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Abstract
In this paper, we propose a unique temporal assessment of resiliency within the US airline
network over the course of 2015. Nodes, representing airports, and edges, representing flights,
were systematically removed from the network. As these networks broke down, resiliency was
measured by the number of nodes that remained in the largest weakly connected component and
by the average longest shortest path. As nodes were removed, we discovered that the network
was less resilient on holidays such as Thanksgiving and New Year’s Eve. We also observed
that major weather storms during this time frame disrupted flight routes, causing a significant
drop in resilience. Additionally, in our analysis of major airline carriers, Southwest Airlines
appeared to have the network most resistant to disruption. Thus, our research can aid airports

and airlines in better reacting to and designing infrastructure for adversity.

1 Introduction

Airline networks are important agents for bridging eco-
nomical, geographical, political, and social boundaries.
Analysis of their structure gives significant information
about migration patterns, tourism, economics, and busi-
ness. Moreover, the topology of the network also helps
predict its behavior under adversity (closure of airspace,
cancellations, delays, etc.). In this project, we intend
to analyze the resilience of the US airport network over
the course of 2015. Resilience of an airport network is
determined by how important a given single airport, set
of airports, flight, or set of flights are within the big-
ger picture of the entire network. We are interested in
which factors affect resiliency over the duration of the
year, including airlines, days of the week, passenger flux,
time of the year, etc. Although much research has been
conducted around modeling a static airport network, less
attention has been placed on how these networks differ
over time. We plan to take the work of Verma et al.[5] as
an initial framework and extend its results by appending
temporal flight data.

2 Motivation and Problem State-
ment

Airport network resiliency analysis is very important in
understanding the deep backbone of the US flight net-
work and observing how robust it is to sudden adver-
sity, which leads to immediate changes in its components
and structure. For example, certain weather conditions
might prompt officials to shut down specific airports for a
given period of time, or to cancel a flight that would have
needed to fly through the storm. Another example is a
terrorist attack on any scale - one that may shut down a

single airport or one that may shut down an entire region
of airports. This paper aims to show the effects of such
airport closures or flight cancellations if these or similar
events were to happen.

Another important calculation and consideration that
we tend to in this paper is the resiliency of the airport
network for a given airline (6.2.2). This analysis can
prove to be meaningful to an airline that is trying to
maximize their profits by maintaining a network that is
well connected and resistant to unintended changes.

Furthermore, this analysis can assist consultants, busi-
ness executives, or any other frequent flyers in pick-
ing a single airline that is most worth an investment of
their loyalty. Our results guide a prospective frequent
flyer into understanding which airline is best connected,
reaches a wider variety of destinations, and has the high-
est resiliency to inevitable airport closures or flight can-
cellations.

3 Related Work

Verma et al.[5] examined the resilience of World Air-
line Network (WAN). They measured resilience of a
static airline network by examining the fraction of nodes
that remain in the largest weakly connected component
(LWCC), upon removal of edges or nodes. Several con-
ventional (removal of nodes) and unconventional (re-
moval of edges) removal measures were used. Nodes were
removed by highest degree whereas edges were removed
by passenger flux. Passenger flux estimates the number
of passengers traveling a particular route. Verma et al.[5]
used their resilience analysis to propose a novel hierar-
chical structure for WAN.

Guimera and Amaral[4] analyzed past research for
models to describe the WAN. They highlight that air-



ports with the largest degree centralities are not usually
the cities with the largest betweenness centrality. More-
over, there are critical airports (those with high between-
ness centrality) that are not necessarily hubs within the
network that act as major weak spots within the network.
Their analysis motivated our choice of removal measures.

Fleurquin et al.[3] presented a model for quantifying,
predicting, and analyzing time delay propagation in air-
line networks. Their model reproduces the delay propa-
gation patterns by looking closely into three specific fac-
tors that influence flight delays: aircraft rotation, flight
connectivity, and airport congestion. The model de-
scribed in their paper accurately reproduced delay prop-
agation within the system and lead to a few interesting
results. However we did not heavily utilize these results
in our paper.

Wauellner et al.[6] analyzed the resilience of airline net-
works with respect to the seven major airline carriers
within the United States. They discovered that South-
west airlines had the most resilient network with targeted
node removal and random edge removal. They suggested
that the structural differences of the networks of these
airline carriers attributed to the difference in resiliencies.

4 Data

The Bureau of Transport Statistics (BTS)[2] under the
US Department of Transportation harbors detailed infor-
mation about flights within the US in its Airline On-Time
Performance Database. The database describes sched-
uled flights connecting a multitude of different airports
operated by various airlines. The attributes of the full
dataset extend beyond the scope of our research problem.
We focused on information about the origin, destination,
flight number, departure time and date, airline carrier,
cancellations, delays, and flight distance. This data not
only allows us to keep a record of which airports are
connected to other airports, but also details delays expe-
rienced on each routes and along which airlines.

H Variable Magnitude H

Flights 5,819,079
Airports 323
Airlines 15

Table 1: Summary of BTS Dataset

One challenge in the data collection process for this
dataset was that the data was only downloadable by
month. In addition, the datasets were so massive and
contained extraneous information that loading in graphs
from each CSV file at runtime would take an excessive
amount of time. Thus, we created a script that took
the entire month’s flight data and generated multiple bi-
nary files. Each of these binary files represented a single
day’s flight network, including the desired nodes, edges,

and attributes. We ran this script for all twelve months
and thus generated 365 binary files. These binary files
allowed us to quickly load in graph for each day into
subsequent scripts for analysis.

The second dataset that we augmented to this data
was the Federal Aviation Administration (FAA) Passen-
ger Boarding (Enplanement) database[l]. It contains in-
formation about total passenger traffic at all US airports
in 2015. We used this information to compute passenger
flux — a measure of flight importance — for each edge in
the network.

5 Methodology

5.1 Building Graphs

We created 365 separate directed multi-graphs that con-
tained all flights for any given day throughout the year
of 2015. The original dataset contained lots of informa-
tion for each flight, including but not limited to: time
of departure, flight distance, time at gate, time taxiing,
etc. Therefore, we needed a way to map the edge to
this flight information. Thus, we used airline ID and
flight number as attributes for each edge. Airline ID is
a unique string identifier for each airline obtained from
the dataset. Flight number is an identifier distinguishing
different flights from the same airline in a given day. It is
generally unique except for a special case where a given
airplane flies from airport X to airport Y and then either
returns to airport X or continues to airport Z right after.
This phenomenon, however, does not affect our analysis
of the network because for a given origin airport on a
given airline per day, the flight number is unique.

5.2 Network Statistics

Once we created the graphs, we computed statistics for
each graph and averaged across all 365 of them (Table 2).
We also constructed a picture of the airline network on
January 1, 2015 and its degree distribution on the same
day (Figure 1).

H Total Number of Graphs 365 H
Mean Number of Nodes 305
Mean Number of Edges 15943
Mean Number of Out Edges 52
Mean Number of In Edges 52
Mean of Max Number of Out Edges 1039.7
Mean of Max Number of In Edges  1039.9

Table 2: Mean Statistics across all Graphs



Figure 1: Graphical representation of the U.S. Airline
Network on January 1st, 2015

5.3 Measuring Resilience

We measured the resilience of a graph in two different
ways.

5.3.1 Resiliency Index: Fraction of Nodes in
Largest Connected Component

We created a resiliency index based on the definition of
Verma et al.[5]. They quantify the resilience of a net-
work by the fraction of nodes that remain in the largest
weakly connected component upon removal of edges or
nodes from the network. In a real world situation, this
could mean that an airport was shut down or a particular
flight route was cancelled. One approach to visualizing
this quantitatively is to plot the fraction of nodes that
remain in the connected component, S(g), as a function
of g, the fraction of nodes or edges removed. This can be
seen in Figure 2. We defined the area under this curve
to be the resiliency index for a given day. To calculate
the integral of the plot, we used the trapezoidal numeri-
cal integration, which approximates the region under the
function as a trapezoid:

/abf(x)dx ~ (b—a) {M}
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Figure 2: Example of resilience measured through re-
moval by betweenness centrality

Note that another way to define the index from this
graph is the x-intercept of the curve. This shows how
quickly the graph breaks down based on how many nodes
are removed from the graph. We did not use this defini-
tion.

5.3.2 [Eccentricity Index: Longest Shortest Path

The longest shortest path, also known as Eccentricity,
is defined as the distance between a given node X and
the furthest node away from X. The distance to the
furthest node from X is measured using the shortest path
technique, which returns the number of nodes required
to traverse the path between X and the furthest node.
The longest shortest path of a given node is also called
the eccentricity of that node.

For a graph corresponding to a given day in the year,
we can compute a value called the Eccentricity Index.
The process of computing the eccentricity index requires
an iterative technique that iterates N times, where N
is the number of total nodes in the graph. Within each
iteration, we compute the average eccentricities of all the
nodes in that iteration. At the end of each iteration,
we remove the current highest centrality node, based on
either degree, closeness, or betweenness centrality.

After completing all of the iterations, we obtain a vec-
tor that corresponds to the average eccentricity, where
the i*" value corresponds to the average eccentricity with
n — ¢ nodes in the graph. To compute the eccentricity
index of the entire graph, i.e. for that day, we compute
the area under the curve using the trapezoidal function,
as explained in 5.3.2.

5.4 Removal Measures

In the physical world, removing a node from the network
represents a situation in which an entire airport is forced
to shut down and no flights can take off from or land at



the specified airport. We began by analyzing this phe-
nomenon. We systematically removing nodes from the
network until no nodes were left. In a real world sce-
nario, however, flight, or edge, cancellations occur more
frequently as compared to multiple airport-wide shut-
downs. Thus, a scenario with systematic edge removal
can more accurately depict the overall topology of the
network under adversity, as opposed to systematic re-
moval of nodes. Additionally, removing particular edges
allows us to analyze the effect of adversity at a more
granular level.

5.4.1 Node Removal

Verma et al. analyzed the resilience of their network by
successively removing the highest degree nodes from the
graph. In a similar fashion, we analyzed the resilience of
each graph representing each day in the year. However,
instead of only removing nodes based on degree, we also
considered two other measures:

1. Highest degree centrality node: compute the
sum of out degree and in degree for each node,
sort on descending order, and remove nodes until
no nodes remain.

2. Highest closeness centrality node: compute the
closeness centrality for each node, sort on descending
order, and remove nodes until no nodes remain.

3. Highest betweenness centrality node: compute
the betweenness centrality for each node, sort on
descending order, and remove nodes until no nodes
remain.

5.4.2 Edge Removal

In addition to removing nodes, we also explored the effect
of edge removal based on the following methods:

1. Number of passengers traveling over a partic-
ular route (passenger flux)
To remove edges from the network, we needed a
quantifiable measure of their importance. Verma et.
al. [5] defined passenger flux, an estimate of the
number of passengers flying a particular route be-
tween two cities, as a metric for flight importance.
We followed a similar scheme. We defined passenger
flux p;; as:

o K
Dij = Pi Z k.

z€neigh(i)

Here p;; is the value of the flux for a flight from ¢ to
j. pi is the total number of passengers visiting (ar-
riving, departing, or transiting) airport . k; is the
out-degree of node j. Qualitatively, this measures
the importance of a flight route based on the esti-
mated number of passengers flying that route. We
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Figure 3: High to low passenger flux
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Figure 4: Low to high passenger flux

perform this computation for all edges in the net-
work. We then follow two removal schemes: 1) Sort
the passenger fluxes in descending order and succes-
sively remove edges with the highest passenger flux
first. 2) Sort the passenger fluxes in ascending or-
der and successively remove edges with the lowest
passenger flux first (see Figures 3, 4).

As can be seen in the plots above, removing edges
on high passenger flux did not significantly affect the
resiliency of the graph until 80% of the total edges
were removed. Removing edges based on low pas-
senger flux, however, did affect the resiliency of the
graph drastically, confirming the results of Verma et.
al. [5]. This is probably attributed to the fact that
removing edges with low passenger flux essentially
disconnects less popular airports first, reducing the
number of nodes in LWCC at a faster rate. From a
practical standpoint, removing edges with low pas-
senger flux is of lower importance.



2. Highest Betweenness centrality edge

Thus we explored another method of edge removal
- removing edges by betweenness centrality in de-
scending order. Instead of using passenger flux as
a measure of how important an edge was, the be-
tweenness centrality for each edge, or the number
of shortest paths passing the edge, was computed.
The edges were then sorted in descending order of
betweenness and removed sequentially until no edges
remained in the graph. The resilience of the network
under highest betweenness centrality edge removal
was measured using the resiliency index as previ-
ously defined.

3. By Airline In addition to simply removing edges
in a particular order, we studied the effect of (a) re-
moving all of the edges of a particular airline and
measuring the subsequent resiliency of the remain-
ing graph and (b) removing edges of all airlines ex-
cept a particular airline and measuring the resiliency
of the remaining airline’s network. After removing
the flights of the airlines not being studied, edges
were removed based on highest betweenness to ana-
lyze the resiliency of the remaining networks. This
analysis allowed us to answer the questions of (a)
Is the resilience of the entire US network dependent
on just one or two main airlines? and (b) How re-
silient are each of the major airline networks? Is one
significantly more resilient than the others?

5.5 Temporal Assessment

A key aspect of the entirety of these analyses is that
they are executed not only for randomly chosen individ-
ual days, but also for the entire year. This allows us to
spot trends and significant differences in the resiliency
and eccentricity indices throughout the year, subject to
both the node and edge removal measures that are de-
scribed above. This extended analysis helps us deter-
mine how the network changes over the year, including
whether it is affected by seasons, specific weeks, or spe-
cific days.

6 Results

6.1 Node Removal
6.1.1 Analysis by Year

Once we computed the resiliency and eccentricity indices
for each graph, we plotted the indices for each day of the
year to analyze how airline network resiliency fairs over
the course of a year (Figures 5, 6, 7).

Observations and Discussion

Eccentricity index plot for betweenness centrality (Fig-
ure 7) and resiliency index graph for closeness centrality
(Figure 6) showed that there was less fluctuation (low

variance) in index values during the summer months (day
150 to day 200). Moreover, we observed that Thanksgiv-
ing (day 330), Christmas (day 359), and New Year Eve
(day 365) had significantly lower resiliency index values
compared to other days in the year. This was especially
visible in graphs of resiliency index for degree and close-
ness centrality. A similar trend was also observed for the
eccentricity index.

In an effort to further understand the reasons for these
sudden significant changes, we loaded in the individual
graphs for those specific holidays as well as three other
random days throughout the year, and compared and
contrasted the properties between these graphs. Some
of the results can be see in Table 3. After applying two
sample t-tests to some of the metrics in the table below,
we noticed that although there was no significant dif-
ference in the number of nodes between the two groups
(p = 0.284), there was a statistically significant difference
between the number of edges between the two groups
(p = 0.0138 < 0.05 = ). This means that on these holi-
days, there was a statistically significantly lower number
of flights throughout the U.S. airline network.

6.1.2 Analysis by day of the week

In addition, we also plotted both indices (resiliency and
eccentricity) by day of the week to determine if there
was a difference in resiliency by day, based on patterns
in flight schedules (Figure 8).

Observations and Discussion

When we aggregated the data and computed the aver-
age resiliency index by day of the week (Fig. 5), we found
that there was no statistical difference between each day
for all three node removal methods. This was surprising
as we expected airlines to have different flight schedules
on each day of the week, resulting in different resiliency
indices for each day.

When we aggregated the eccentricity index by day of
the week, however, we did find a difference in the re-
siliency of the network by day. The resilience of the air-
line network was significantly lower on Thursdays and
Sundays and higher on Mondays, Tuesdays, and Fridays.
It would be interesting to see if, for example, this varia-
tion in eccentricity index was correlated or explained by
variation in flight demand by day of the week.

This variation in resilience by day of the week is also
apparent in the eccentricity index by day of the year
plots. The eccentricity index seems to fluctuate between
higher and lower values roughly every other day.

6.2 Edge Removal

Utilizing the previous methods for computing resiliency
of a given day’s graph according to the Edge Removal
methods outlined in 5.4.2.1 (passenger flux, ascending
and descending) and 5.4.2.2 (highest betweenness cen-



Resiliency Index by Day of Year (Degree Centrality)

Eccentricity Index by Day of Year (Degree Centrality)

fi "\‘“}I‘i‘l“' “l““'y'.w“"w“h“ Illl ‘ |l“‘|l|]|

| Wﬂ} | i

o
=
=

o
=
o

Eccentricity Index

0.09+

0.08

0 50 100 150 200 250 300 350 400
Day of Year

Figure 5: By Degree, Resiliency index (left), and Eccentricity index (right)
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Figure 6: By Closeness, Resiliency index (left), and Eccentricity index (right)

trality edge), we plotted the corresponding resiliency val-
ues throughout 2015. The plots can be seen in Figure 9.

6.2.1 Analysis by Year

Observations and Discussion

The left most plot in Figure 9 shows the resiliency index
as edges are removed in the order of highest to lowest
passenger flux. Although the plot may give the first im-
pression that there is high volatility, a closer look at the
scale of the resiliency index in that plot shows that the
range of the indices is low (~0.01), which implies that
the observed fluctuations are due to noise as opposed to
true variation. This means that removing edges sorted
by high to low passenger flux does not significantly alter
the resiliency indices.

On the other hand, the plot in the center does provide
us with more conclusive results. It presents the resiliency
index as edges are removed according to the order of low-
est to highest passenger flux. The range of the resiliency
index is around 0.05, which is 5 times more significant

than the previous plot. We can see that in the scope
of the entire year, the resiliency increases overall as the
year progresses, with some volatility in between. We also
observe the usual resiliency lows on Christmas and New
Years Eve, but this plot also draws us to an interesting
observation about the very low outlier on February 2nd,
2015 (Day 33). Upon further inspection into the circum-
stances of that day, there happened to be a major snow
storm in the Northeastern United States which adversely
affected resiliency of the entire US airport network.

The right most plot in this sequence shows the re-
siliency indices over the course of 2015 for when airports
were iteratively removed from highest to lowest between-
ness centralities. Other than the extreme low on Thanks-
giving - of which we have already paid attention to from
other measurements - no significant observations can be
made from this plot. The resiliency indices seem consis-
tently varying around the mean throughout the year.
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H Thanksgiving Christmas New Year’'s Eve May 28 February 24 December 1 H

Number of Nodes 292 295 305 302 310 299
Number of Edges 10068 12633 13133 17052 15906 15823
Resiliency (Degree) 0.069 0.070 0.072 0.0715 0.0715 0.0747
Resiliency (Closeness) 0.0788 0.0727 0.0835 0.0829 0.0866 0.0843
Resiliency (Betweenness) 0.0614 0.0615 0.0579 0.0607 0.0590 0.0624

Table 3: Graph Statistics for Holidays vs. 3 Random Days of the Year (2015)
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6.2.2 Analysis by Airline

Our analysis with respect to airline explored two addi-
tional questions: (1) How does the resiliency of the entire
US network change with removal of a particular airline
or group of airlines? and (2) What is the resiliency of an
individual airline’s network?

With regards to the first question, all edges pertaining

to a particular airline, for example, those of Delta Air-
lines, were removed. This same analysis was conducted
for most of the major airlines within the United States,
including American Airlines, United Airlines, Southwest,
etc. In addition, all flights from various combinations of
these airlines were also removed. Surprisingly, in each
analysis, the resiliency of the entire network was only af-
fected by at most 1.5%, even if up to 20% of the edges of
the entire network were removed from the graph. Thus,
we determined that the resiliency of the entire network
is not significantly affected by the removal of a single or
group of a few of the major airlines.

To study the second question, we deleted all edges and
nodes not pertaining to the airline being studied. Edges
were subsequently removed (from the reduced netword)
based on highest betweenness. Table 4 and Figure 10
below detail the resiliency index by day of the year for
four major airlines within the United States: American
Airlines, Delta Airlines, Southwest Airlines, and United
Airlines.

Observations and Discussion

As summarized in Table 4, Southwest Airlines has the
highest average resiliency index, suggesting that their
network is relatively more well connected than the others.
This hypothesis is confirmed by the results of Wuellner
et al.[6], which outlines that Southwest’s core network is
composed of over half of its destinations and is “a dense
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Figure 9: Resiliency index for high to low flux removal (left), Resiliency index for low to high flux removal (center),

Resiliency index for edge removal by betweenness (right).

H Airline Average Resiliency Index Average Number of Nodes in Network H
American 0.538 81.9
Delta 0.447 141.1
Southwest 0.720 86
United 0.514 74.2

Table 4: Graph Statistics for Four Major Airlines within the United States (2015)

mesh of interconnected high degree airports” [6]. In ad-
dition, Southwest relies on a Point-to-Point (PP) system
as opposed to a "Hub and Spoke’ (HS) network preferred
by the other major airlines. When designing the infras-
tructure of an airline network, there are various trade
offs between choosing a HS versus PP model. For ex-
ample, HS models minimize the number of connecting
flights passengers must take, whereas PP models mini-
mize the overall distance traveled [6]. This difference in
topology and high degree of the core nodes attributes to
the higher resilience of the Southwest network.

In addition, from the perspective of a frequent flyer try-
ing to standardize on a particular airline, understanding
the resilience of a network is important in determining
how flexible an airline is to cancellations or shut downs.
In other words, this describes how easily can a passenger
be rerouted in adversity. In a well connected graph, such
as Southwest’s, there are relatively more routes linking
two nodes.

Additionally, from a customer perspective, knowing
the breadth of destinations of the airline is also relevant.
Thus, we decided to report the average number of nodes
over all days of the year for each of the four airline net-
works. Delta Airlines has the highest average number of
nodes (141.1), indicating that it services a larger number
of airports. Since edges were removed based on highest
betweenness centrality, the less important and more re-
mote airports were removed from the LWCC at a later
point in the edge removal process. Thus, the presence

of these less important airports should not have signifi-
cantly affected the average resiliency index. Another ap-
proach to measuring the resiliency index that would have
accounted for this issue would have been to analyze the
network consisting of only the intersection of all airports
serviced by the four major airlines.

Lastly, as can be seen in the plots in Figure 9, all
airline networks seem to become more resilient as the
year progresses, except Southwest Airlines, which seems
to maintain its resiliency throughout the year.

7 Evaluation of Model

Few papers have explored the change in resilience of air-
line networks over time. Verma et. al. [5] analyzed
the yearly resilience of the world airline network by (1)
targeted removal of edges by degree and (2) targeted re-
moval of edges by passenger flux. To evaluate the validity
of our approach, we compared our resilience plots for a
single day, January 1st, (Figure 2) to their plots for the
whole year. We observed that removing nodes by degree
for a single day yielded similar results. When Verma et.
al. removed 20% of the nodes from the World Airline
Network, they observed that very few nodes remained
connected. We discovered the same results for the US
Airline Network (Figure 2).

We also compared our edge removal plot for January
1 (Figures 3, 4) with Verma et. al’s work. As men-
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Figure 10: Resiliency comparison between the four major airline carriers

tioned previously, we noticed that removing edges with a
high passenger flux first did not affect the network that
much. This corroborated the findings of Verma et al [5].
However, the drop in the fraction of nodes in LWCC was
not as drastic for our network. Verma et. al. observed
that removing 40% of edges with the highest flux resulted
in 25% drop in nodes connected. Whereas, we observed
that removing 40% of edges resulted in no drop in con-
nectivity. We hypothesized that this was a result of the
differences in the networks being analyzed (US Airline
Network vs World Airline Network).

Wouellner et. al. [6] used node removal by betweenness
to measure the resilience of specific airline carrier net-
works. They observed that over the course of the year,
Southwest Airlines’ network was the most resilient. We
also observed this for the two different removal measures
we used: removal by passenger flux and removal by edge
betweenness.

While our results reflect expected behavior, they do
not necessarily suggest that our approach is ideal. Re-
siliency index, eccentricity index, and the various removal
measures do not take into account factors like the differ-
ence in total number of nodes and edges between graphs

of different days.

8 Conclusion

In this paper, we propose a unique temporal assessment
of resiliency within the US airline network over the course
of 2015. We defined our own resiliency and eccentricity
indices to quantify its total resiliency for a given day. We
used these measures to identify the days of the year on
which the network is least resilient as well as identifying
which US airline carrier’s network is most resilient to
adversity.

When we conducted targeted node removal, we discov-
ered that the network was less resilient on both Thanks-
giving and New Year’s Eve. There were also no signifi-
cant differences in the resiliency index between the days
of the week. However, we did notice significant differ-
ences in the eccentricity index.

When we conducted edge removal, we observed that
the network was least resilient on days such as February
2, 2015 on which flights were disrupted due to a snow
storm in the Northeast. In addition, our results indicated



that Southwest is the airline with the highest resiliency
network. Therefore, a frequent flyer looking to mini-
mize disruption of their flights should most likely pick
Southwest Airlines over any of the other three airlines in
our analysis. However, if their priority is an airline with
a wider breadth of destination airports, the customers
should standardize on Delta Airlines.

9 Future Work

With additional time, there are a few more analyses that
we would perform on the network that would provide us
with additional observations. More precisely, we would
have liked to compute the eccentricity index under tar-
geted edge removal and see how that affects the total
resiliency of the network.

We would also like to further analyze the structure of
each individual airline’s network by examining parame-
ters such as the average number of flights per day. The
average degree of each node in en airline’s network would
provide us with metrics of how important a given airport
is to that airline. Within the analysis of the different air-
lines’ networks, it would also be interesting to pairwise
analyze two networks when the problem is constrained to
the set of intersecting airports between the two networks.
This would eliminate the bias in the comparison of two
airlines in which one of the airlines has more destination
airports in its repertoire than the other airline.
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