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1 Introduction and Motivation

Influence maximization is to find a small set of
most influential nodes in a social network that
maximizes the aggregated influence in the net-
work. Such network influence process has many
important applications and attracts interests from
both industry and academia [Chen et al., 2010,
Gionis et al., 2013, Kempe et al., 2003, Singer,
2012]. For example, a company may want to
design a “word-of-mouth” marketing strategy to
promote their products or service through social
networks. The company needs to know who
should be targeted by the promotion with limited
budget. To successfully achieve their goals, it is
crucial to study, model, and simulate the network
influence process.

Nowadays, online social networking sites, e.g.,
Facebook, LiveJournal, and Linkedin, serve as an
important platform to spread information, news,
and new technology. Different from traditional
social networks, users in online social network
site form small communities with their common
properties, €.g., users in one community may be
from the same high-school, the same company, or
the same club; users in another community may
have the same hobbies or interests. One user may
also be in several different communities simulta-
neously.

The community structure in online social net-
working plays a significant role on the dynam-
ics of information spreading. Users in the same
community may also be friends. When one per-
son receives news or acquires new techniques,
he/she may be more likely to spread the informa-
tion through the online community. Other per-
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sons in the same community, even not a friend,
may be influenced with high probability, whereas
friends not in the same community may be influ-
enced with low probability. Nevertheless, online
social networks were only treated as simple undi-
rected graphs in previous studies [Chen et al.,
2010, Mao & Zhang, 2016, Singer, 2012, Song
et al., 2016] and the effect of community is ig-
nored completely.

On the other hand, online social networks usu-
ally are huge, e.g., Facebook has more than one
billion users; LiveJournal has more than 10 mil-
lions unique monthly visitors. The simulation of
network influence process on such huge networks
requires dramatic computational resource. To re-
duce the simulation time, it is important to have
smart and scalable algorithm to select initial in-
fluential nodes and simulate the network influen-
tial process.

In the present project, we are interested in inves-
tigating the algorithm to select initial influential
nodes with ground-truth community information.
The report is organized as follows. In section 2,
we discuss the related works and their relation
to the present project. The proposed algorithms
to select initial influential nodes are described in
section 3. We summarized our key findings and
results in section 4. The conclusion and future
work are in section 5. Section 6 lists the contri-
bution.

2 Related Work

The studies on influence maximization mainly
focus on two aspects, i.e., descriptive influence
model, and efficient heuristics to choose initial
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nodes to influence. Kempe et al. [2003] first sys-
tematically studied the influence maximization
problem as a discrete optimization problem and
proposed two families of classic stochastic in-
fluence models, i.e., linear threshold model and
independent cascade model. They showed that
the influence maximization problem is NP-hard.
Many previous works focused on the character-
istic of the influence models and their approxi-
mation guarantees [Kempe et al., 2015, Singer,
2012, Song et al., 2016]. For the greedy hill-
climbing algorithm, both of the two models yield
1 — e~! approximation guarantee [Kempe et al.,
2015, Mossel & Roch, 2010]. Besides the family
of the two classic models initialized by Kempe
et al. [2003], researchers also proposed other
types of models, e.g., triggering model [Kempe
et al., 2003, 2015], linear threshold model with
a directed acyclic graph [Chen et al., 2010],
voter model [Singer, 2012], and coverage model
[Singer, 2012] to mimic the influence spreading
process.

Researchers proposed heuristics to choose initial
nodes to approximate network influence to be
maximum and extensively compared the perfor-
mance with different influence models. Many al-
gorithms are proposed, e.g., degree-centrality al-
gorithm [Chen et al., 2010, Gionis et al., 2013,
Kempe et al., 2003], free-degree algorithm [Gio-
nis et al., 2013], random walk with restart algo-
rithm [Gionis et al., 2013], min-S and min-Z al-
gorithms, distance-centrality algorithm [Kempe
et al,, 2003], and PageRank algorithm [Chen
et al., 2010, Mao & Zhang, 2016]. The baseline
of the study is to choose initial nodes randomly
[Chen et al., 2010, Kempe et al., 2003, Leskovec
et al.,, 2007, Singer, 2012]. The best result is
always given by the greedy hill-climbing algo-
rithm [Gionis et al., 2013, Kempe et al., 2003,
Singer, 2012, Song et al., 2016]. However, the
greedy hill-climbing algorithm is extremely slow.
For some cases, e.g., the CAMPAIGN problem,
the computational time of the greedy algorithm
is super-quadratic and it is hard to scale to large

data set [Gionis et al., 2013].

To improve the simulation time and model es-
timation accuracy, Leskovec et al. [2007] pro-
posed a “lazy-forward” algorithm in selecting
new seeds. They used the idea that most of
outbreaks only affects a small area of the net-
work to reduce the function evaluations. Al-
though Leskovec et al. [2007] showed that their
algorithm can be hundreds times faster than the
greedy algorithm and only needs very small
memory, the algorithm is still slower than the
none-greedy algorithms and is not scalable when
the data size is dramatically large. Nevertheless,
if we consider the influence spreading through a
community, the small area affected by a outbreak
is most likely in the same or neighboring commu-
nities.

Chen et al. [2010] proposed the first scalable in-
fluence maximization algorithm based on the lin-
ear threshold model. In the algorithm, a local di-
rected acyclic graph (LDAG) is constructed sur-
rounding every node in the network and the in-
fluence to the nodes is restricted within the lo-
cal DAG structure. They claimed that this al-
gorithm can be done in time linear to the size
of the graph and is much faster than previous
algorithms. Nevertheless, they admitted in the
paper that social networks in reality is typically
not DAG. So it is hard to say that the informa-
tion spreading in real-world social networks does
follow the DAG as described by the algorithm.
Meanwhile, the LDAG is still NP-hard and in
the simulation, the LDAG has to be built around
each node. As shown in the paper, the simula-
tion time is still much longer than the non-greedy
algorithms.

Yang & Leskovec [2012] studied the overlapping
of network communities in real-world social net-
works. In real-world networks, the nodes in a
community are densely connected and the edges
highly concentrate around the community mem-
bers. They found that the overlapping part of
the communities are much denser than the non-
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overlapping part. They showed that in ground-
truth communities, the more communities two
nodes share, the higher probability the two nodes
are connected.

In summary, those properties of community in
real-world social networks discussed in Yang &
Leskovec [2012] inspire us to investigate if there
is a good way to select initial seeds based on
the information within ground-truth communi-
ties. Such idea is within the same domain as
Leskovec et al. [2007] and Chen et al. [2010], in
both of which the influence is assumed to only
happen in a small area around a node, although
the selection of the small area in their work did
not consult community information or was arbi-
trary defined. Using the community information
also follows the idea that community structure
plays a key role in the influence spreading.

3 Model

We propose methods to utilize community infor-
mation to select initial seeds. A property of com-
munity is that a community is densely-connected
internally, and therefore, it is easier to infect a
community than an arbitrary set of nodes with the
same size.

3.1 Initial Seed Selection Heuristics with
Ground-Truth Community

In method M1 and M2, instead of applying
heuristics to the whole graph to select initial
seeds, we first decompose the whole graph into
sub-graphs, select the top n-largest sub-graphs,
and then apply heuristics to the sub-graphs. With
the ground-true community information, we pro-
pose the following two algorithms to build sub-
graphs:

(M1) For each ground-true community, we con-
struct a sub-graph, the nodes of which are
members of the community, and the edges
are those edges in the whole graph whose
both ends belong to the community.

(M2) For each ground-truth community, we con-

struct a sub-graph, i.e., the edges are those
edges in the whole graph one of its ends be-
long to the community and the nodes are the
members of the community and their first
degree friends.

One benefit of the above two methods is that the
running-time and memory are reduced signifi-
cantly comparing to apply heuristics to the whole
graph since each sub-graph is much smaller than
the whole graph. Meanwhile, since each sub-
graph can be processed independently, parallel
computing can further accelerate the simulation.

The idea of M1 and M2 algorithms is to maxi-
mize influence by infecting the largest communi-
ties. On the other hand, another idea is to maxi-
mize influence by infecting as many communities
as possible. We propose another method, M3, as
described below:

(M3) We rank the nodes in the network accord-

ing to the number of communities a node
belongs to. The initial seeds are the top-n
nodes.

3.2 Community Selection Heuristics

In the algorithms described in section 3.1, we se-
lect communities based on the size of commu-
nities. As evidenced in our experiments result
in section 4.2, there are other factors that impact
how influential a community is.

In this section, we study more sophisticated
methods to select communities and initial seeds.
We propose to first build up a “community” net-
work with the following two algorithms:

(M4) We construct an undirected unweighted

graph, where each node represents a com-
munity. For the nodes not belonging to any
community in the whole graph, we consider
each such node as a community. Two “com-
munity” nodes are connected by an edge if
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any pair of nodes from the two communities
are connected in the original graph.

(M5) We construct an undirected weighted graph,
where each node represents a community.
Two “community” nodes are connected by
an edge if any pair of nodes from the two
communities are connected in the original
graph, and the weight of the edge is the num-
ber of edges between the two communities
in the whole graph.

With the community graph, we select the initial
seeds by following the steps below:

1 We apply initial seed selection heuristics on
the “community” graph and select the influ-
ential “community” nodes.

2 We apply the M1 or M2 algorithms de-
scribed in section 3.1 to build up sub-graphs.

3 We apply the initial seed selection heuristics
to the selected sub-graphs.

4 Results and Findings

In this section, we first introduce the properties
and interesting findings of the experiment data in
section 4.1. Then we shows the results of the M1,
M2, and M3 algorithms in section 4.2. Finally,
we study the performance of the algorithm M4
and M5 in section 4.3.

4.1 Research Data and Experiment
Parameters

We used the LiveJournal social network data
with the ground-truth community informa-
tion [Yang & Leskovec, 2012]. The network
has 3,997,962 nodes and 34,681,189 edges
(snap.stanford.edu/data/com-LiveJournal.html).

The average clustering coefficient and diameter
are 0.2843 and 17, respectively. There are
664,414 communities in the network. The
largest community has 178,899 members. Fig-
ure 1 shows the cumulative distribution function
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Figure 1: Complementary cumulative distribu-
tion function of community sizes.

of the number of nodes in communities. The
nodes are mainly in a flew communities, i.e.,
about 10 communities have more than 10000
nodes and about 10000 communities (i.e., top
1%) have more than 100 nodes.
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Figure 2: Probability of nodes belonging to a
community VS node degree.

Figure 2 shows the distribution of the probability
of nodes belonging to a community as a function
of node degree. As the node degree increases,
the probability increases. Therefore, a node with
high degree is most likely in a community. Mean-
while, our statistics show that in most communi-
ties (specially the large ones), 95% edges have
one node in one community and the other node
in a different community. This result implies that
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targeting at the nodes in a community not only
helps to spread the influence in a community but
also has high probability to influence the nodes
outside the community. The above two observa-
tions serve as the support to our idea to select ini-
tial seeds with ground-truth community informa-
tion.
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Figure 3: Distribution of the degree probability
of the nodes in the largest community.

One interesting result we found is the degree
probability of nodes in large communities. The
degree here is the value from the whole graph.
We have checked the top 10 largest communities.
Figure 3 shows the degree probability distribu-
tion of the nodes in the largest community as an
example. The following discussion also applies
to the rest 9 communities. As shown in figure 3,
there is a almost constant probability for low de-
gree nodes. As degree increases, the degree prob-
ability slightly increases and reaches a maximum
value of about 2% around degree 100. For the
nodes with degree greater than 100, the degree
probability decreases significantly, as degree in-
creases.

In the experiment, we apply the independent cas-
cade (IC) model and the linear threshold (LT)
model. In the IC model, the probability of a node
being activated by its neighbor is 0.01 [Kempe
et al.,, 2003]. In the LT model, the threshold
a node to be activated is chosen independently
at random in [0,1]. For both the IC and LT

models, we use randomly selected seeds as base-
line and we apply the high-degree heuristics, the
Eigenvector-centrality heuristics, and the PageR-
ank heuristics to choose the initial seeds. In
all the simulations, due to the computational re-
source limitation, we stop the influence spreading
simulation after 5 iterations.

Avg Num. of Nodes Infected

161 162 163 164 165 166 167
Number of Simultations
Figure 4: Number of influenced nodes of IC

model with 1 initial random seed after 5-step sim-
ulation.

To determine the sufficient number of simulation
to obtain statistically steady results for all exper-
imental configurations, we first repeat the simu-
lations 107 times with randomly-selected initial
seeds. Figure 4 shows an example of IC model
with 1 initial random seed. We observe that the
average proportion of infection stabilizes around
5 after 10* simulations. Therefore, here and here-
after, all the simulations are repeated at least 10%
times unless specified otherwise.

4.2 Initial Seed Selection Heuristics with
Ground-Truth Community

Figure 5 shows the result of the IC model
with three different heuristics—the degree cen-
trality, Eigenvector-centrality, and PageRank
heuristics—based on the whole graph or sub-
graphs. We also plot the result with the initial
seeds from M3 algorithm and with the randomly-
selected initial seeds as baseline. With the whole
graph, the degree-centrality heuristics performs
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Figure 5: Independent Cascade model

better than the PageRank heuristics, and the
Eigenvector-centrality heuristics influences least
nodes. All the three heuristics perform much bet-
ter than the baseline.

For the degree-centrality heuristics, the M1 result
is only half of the one from the whole graph. As
discussed in section 4.1, there are large amount
of edges pointing outside the community. There-
fore, the node with the highest degree in a com-
munity does not have to have the highest degree
in the whole graph. For the PageRank heuristics,
the M1 result is very similar to the whole graph
result. It implies that for the PageRank heuristics,
the M1 result is a good estimation for the whole
graph. For the Eigenvector-centrality heuristics,
interestingly, the M1 result significantly outper-
forms the result from the whole graph. We be-
lieve that the result can only be understood by
checking the properties of the selected nodes,
which can be part of the future work. With the
M3 algorithm, the result only outperforms the
Eigenvector-centrality heuristics with the whole
graph and the baseline. For all the M1 results,
when the number of initial seeds is greater than
15, the number of the influenced nodes increases
significantly as the number of initial seeds in-
creases comparing to the case when the number
of initial seeds is less than 15. This phenomenon

shows that the size of a community is not the only
important factor to the influenced set. It is im-
portant to wisely select the communities to apply
heuristics to have the largest influence.
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Figure 6: Linear Threshold model

Figure 6 plots the result of the LT model. For the
result based on the whole graph, the variation of
the result is similar to the one of the IC model,
whereas the scale is different.

The comparison of the whole graph result and
the M1 result shows that the M1 result of the
Eigenvector-centrality heuristics is much better
than the one of the whole graph, whereas the
M1 results of both the degree-centrality and the
PageRank heuristics are not. The behavior of the
M3 algorithm is similar to that of the IC model.

In figure 6, we also plot the M2 result of the
degree-centrality heuristics and the PageRank
heuristics. Compared to the M1 result, the M2
algorithm slightly improves the result. However,
the improvement is limited and there is still large
different from the best result (i.e., the degree-
centrality heuristics and the PageRank heuristics)
of the whole graph.

Similar to the IC model, for all the M1 and M2 re-
sults, when the number of initial seeds is greater
than 9, the number of the influenced nodes in-
creases significantly as the number of initial
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seeds increases comparing to the case when the
number of initial seeds is less than 9.

In summary, both the M1 and M2 algorithms
have potential to find good initial seeds only
based on the local community information. For
example, the M1 Eigenvector-centrality heuris-
tics result outperforms the result of the whole
graph and the result of the M1 PageRank heuris-
tics with the IC model can be similar to the whole
graph one.

4.3 Community Selection Heuristics

In this section, we study the influence result
based on the algorithms described in section 3.2.
That is,

1. We first build up two “community” net-
works with the M4 and M5 algorithms, re-
spectively.

2. Secondly, we apply the degree-centrality to
the “community” networks built in step 1
and select the top communities.

3. Then, We build up local community sub-
graphs with the M1 and M2 algorithms de-
scribed in section 3.1.

4. Finally, we apply the degree-centrality
heuristics, the Eigenvector-centrality heuris-
tics, and the PageRank heuristics to the se-
lected local community sub-graphs to select
initial seeds for influence simulation.

To avoid confusion, we use the following nam-
ing rules. If a “community” graph is built
with the M4 algorithm and a local commu-
nity graph is built with the M1 algorithm, we
name the result as “M4M1” result. So we have
“M4M1”, “M4M2”, “M5SM1”, and “M5M2” al-
gorithm combinations.

Figure 7 shows the variation of the averaged in-
fluence number of the M4M1 and M5MI1 algo-
rithms with the number of initial seeds. For

—&— M1, Degree M1, Eigenvector —@— M1, PageRank

--8-- M4MI, Degree M4MLI, Eigenvector --8-- M4M1, PageRank

- M5MI, Degree MS5ML, Eigenvector -~ M5MI1, PageRank
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15000+

10000+

5000+

avg num of nodes infected
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num of initial seeds
Figure 7: Variation of the averaged influenced
node number of the M1, M4M1, and M5MI1 algo-

rithms with the number of initial seeds. The local
community is built up with the M1 algorithm.

comparison purpose, we also plot the M1 result.
When the number of initial seeds is small, the re-
sult is similar among the M1, M4M1, and M5M1
algorithms. When the number of initial seeds
is large, the difference is obvious. For both the
degree-centrality heuristics and the Eigenvector-
centrality heuristics, the M4MI1 result is similar
to the M1 result, whereas the M5M1 algorithm
performs much better than the other two. Fig-
ure 8(a) shows the size of the influence set of
the M1, M4M1, and M5M1 algorithms, when
the number of initial seeds is 30. The compar-
ison between the results of the M1 and M5M1
algorithms shows that the M5SM1 result improves
the influence size by about 30% in the degree-
centrality heuristics and the PageRank heuristics
and by about 12% in the Eigenvector-centrality
heuristics.

Figure 9 shows the variation of the averaged
number of influence nodes of the M4M2 and
MS5M2 algorithms with the number of initial
seeds. For comparison purpose, we also plot the
M2 result. When the number of initial seeds
is small, the result is similar among the M2,
M4M2, and M5M2 algorithms. When the num-
ber of initial seeds is large, the difference is ob-
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Figure 8: Number of the influenced nodes for the
LT model with 30 initial seeds

vious. For both the degree-centrality heuristics
and the Pagerank heurstics, the M5M?2 algorithm
perform the best, and the M4M2 algorithm per-
forms better than the M2 algorithm. As shown in
figure 8, when the number of initial seeds is 30,
compared to the result of the M2 algorithm, the
M5M2 algorithm improves the influence size by
about 30% in both the degree-centrality heuristics
and the PageRank heuristics.

In summary, the M5M?2 algorithm outperforms
the M1, M2, M4M1, M5M1, and M4M2 algo-
rithms. This results shown in the present re-
port provides the evidence that by improving the
heuristics to select communities, an algorithm de-
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--8-- M4M2, Degree --8-- M4M2, PageRank
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Figure 9: Variation of the averaged number of the
influenced nodes of the M2, M4M?2, and M5M?2
algorithms with the number of initial seeds. The
local community is built up with the M2 algo-
rithm.

signed in the present project to select initial seeds
may reach comparable or better results as the al-
gorithm based on the whole graph. Although the
result of the M5M2 algorithm still has some dis-
tance to the influence results of the high-degree
centrality heuristics and the PageRank heuristics
based on the whole graph, which are the best re-
sult of the LT model, the present work shines
a light on the proposed algorithm. Since both
the “community” graph and the local commu-
nity sub-graph is much smaller than the whole
graph, the running-time and memory of the initial
seed selection heuristics can be improved signifi-
cantly. Such algorithm also uses the ground-true
community information which mimics the infor-
mation spreading in the online social network.

5 Conclusion and Future Work

In the present project, we proposed and stud-
ied the algorithms to use ground-true commu-
nity information to select initial seeds for influ-
ence maximization problem. The philosophy of
the algorithms is to first select the “influential”
communities, then build local “community” sub-
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graphs with the nodes in or close to the commu-
nity, and finally select the initial nodes from the
“community” sub-graphs. We proposed 2 algo-
rithms to build up local “community” sub-graphs,
i.e., the M1 and M2 algorithms (section 3.1). We
proposed 3 ways to select “influential” communi-
ties. One is based on the size of community, and
the other two are the M4 and M5 algorithms (sec-
tion 3.2). In addition to the above algorithms, we
also propose to select initial nodes based on the
number of communities they belong to.

By applying the proposed algorithms and com-
paring their performance, we conclude that by
improving the heuristics to select the “influen-
tial” communities, the influence set can be im-
proved significantly. Although the result we ob-
tained still has some distance to the best result
of the whole graph, the present study encourages
future work to apply more algorithms of various
centrality definitions for weighted graph to im-
prove the aggregated influence.

Due to the time and computational resource lim-
itation in the present project, we only apply
the degree-centrality heuristics on both the un-
weighted “community” graph (built by the M4 al-
gorithm) and the weighted “community” graphs
(built by the MS5 algorithm). Opsahl et al.
[2010] proposed the definition of degree, close-
ness, and betweenness centralities for weighted
graph. Their algorithms involve a tuning param-
eter for various research purposes. Applying the
algorithms proposed in Opsahl et al. [2010] is one
good direction to go in the future.

6 Contributions

XG : Coming up with the algorithms, coding up
the algorithms, running experiment, writing
up the report

NCC : Running experiment, plotting graphs dur-
ing data analysis, revising the report
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