
Furthermore, some of these seemed like idiosyncratic
terms; for instance, ‘ut’, ‘pro’, ‘quod’, and ‘ad’, all of
which seem to signal a text written in Latin. I hypoth-
esized that there might be some idiosyncratic texts in
the corpus, in which such terms are so highly concen-
trated as to force a burst when they appear, regardless
of other texts in the time step. This would then in-
flate the burst weight for the randomized texts. To
test this, I did a quick heuristic test: for each term
which bursted in all of the randomized texts, I sim-
ply removed the document with the most occurrences
of that term from the corpus. I then re-ran the algo-
rithm on the true corpus (minus these texts). I also
generated a randomized corpus and ran the algorithm
on both the full and the truncated versions of this ran-
domized corpus.

Run Type Bursts | Weight
True Data (Full) 424 255119
True Data (Trunc) | 400 198038
Random (Full) 285 104310
Random (Trunc) 222 51623

Table 4: Removing High Term-Frequency Texts

The cumulative burst weight of the random text de-
creases by 50% (compared to the real data’s 22%),
while the number of bursts in the random texts de-
creases by 22% (compared to the real data’s 5%. The
weight and number of bursts in the true corpus are
significantly less affected by the loss of those high-
frequency texts than the randomized data, ostensi-
bly because the real data captures collective behavior
(which persists despite the loss of individual texts).



4 Results

4.1 Temporal Clustering of Bursts

When we plot the temporal location of bursts, a clear
clustering effect is visible. Figure 1 is a heatmap of
the temporal location for all bursts that last longer
than one time step. The bursts are sorted by length of
burst and then by weight before being plotted. This
heatmap appears to delineate a sharp division between
the years 1648 and 1649. High-weight/long-length
bursts predominate in the years leading up to 1848,
then fall away in 1649 to be replaced by a scattering
of different terms.

Strengthening this image of a bifurcated timeline,
Figure 2 plots the correlation in burst patterns be-
tween years (again, for bursts of length longer than 1).
Again, the timeline appears to divide rather cleanly
into two lobes: one consisting of the years between
1641 and 1648, the other beginning in about 1650 and
continuing through to 1661.

This observation has strong historical face validity:
1649 was a cataclysmic year in British history [4]. In
this year, the monarchy was abolished, King Charles I
was executed, Parliament was purged of most of its
members, and the Commonwealth regime was insti-
tuted under Cromwell. Political and religious insti-
tutions were utterly refashioned. It makes sense that
bursts would cluster into two primary groups, to dis-
tinguish civil discourse “before 1649” from that “after
1649”. However, the question then arises, what partic-
ularly did these linguistic changes consist of 7 How did
they reflect or respond to these sociopolitical develop-
ments? To answer these questions, I characterize the
temporal context within which the bursts occurred.

4.2 Defining Burst “Context”

Kleinberg observes that his algorithm has the benefit
of being able to easily identify “landmark texts”,
which are documents in which significant bursts (or
groups of bursts) begin, or are sustained over time.
The content of these landmark texts, then, serves to
contextualize the terms which burst within them. I
had hoped to find similar such “landmark texts” in
my data. However, I did not fully appreciate, before
I began, how the shape of the data Kleinberg used
made it possible for him to do this (and very difficult
for me to do it). As mentioned before, Kleinberg’s
data is structured so that the ratio of time steps to the
number of documents is nearly one-to-one. Indeed, in
both the infinite-state version of the automaton and in
the historical State of the Union data, each document
inhabits a unique time step, creating a perfect cor-
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respondence between text and time. Because of this
correspondence, it is easy to attribute a burst to its
initial author, and to observe which authors continue
to propagate it in future time steps.

By contrast, there are hundreds of texts per time step
in my data, nearly all of which are highly-active burst
participants. Of the 9256 texts in the corpus, only 284
do not participate in any of the bursts occurring during
the year they were published. (I say that a document
“participates” in the burst for term ¢ if it demonstrates
a frequency of use for ¢ that exceeds the baseline prob-
ability po). Indeed, most documents participate in a
large fraction of the bursts that occur during their pub-
lication year: on average, each document participates
in 25.9 % of the year’s bursts (std dev = 14.1). While I
knew at the outset of this project that the large number
of texts per year might make it difficult to parse out
“landmark documents”, I was simply not prepared to
see such widespread activity. In this chorus of voices,
it is difficult to isolate single agents from the crowd.

4.3 Method: Characterizing Trends

This does not mean, however, that I could not charac-
terize “landmarks” or “context” in the corpus. Indeed,
while his paper does not speak directly to the question
of widespread burst participation, Kleinberg does
observe that bursts might be a product of “collective
activity” just as much as they might be “that of just
a single user.” (Kleinberg 20). Since the interesting
bursts in my dataset seem largely to fall into the
former category, I simply needed to change how I
identified “landmarks” in the data.

When I initially devised the project, I defined the
set of “landmark texts” as follows: for each time
step n, K, is the set of actively-bursting terms.
Given this set K,, L, is the set of ‘landmark texts’,
each of which contains one bursting term or a set
of bursting terms. Near-universal participation in
burst activity simply indicates that the set L, of
“landmark texts” for a period ought to consist of
all the texts published in that period, and that
the important differences to investigate within the
dataset are those that occur between years rather
than within years. Instead of inferring burst context
from a small set of entrepreneurial documents, I will
seek out “landmark years” to try to identify how the
characteristics of language in each distinct time period
distinguish it from other time periods. In what years,
and in what ways, do major topics of discourse change?

To do this, I follow the following process: First, I use
k-means clustering to generate groups of years based

silhouette Score

Figure 3: Silhouette Scores

on the similarity of their term bursts (i.e. the output
of the Kleinberg algorithm generated in the previous
section). Second, I update the original document-term
matrix to reflect the cluster membership of each doc-
ument: I then aggregate all of the terms used in each
year-cluster, and apply distinguishing-features mea-
sures (standardized mean difference and standardized
log odds ratio[5, 6]) to determine which terms are most
and least characteristic of each year-cluster. Finally, I
reflect on the historical circumstances encompassed by
each year-cluster, in conjunction with its list of most-
characteristic terms.

4.4 Landmark Years:
K-Means Clustering

I determined the number of clusters to use in the k-
means analysis by selecting the number with the high-
est silhouette score. As Figure 3 demonstrates, a model
with two clusters has the highest silhouette score, fol-
lowed closely by a model with four clusters. I ran both
2- and 4- cluster models, each for 10 iterations. Figure
4 shows both the 2- and 4- cluster models plotted on a
timeline.

2-Cluster Output:

Group 1 (1641-48), Group 2 (1649-61)

As the burst heatmap and correlation plot (Figures
1 and 2) led us to hypothesize, the 2-cluster kmeans
model divides the years into a “before 1649” cluster
and an “after 1649” cluster. All 10 iterations of
kmeans arrived at this conclusion. As mentioned
before, 1649 was a seminal year in British history,
as it was the year that the monarchy was abolished
(disrupting status quo church and parliamentary
institutions as well). In its place, the Cromwellian
Commonwealth was instituted: an unprecedented
reestablishment of England as a republic, but also
a regime with a strictly Puritan social and religious



Parliament brings grievances to
Charles |,

Paving the way for the first Civil War
Irish Rebellion begins

Self-Denying Ordinance
passed; enables the rise of
Cromwell's New Model Army

Timeline of Political Events, 1641-61

Monarchy abolished

King Charles | beheaded
Parliament purged

Rise of the Commonwealth

Long Parliament
disbanded

Convention Parliament
votes to restore

War continues monarchy
Charles | captured Cromwell’s Protectorate Death of Cromwell
Second Civil War begins begins
K=2 |8 2
» <\ ) > 2 9

R K RS R R R R

Majesti Enemi Armi Commonwealth

Subject Church Freedom Nation
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Rebel Brethren Duke sun Characteristic Terms per Period, k=4

Figure 4: Burst Timeline and Discriminating Words

sensibility.

Both of the distinguishing-features measures clearly
reflect the regime change which divide the two clusters.
Figures 5 and 6 plot the output of the standardized
mean difference and standardized log odds measures,
respectively. In both cases, the most-distinguishing
terms are those that pertain to the regime in power
during the period: “kingdom” and “majesti” for the
pre-1649 (or ‘monarchic’) cluster; “commonwealth”
and “nation” for the post-1649 (‘republican’) cluster.
Further investigation of the monarchic cluster reveals
the preponderance of terms related to institutions
which fell silent during the republican period: ‘house’,
‘common’, ‘assembl’; ‘religion’. Though both Parlia-
ment and the Church of England did persist through
the Cromwellian period, both were disempowered.
Linguistically, both were replaced by a less-worldly
Puritan lexicon: ‘scripture’, ‘spirit’, ‘father’, ‘soul’,
‘rightous’.

4-Cluster Output:

Group 1 (1641-43), Group 2 (1644-46)

Group 8 (1647-48), Group 2 (1649-61)

In the 10 runs of 4-cluster kmeans, 7 runs came up
with this grouping of years (this is the grouping that I
used for the subsequent determination of distinguish-
ing features for each cluster). In two runs, the year
1647 moved from Group 3 into Group 2, leaving 1648
in an isolated group by itself. And in 1 run, the year
1649 moved from group 4 into group 3. However,
the fundamental divide between the monarchic and

republican periods remains throughout. Figure 4
shows the timeline of the period, along with the terms
most characteristic of each cluster.

The distinguishing features for these clusters refer more
particularly than the 2-cluster model to specific mili-
tary, religious, and political conflicts that occurred dur-
ing the republican period. For instance, Cluster 1 con-
tains the term ‘rebel’, signalling the beginning of the
Irish Rebellion. Clusters 2 and 3 both contain military
language ‘armi’, ‘hors’, ‘enemi’, ‘quarter’, reflecting the
battles ongoing during the period. The terms in Clus-
ter 4, which encompasses the whole republican period,
are largely unchanged from the 2-cluster model.

5 Conclusions and Future Work

Burst detection and characterization provides a
promising method of grappling with and analyzing a
large corpus of disparate documents, identifying major
shifts in language use patterns, and imputing these
shifts to the broader temporal context in which they
appear.

The analysis was, however, limited by the coarseness of
the time steps: it was difficult to parse out the nuanced
variation that occurred within each year. For the texts
in this dataset, the month of publication is generally
referenced within in the text, but not in the easily-
accessed metadata. If a method could be devised to
extract the month of publication as well as the year,
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Figure 6: 2-Clusters, Distinguishing Terms
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