Users and Pins and Boards, Oh My!
Temporal Link Prediction over the Pinterest Network

Amani V. Peddada
Department of Computer Science
Stanford University
amanivp@stanford.edu

Abstract

In this project, we are interested in performing tempo-
ral link prediction over the uniquely structured social
network underlying the on-line content sharing ser-
vice Pinterest. Utilizing a newly released Pinterest
dataset, we aim to predict “follows” and “pinned”
relationships between user-board and pin-board node
pairs, respectively. To accomplish this goal, we ex-
amine the efficacy of both proximity-based and su-
pervised learning solutions, and propose a novel ap-
proach that takes advantage of the temporal struc-
ture of the Pinterest graph while integrating standard
techniques used in link prediction. QOur results are
notable, with our trained models over temporal fea-
tures obtaining substantial performance in predicting
both types of relationships in the network. Our mod-
els additionally exhibit the ability to abstract transi-
tive edges between unrelated nodes, thus indicating
an understanding of higher-order relationships in the
graph. We believe our findings are significant, and
we look forward to continued research in this area.

1 Introduction

Link prediction is a remarkably rich and diverse do-
main in network analysis. It is uniquely challeng-
ing because it necessitates that computational mod-
els obtain a deep abstraction of local and long-range
nodal interactions over time. There a tremendous
number of applications associated with this domain,
from enhancing recommendation systems, to mod-
eling gene interactions, to discovering latent inter-
actions between unrelated members of communities.
Additionally, the ability to predict network structure
at an arbitrary point in the future is highly pertinent in
other networking challenges, including, but certainly
not limited to, modeling the natural evolution of net-
works, graph completion, and forecasting the effects
of a viral event or major network cascade.

We can now broadly frame the challenge of link
prediction as follows: Given a snapshot of a graph
G =< V,E > at time t, can we predict what new
links are formed between ¢ and ¢/, where t’ > ¢?

Lindsey Kostas
Department of Computer Science
Stanford University
Ilmkostas@stanford.edu

There are several key challenges associated with this
problem. A sophisticated model, for instance, must
be sensitive to local interactions between individual
nodes while being cognizant of the overall structure
of the graph. It must also be responsive to different
timescales and the rate of edge formation — a Pinter-
est user, for instance, may not follow a certain board
in the next day, but may perhaps do so in the next
week. Such a model must additionally be robust to
outliers and must elegantly handle the inherent prob-
lem of class imbalance, where we often have more
pairs of nodes that are disconnected rather than con-
nected.

In this project, we present, to the best of our knowl-
edge, the first publicly accessible approach to inves-
tigate link prediction over the graph underlying the
increasingly popular Pinterest social network. In par-
ticular, we define a novel, unified approach that in-
tegrates the temporal information of the graph with
link prediction techniques specifically suited for the
Pinterest data. Our challenge however differs from
the standard link prediction problem in a number of
ways. First, our network is not static, we are inter-
ested in how the network changes over time, and how
the addition/removal of edges in the network affects
the probability that two nodes will be linked. Second,
we have many layers of interactions and nodes in our
graph — we have separate classes of nodes for boards,
pins and users, as well as separate edges for the rela-
tionships between these three entities. Finally, there
is a unique structure to our graph, where, for instance,
all edges have exactly one board as an endpoint, and
there are never edges between nodes of the same type.
Coming up with an algorithm that is sensitive to all of
these defining features is thus key.

2 Previous Work

Though, as mentioned, there are no published exam-
ples of link prediction over the Pinterest social net-
work, a significant amount of prior work has been
published across the domain of link prediction as a
whole. In general, there are two main classes of link

prediction techniques: proximity-based methods and
learning-based methods (Li et al., 2015). A selection
of pertinent works from these areas is detailed below.

2.1 Proximity-Based Methods

The main motivation behind proximity-based ap-
proaches is the idea that the “closer” two unlinked
nodes are to each other, the more likely these two
nodes will eventually be linked in the future. These
methods generally rely on the topological structure or
associated meta-data of the graph to assign scores to
candidate pairs of nodes.

A key work in this area is Liben-Nowell and Klein-
berg’s seminal paper, which examines the efficacy of
various proximity based measures over co-authorship
networks extracted from arXiv (Liben-Nowell and
Kleinberg, 2007). To approach their problem, they
experiment with three types of scoring functions:
neighbor-based metrics, such as number of common
neighbors and the Adamic-Adar score; path-based
metrics, such as the Katz function and the length of
the shortest path; and matrix-approximation metrics,
which normally make use of low-rank versions of the
adjacency matrix as a form of noise reduction. Using
these methods, they obtain results that provide signif-
icant improvement over a random baseline, though in
absolute terms the overall performance is still coarse.
Some limitations to this paper are that each scoring
function is tested in isolation from the others, and
the authors do not take advantage of prior knowledge
of the particular structure of the co-authorship graph,
which we imagine would be useful information.

Unlike the previous approach, Soares et al. pro-
pose a proximity-based method that relies on the
temporal information of the network to calculate a
similarity score between pairs of nodes (Soares and
Prudéncio, 2013). They define a temporal event as
follows: given two consecutive frames of a graph
G and G441, a temporal event is an event occurring
between the two frames that affects the connected-
ness of any pair of nodes in the graph. They then
compute proximity scores as a summation over all
temporal occurrences seen during the transitions be-
tween frames in a given history. The results of ap-
plying this method to the arXiwv dataset showed that
the temporal-based model outperformed comparative
static-analysis link prediction systems, including the
common-neighbor, Adamic-Adar, and Jaccard Coef-
ficient estimates. They also demonstrated the intu-
itive property that more recent events have a larger
influence on node linkages than older ones. There
are several logical extensions to this method, such as
using topological and temporal proximity features to-

gether, as well as learning the weights for these scores
automatically instead of choosing score thresholds
manually.

2.2 Learning-Based Methods

Unlike proximity-based methods, which use hand-
crafted scoring functions to determine the relatedness
of two nodes, learning-based approaches automati-
cally learn the appropriate weights to assign to a set
of input features.

In Link Prediction using Supervised Learning
(2006), Hasan et al. formulate the link-prediction
problem as that of binary classification, where, given
a pair of nodes u, v, the goal is to determine whether
this instance belong to a positive or negative class,
where “positive” implies there is an edge between the
vertices, and “‘negative” implies otherwise. They train
a variety of classifiers, including SVMs, Multilayer
Perceptrons, Decision Trees, K-Nearest Neighbors,
and Naive Bayes models over the co-authorship net-
work, using features such as keyword overlap, sum
of papers published, clustering coefficient, and short-
est path distance. Their results demonstrate that su-
pervised approaches generally outperform proximity
measures alone, with their fine-tuned SVM with a
Gaussian kernel obtaining the highest performance.
The authors also note that bagging (ensembling clas-
sifiers) does greatly enhance the predictive power of
the models — the conclusion is that the feature selec-
tion is the bottleneck in accuracy rather than the clas-
sifiers themselves (Al Hasan et al., 2006).

Bliss et al. provide an alternative to the standard
learning-based methods described above by propos-
ing an evolutionary algorithm (Bliss et al., 2014).
They extract a set of 16 features from the Twitter so-
cial network, and use the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) as an optimization
strategy to learn a linear predictor. This method is es-
sentially a genetic algorithm that initializes weights
to random values, adds in mutations to get new candi-
date weights, and filters out candidates based on a fit-
ness function. Applying this procedure iteratively, the
authors find that an evolved predictor outperforms all
other combined and individual features on the train-
ing data, as well as other machine-learning methods
such as binary decision trees. Of course, one major
limitation is the assumption of linearity and suscepti-
bility to local optima — this assumption may not hold
over the Pinterest dataset, and it might be necessary
to use either neural nets or non-linear classifiers to
obtain reasonable performance.

In the final paper that we examine, Davis et al.
are concerned with performing link-prediction across

heterogeneous networks (Davis et al., 2011), where
the input graph has different types of nodes and
edges. Davis et al. approach this problem by pro-
pounding a multi-relational link approach (MRLP),
which essentially counts occurrences of different
types of triads, and probabilistically estimates how
likely a new edge between candidate pair u,v will
complete a triad of a certain type. These probabilities
form a score that can be used in unsupervised con-
texts or as features in a supervised algorithm. They
evaluate their method on three datasets: a YouTube
network consisting of users with five possible types
of relationships to other users; a Disease-Gene net-
work, with two node types and four types of inter-
actions between them; and a climate network with
seven distinct edge types. Although they do demon-
strate improvements with their method for both the
supervised and unsupervised experiments, these im-
provements are only marginal. We nevertheless be-
lieve that this method could be used as an inspiration
for our approach towards link prediction over Pin-
terest given the network’s heterogeneous nature. In
particular, this paper informs us that we must derive
features and models that are especially suited to the
structure of our network.

3 Technical Approach

In this section, we now describe the various method-
ologies that we apply to our task. In particular, we
first highlight the baseline proximity measures used
to perform basic link prediction, and then discuss
our more advanced method that utilizes temporal in-
formation. Section 4 describes our experiments and
evaluations, and Section 5 provides a more qualitative
analysis of our results.

3.1 Dataset

For our dataset, we make use of a subset of the
newly released Pinterest network kindly provided by
the CS224W course staff. The dataset contains all
food-related boards and pins created between Febru-
ary 2010 to December 2014 (thus spanning nearly
five years). The schema of the dataset is as follows:

Pinner: UserID. Count: 18.0M

Food Boards: BoardID, BoardName, Description,
UserID, CreatedTime. Count: 12.5M

Pins: CreatedTime, BoardID, PinID. Count:
736.0M
Follows: BoardID, UserID, CreatedTime. Count:
48.3M

As we can see, there are three distinct types of links
that we can infer from this data. The first is the (User
- Board) relationship, in which an edge extends from
a user to a board if the user follows that board. The
second is the (Board - User) link, which occurs when
a board has been created by a user. Finally, there are
(Pin - Board) edges, which describe if a pin has been
attached to a particular board (note that a single pin
can be attached to multiple boards). Since a board
can only have one ’create’ edge extending from it —
which is formed upon the insertion of the board into
the graph — we only concern ourselves with predicting
"follows’ and "pinned’ links in the graph.

To understand the structure of the data, we have
produced plots of the degree distribution of boards
for the two relevant edge types:

Frequency of the Number of Pins per Board

01s

apogpofreauency Distribution of the Number of Users Following a Board

| 8000000
oof| 7000000
\ 6000000

\ 2 5000000

ool \ £ 4000000

e 3000000
2000000
002
1000000

000 e o
10 £ 30 a 50 &0 K 060 4000 6000 8000 10000 12000 14000
d Users per Board

Figure 1: Distribution of pins per board (left) and
users following a board (right).

As we can see, there are approximately 15 pins per
board, and sometimes several thousands of users fol-
lowing a single board. To gain a better insight into the
temporal structure of our data, we plot the change in
the amounts of user activity and new board “follows”
on a quarterly basis:

Pinterest Board Creation

80000 — Pinterest User Activity

70000

5000000
60000

§ aa00000
50000 H

ds Created

g 40000 £ 3000000

30000 H
$ 2000000

Number of Be

20000

1000000
10000

0

o

Figure 2: Number of new boards and new user activ-
ity over time.

As we can see, beginning in the first half of 2013,
Pinterest begins to grow very active, which makes it
a useful time period for analysis.

3.2 Constructing the Graph and Data

One of the key components of our project is finding
a sensible and appropriate representation of the Pin-
terest network for our models. We ultimately decide

to build an undirected and unweighted graph, since
this will allow us to run a variety of standard link pre-
diction models and compare their results more effec-
tively. In section 3.5, we explore an alternative repre-
sentation that yields some interesting insights.

Given this undirected network representation (,
we now would like to define a training and testing set
over which to evaluate our models. Let us first define
time intervals #g, t1, t2, t3, such that £y < t1 < tg9 <
ts. Let us then define the graph Giin =< V, E >
as the set of nodes and edges created during the train-
ing interval Ti.in = [to,t1]. Let us also define Gieg
over time period Tiee = [t2,t3] as a set of nodes
V! =V and a set of edges E’ formed over Ticy, such
that Ve € E', e ¢ E. Our goal is to predict mem-
bers of E’ given Gy,in. An important note to make
here is that we are ignoring the arrival/removal of any
nodes between the training and testing graphs — as
in (Liben-Nowell and Kleinberg, 2007), we thus only
predict links that form between existing nodes.

Given G, and Gy, we then sample pairs of
nodes from Giin and Ge that serve as training and
testing examples, respectively. To construct a train-
ing set Xain = [(u1,v1),- - -, (Un,v,)] of n exam-
ples, we sample n/2 positive and n/2 negative ex-
amples from Gy, Where a pair is given a positive
label if an edge exists between its constituent nodes,
and a negative label otherwise. To construct a test-
ing set Xies Of m examples, we sample m /2 positive
examples, where (u,v) € E’ and (u,v) & Xirain.
We also sample m/2 negative examples, where each
(u,v) that is chosen satisfies (u,v) ¢ E', (u,v) ¢ E,
and (u,v) ¢ Xirain.

3.3 Extracting Proximity Features

Once we have constructed a list of training and test-
ing examples for our models, the next step is to ex-
tract a set of scores or features. That is, for every
example node pair u, v, we compute a scoring func-
tion f(u,v). We can use these feature functions indi-
vidually as independent scoring functions, or we can
learn weights over their values that will allow more
nuanced predictions. In this section, we thus define
several of these basic feature/scoring functions we
use in our experiments.

e Number of Common “Neighbors™ This feature
as originally formulated is not well-defined over
the bipartite-like structure of the Pinterest network.
That is, users and boards, and pins and boards, can
never share common neighbors. To rectify this, we
can define an approximate neighborhood for node
u as all vertices that are of length 2 away from u —

then we can apply the metric as usual by comput-
ing the intersection of this set with direct neighbors
of v.

e Preferential Attachment The product of the num-
ber of immediate neighbors of u and v. The intu-
ition behind this feature is that the higher the de-
gree of the two nodes, the more generally likely it
is that they will be connected in the future.

e Shortest Distance The shortest possible distance
between u and v on the graph.

e Number of paths of length 3 Length 3 is a special
value since it is the minimum number of links that
a user or pin must traverse to reach an unconnected
board. We thus expect that the more number of
short paths that exist between a pair of candidate
nodes, the more likely it is that they will eventually
be connected.

e Jaccard Coefficient Measures the similarity of
two nodes u and v by the proportion of the neigh-
bors of u who have interacted with the same node
v (and vice versa).

e Adamic-Adar measure Formalizes the notion that
nodes which share a common neighbor of low de-
gree are more similar than nodes that share a com-
mon neighbor of high degree. Calculated by sum-
ming the inverse of the degree of the common
neighbors z of nodes v and v (where we use the
definition of “common neighbor” earlier).

e Mean of Neighbor Degrees Finds the average de-
gree of u’s neighbors, the average degree of v’s
neighbors, and sums them.

e Standard Deviation of Neighbor Degrees Finds
the standard deviation of degrees of u’s neighbors,
and the standard deviation of degrees of v’s neigh-
bors, and sums them.

¢ Page Rank Sum Measures the probability that two
nodes u and v will be reached on a random walk
through the network.

e Eigenvector Centrality Sum Characterizes the
global prominence of a node by ranking a node by
recursively computing the centralities of its neigh-
bors (Bonacich, 2007). For a node pair u, v, we use
the sum of their centralities as a score.

Note that for all features that we utilize in our models,
we modify them to have unit mean and a standard de-
viation of one, as is standard in many machine learn-
ing problems.

3.4 Dynamic Temporal Feature Extraction

While we expect our basic proximity feature func-
tions to perform fairly well as a baseline, they ig-
nore the inherent temporal structure associated with
the Pinterest network, which we imagine would be
strongly correlated with process of link formation.
One of our key contributions in this paper is thus
defining a unique method of appropriately integrating
this temporal information into our models.

Inspired by the work of (Soares and Prudéncio,
2013), we pursue a method that calculates the evo-
lution of the topological structure of the graph over
time. Intuitively, this process computes the rates of
change of different characteristics of the Pinterest
network. We expect, for instance, if the shortest dis-
tance between two nodes is rapidly decreasing, then
eventually an edge is likely to form between them.
We can thus use this knowledge to build more nu-
anced feature representations for candidate pairs of
nodes.

We can now more formally summarize our ap-
proach as follows: We begin by taking our graph
Glrain, and partitioning it into n intervals of time:
[G(), Gl], [Gl, Gz], ceny [Gn—l, Gn], where Gn =
Gain. Each interval contains the same set of nodes,
as well as all edges formed prior to and during this
interval. Let us also assume that we have a set of
proximity functions f1, fa,..., f- (such as those we
defined earlier), where each f accepts a graph, a pair
of nodes, and returns a corresponding score. For each
interval [G;, Gj+1] and for each f;, we compute the
following for a candidate node pair ug, vy:

0ijk = fi(Giy1, vk, vi) — fi(Gs, ug, vi)

This value is then appended to the feature vector for
ug, Vg We thus iterate this process for every pair of
nodes, every feature function, and across the different
time intervals. For training, we extract these features
over the first n — 1 intervals, and then train classi-
fiers to predict the edges formed during the last in-
terval [G,—1,Gy]. In order to keep dimensionality
of the feature vectors constant between training and
testing, this means that during testing we must sam-
ple features from intervals [G1, G to [G,—1, G,] of
the training set. Thus, if we utilize 7 scoring func-
tions, the feature vector for each node pair will have
dimension r - (n — 1). A visual summary of our ap-
proach can be found in Figure 3.

We note that our approach is fundamentally dif-
ferent than that described in (Soares and Prudéncio,
2013). In particular, Soares et al. compute a single

train

N
\

N\ >

Training Features

Testing Features

Figure 3: Dynamic Temporal Feature Extraction. Our
training features are changes in topological features
over the first n — 1 time intervals of the training set,
and the testing features are similarly extracted from
the last n — 1 intervals of the training set.

scalar that is the sum of edge formations and removals
in a node’s immediate neighborhood over time. Our
approach, on the other hand, computes changes in
higher-level quantities over time across the graph, and
instead of simply summing over these values, we con-
catenate them into a feature vector so as not to lose
any information in the process. Thus, we expect that
our feature vectors will be more replete with valuable
information for our classifiers.

3.5 Models

In this section, we now describe the models that we
use to actually predict link formation given our ex-
tracted features.

The most straightforward approach to integrate the
information from our proximity functions is to sim-
ply apply each metric individually to every candidate
pair of nodes in the test set, and produce a ranked list
L, by sorting the scores. This method takes inspira-
tion from the work of (Liben-Nowell and Kleinberg,
2007), where after producing the ranked list, we se-
lect the first | E’| candidates as our predictions. This
method thus uses each feature in isolation, and, as
Liben et al. mention, the absolute performance of
these simple proximity based functions will be quite
coarse — but they still serves as a reasonable baseline
for our experiments.

A more logical approach is to concatenate all of the
scoring functions from section 3.3 into a single fea-
ture vector for each example node pair, before feed-

Gml

ing these vectors into our models, which can then be
trained to output positive and negative labels appro-
priately. Of course, we can simply input the tempo-
ral features from section 3.4 into our classifiers di-
rectly. The key models we utilize in this experiment
are shown below.

o Logistic Regression The first supervised approach
that we apply is a max-entropy classifier, where
our goal is to fit a function of the form h(z) =

m to the data.

¢ Random Forest A random forest is a collection of
decision trees where each tree is trained on a ran-
dom subset of the data. As an ensemble approach,
random forests are especially robust to overfitting,
making them useful for our potentially noisy, real-
world data (Liaw and Wiener, 2002). In this paper,
we use a random forest comprised of 100 decision
trees.

e K-Nearest Neighbors Our third model is the KNN
algorithm, which examines the & = 5 training ex-
amples that are closest in Euclidean distance to a
query point’s feature vector, and outputs the major-
ity label. KNN typically performs well with low-
dimensional, hand-chosen features, so we expect
that it might be well-suited to our task.

o Artificial Neural Network (ANN) One of our
more advanced classifiers that we experiment with
is a three hidden-layer artificial neural network,
with 100, 50, and 50 nodes in each of the hidden
layers, respectively. We use tanh non-linearities
between each layer, and a softmax classifier at the
head of the network. Given the recent effective-
ness in a large range of discriminative tasks of this
model, we expect that it will likewise be useful for
link prediction.

e Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) As described in section 2.2, Bliss
et al. define a unique learning approach that uses
a genetic algorithm to efficiently find weights over
proximity features extracted from adjacency matri-
ces. There are two useful properties of this algo-
rithm — it is remarkably efficient in comparison to
standard machine learning classifiers, and the mag-
nitude of the weights that are learned have a direct
correlation with the usefulness of the individual in-
put features for prediction — therefore yielding im-
portant qualitative insights.

The method works as follows: we begin by select-
ing a random initially weight vector w. We then
repeat the following process. For [V iterations:

-~
@ User =
Board //

Figure 4: Coverting the Pinterest graph into a set of
indirectly connected networks for transitive edge pre-
diction.

— Generate a set of ' candidates by adding
“mutations” to different elements of w. These
mutations simply take the form of random,
scaled Gaussian noise added to the individual
elements of w.

— For each candidate, produce a list of predic-
tions over the training set and then compute
a “fitness” score — in our case, we simply use
the number of examples they classified cor-
rectly in the training set.

— Choose the candidate with the highest fitness
as our new weight vector w, and repeat.

3.6 Exploring Transitive Edge Prediction

As an interesting extension to our project, we inves-
tigate the effectiveness of our models in predicting
higher-level, indirect relationships in the graph. In
particular, we realize that the Pinterest graph G can
in fact be broken up into three weighted “component™
graphs User (U), Board (B), and Pin (P), where each
graph consists of one type of node (See Figure 4).

In this formulation, we specify a user graph U,
where two nodes are connected if and only if they
follow at least one common board — the weight of the
edge between them is the number of boards they fol-
low in common. Likewise, two pins in graph P are
connected if they are pinned to at least one common
board. Lastly, two boards in B are connected if they
share at least one common follower.

We see that this is an inherently interesting set of
graphs, since their connectedness somehow reflects
the “homogeneity” of the network — that is, the more
well-connected the graph becomes, the more similar

Table 1: Proximity-based results on the testing set of the original graph

Com. Neigh. | Pref. Attach. | Shortest Dist. | Len. 3 Paths | Jac. Coeff. | Adamic-Adar | Avg Neigh. Deg. | Std. Dev Neigh. Deg. | PRank Sum C]iir?terl.“éfl.n
“Follows” 0.631 0.550 0.620 0512 0.621 0.680 0.072 0.05 0.51 0321
“Pinned” 0.712 0.691 0.721 0.522 0.670 0.651 0.153 0.101 0.612 0.511

Table 2: Supervised results for link prediction with standard features on the original graph.
“Follows” Edge “Pinned” Edge
Metric Accuracy | Precision | Recall F1 Accuracy | Precision | Recall F1
KNN 0.7274 0.8402 | 0.5616 | 0.6732 0.8220 0.7997 0.8592 | 0.8283
Logistic Regression | 0.7188 0.7052 | 0.7520 | 0.7278 0.8390 0.8478 | 0.8264 | 0.8369
Random Forest 0.7674 0.7669 0.7684 | 0.7676 0.4996 0.4997 0.9992 | 0.6663
3-Layer Neural Net 0.7412 0.7199 0.7896 | 0.7531 0.8532 0.8757 0.8232 | 0.8487
CMA-ES 0.6578 0.6802 | 0.5956 | 0.6351 0.8468 0.9109 0.7688 | 0.8338
Table 3: Supervised link prediction with temporal features over the testing set.
“Follows” Edge “Pinned” Edge
Model + Temp. Feats | Accuracy | Precision | Recall F1 Accuracy | Precision | Recall F1
KNN 0.7938 0.8044 | 0.7764 | 0.7901 0.7380 0.7418 0.7300 | 0.7358
Logistic Regression 0.7103 0.6790 | 0.7977 | 0.7336 0.8434 0.9165 | 0.7556 | 0.8283
Random Forest 0.5437 0.5259 0.8863 | 0.6601 0.8564 0.9163 0.7844 | 0.8452
3-Layer Neural Net 0.6664 0.6435 0.7460 | 0.6909 0.7738 0.7488 0.8240 | 0.7846
CMA-ES 0.7358 0.9429 | 0.5020 | 0.6551 0.7714 0.9051 0.6064 | 0.7262
Table 4: Proximity based methods over the indirect graphs.
IS:iI;l.l Pref. Attach Sh]());':test Len. 3 Paths | Jac. Coeff | Adamic-Adar | Avg Neigh. Deg. | Std. Dev Neigh. Deg | PRank Sum C]ilfterméeucm
Users | 0.571 0.534 0.421 0.534 0.422 0.591 0311 0.432 0.522 0.201
Pins | 0.542 0.597 0.399 0.522 0.523 0.622 0412 0.417 0.533 0.521
Boards | 0.512 0.571 0.310 0412 0.481 0.562 0373 0.390 0.452 0.461
Table 5: Link prediction over the indirect graphs with supervised methods.
User-User Pin-Pin Board-Board
Metric Accuracy | Precision | Recall F1 Accuracy | Precision | Recall F1 Accuracy | Precision | Recall F1
KNN 09022 | 0.8380 | 0.9972 | 09107 | 0.8874 | 09287 | 0.8392 | 0.8816 | 0.7678 | 0.8950 | 0.6068 | 0.7232
Log. Regression | 0.8958 | 0.8201 | 0.9973 | 0.9054 | 0.8868 | 0.9340 | 0.8324 | 0.8802 | 0.5120 | 0.5321 | 0.9899 | 0.6789
Random Forest 09024 | 0.8383 |0.9972 [0.9109 | 0.8966 | 09312 | 0.8564 | 0.8922 | 0.5301 | 05211 | 0.9791 | 0.6667
5-Layer Neural Net | 0.9044 | 0.8413 | 0.9968 | 0.9125 | 0.8766 | 0.9250 | 0.8196 | 0.8691 | 0.5884 | 0.5519 | 0.9401 | 0.6955
CMA-ES 08960 | 0.8293 | 0.9972 | 0.9056 | 08772 | 0.9686 | 0.7796 | 0.8639 | 07524 | 0.9055 | 0.5636 | 0.6948

are the nodes involved. Predicting links at this level of
abstraction thus provides a slightly more global view
of network movements as a whole. Thus, as a sep-
arate experiment, we apply some of the features and
models described above to each of the three graphs,
which are likewise separated into training and test-
ing graphs over the given time interval. The features
we utilize in this case are the standard variations of
the feature functions mentioned in section 3.3 (e.g.
common neighbors refers to intersection of immedi-
ate neighbors, etc.).

4 Experiments and Results

For this project, we have implemented a complete
end-to-end pipeline that reads in the raw data, con-
structs training and testing graphs over a given
timescale, extracts features, and trains all of our clas-

sifiers over the data. We implemented Bliss’s CMA-
ES strategy, wrote optimized code for dynamic tem-
poral feature extraction, and also built the three types
of transitive networks P, B, U from the original
graph. We implemented everything ourselves using
SNAP and Python — our codebase can be found on
GitHub!.

One of the major challenges we encountered dur-
ing experimentation was handling the sheer size of
the dataset — parsing the four provided data files to
create a single graph takes several hours, and the re-
sulting graph is often so large that holding more than
a year’s worth of data causes out-of-memory errors
even on Stanford clusters. Additionally, running a
single experiment can take up to two days. Due to
hardware limitations, we thus use the edges and nodes

"https://github.com/classicCoder16/CS224W Project

formed in the first six months of 2013 as our data. We
then define Girin as the first four months of this data,
and the subsequent two months as Gieg;.

We sampled a total of 20,000 positive and negative
examples from Gp,in, and tested on 10,000 examples
drawn from Gg. For each edge type we aim to pre-
dict, we train only on instances of that edge type. For
temporal feature extraction, we used n — 1 = 5 pre-
vious time intervals to build our feature vectors.

To evaluate the performance of our classifiers, we
utilize accuracy, precision, recall, and F) metrics.
To evaluate our proximity functions, we simply use
F score, since evaluating these methods, as noted
in (Liben-Nowell and Kleinberg, 2007), requires that
we know the number of positive examples in the test-
ing set, and the other metrics are thus not informative.
Our results are shown in tables 1 through 5.

5 Discussion

As we can see, all of our models perform reasonably
well over the given data, with many methods sur-
passing the performance of a random baseline. We
first observe that our basic proximity functions obtain
fair performance in predicting individual link forma-
tion. Interestingly, the scoring functions that take ad-
vantage of the unique bipartite-like structure of the
Pinterest graph seem to perform optimally, such as
our modified Common Neighbors approach and new
Adamic-Adar measure. In contrast, the more stan-
dard functions such as Average Neighbor Degree do
not fare well over this network — thus, deriving fea-
ture functions that are sensitive to the anatomy of the
Pinterest graph is important.

Lending further credence to our methods, our clas-
sification models are able to effectively combine
these different feature functions to achieve consider-
able accuracies. In particular, the random forest and
neural network seem to perform consistently well,
with the neural network obtaining an impressive I
score of (0.8487 on “pinned” edges, and the random
forest obtaining 0.7676 on “Follows” edges over stan-
dard features. However, Bliss’s evolutionary algo-
rithm, while comparable to the other models we ex-
perimented with, did not provide the increase in per-
formance we expected. We do find, though, that the
major benefits of this algorithm are more so its ease
of interpretation and quick training times rather than
sheer predictive power.

One thing we do notice from our results is that
“follows” edges are seemingly much more difficult
to predict than “pinned” edges, across almost all fea-
tures and classifiers. This perhaps makes intuitive
sense as users may be highly selective in choosing

which boards they would like to follow, where as
pins can rapidly be re-pinned onto different boards
without as much inherent filtering. Perhaps incorpo-
rating meta-data and specific user information could
improve results for these types of edges. One inter-
esting thing we do observe though is that our features
are actually seemingly expressive enough to discrim-
inate between “follows” and “pinned” edges. To see
this, we can run t-Sne (Maaten and Hinton, 2008) on
the feature descriptions of pinned and follows edges
in the testing set. The result is shown below, where
we can see that there is somewhat of a distinction be-
tween the two types of edges:

-5

10} *

e®e Pinned
ses Follows
.15 "

=15 -10 =5 0 5 10 15

This implies that the specific topological features of
an edge varies with the specific type of the edge.

We now note from our results that, as expected,
our temporal features appear to be very effective in
our link prediction problem. In particular, our KNN
algorithm over temporal features achieves the highest
F score for “follows” edges across all feature and
classifiers, and the random forest over these features
produces the second highest F; for “pinned” edges.
Though the gain in performance is marginal, we be-
lieve our results are quite promising, and that our dy-
namic temporal feature extraction, with some param-
eter tuning, will be able to obtain superlative accura-
cies. One simple way to boost performance would be
to concatenate the standard feature vectors with the
temporal ones, while training on a larger number of
training examples to balance the increase in dimen-
sionality.

In order to examine the relationship between time
and prediction accuracy, one interesting visualization
we can produce is a heat-map of the weights learned
by Bliss’s classifier over the temporal features (darker
values are higher magnitudes):

L]

Bliss's Evolutionary AlgorithmFollows Feature Weights

0 10 20 30 40
Features (increasing with time)

Bliss's Evolutionary AlgorithmPinned Feature Weights

) 10 20 30 40
Features (increasing with time)

Intuitively, we see that the weights learned by
Bliss’s algorithm show that more recent features for

“follows” edges have a slightly higher weight than
those in older time periods — thus, the recent activ-
ity of a user or board determines whether a “follows”
relationship will be formed, and if we trained on a
larger timescale, we would most likely notice an even
sharper gradient of weight magnitudes. However, we
also notice that the weight is more uniformly spread
out for “pinned” edges, suggesting that these edges
are not sensitive to historical changes in graph struc-
ture, and that re-pinnings are perhaps more random
or spontaneous formations.

One qualitative fact that is useful to know is the
type of misclassifications that our models frequently
make. In particular, we can look at the false positive
and negative classifications to gain an insight into our
models’ learning and predictions. We first examine
the a few misclassifications made by the neural net-
work on non-temporal features, shown below (false
postives on top, and false negatives on bottom):

10° Shortest Paths Between False Positive Pinned Edges

102

Number of Edges

1 2 3 4 5 6 7 8 9
Shortest Path

10 No Path

Shortest Paths Between False Negative Follows Edges

102

Number of Edges

1 2 3 4 - 6 7 8 9
Shortest Path

10 No Path

Note how false positives are almost exclusively
made of short-path candidate pairs, where as false
negatives have a significant fraction of pairs of nodes
that have no path between them. These results fol-
low intuition in that our models essentially only con-
nect nodes that are close together. In order to address
these mis-classifications, it might be useful to pursue
a more careful sampling procedure for training exam-
ples. In particular, we should extract negative exam-
ples that are graphically close to each other, and pos-
itive examples that, when disconnected, are far from
each other on the graph. This sampling would thus
allow our models to generalize better.

Finally, we note that our algorithms achieve con-
siderable performance on the indirect graphs consist-

ing of nodes of the same type, obtaining F scores as
high as 0.9125. This fundamentally implies that we
are able to both identify relationships between each
of these homogeneous entities independent of other
network activity while providing interesting insight
into the true structure of Pinterest. Additionally, the
ability to predict associations within these latent sub-
graphs has powerful implications for Pinterest in how
it manages the content it displays and recommends to
each user. Interestingly, predicting board-board rela-
tionships appears to be a more subtle problem than
prediction over user-user or pin-pin relationships —
perhaps because boards can often strongly overlap
in content, but users generally would like to follow
boards that are similar yet sufficiently different from
each other; predicting whether a pair of boards will
share a common user is thus fairly subtle.

6 Conclusion

In this paper, we have presented a novel approach to-
wards link prediction over the social network under-
lying Pinterest. We have investigated the effective-
ness of proximity-based and supervised algorithms,
and have defined scoring functions desigined to han-
dle the unique anatomy of the Pinterest graph. Our
dynamic temporal feature extraction obtains compa-
rable performance to our classifiers over standard fea-
tures on “pinned” edges, and obtains improved results
on the inherently more difficult “follows” edges. Ad-
ditionally, our ability to predict indirect graph con-
nections with respectable accuracy shows that our
models are capable of understanding higher-order re-
lationships in a graph.

7 Future Work

There are several directions that we could pursue for
the continuation of this project. First, we believe that
there is significant potential to be had with our dy-
namic temporal feature extraction. Perhaps one of
the most logical extensions is to use a sliding win-
dow approach — intuitively, our current method trains
on a single set of 5 previous graph transitions to pre-
dict edges formed in the next time frame. If we
could “slide” this window across different points of
the Pinterest network’s history — extracting training
examples over this window as we go — we might ob-
tain more generalizable results. This approach would
thus be akin to a bigram/trigram extraction used fre-
quently in text classification. We might also con-
sider changing the window size — our qualitative re-
sults demonstrate that more recent events are more
important in determining link prediction, so perhaps

a smaller window size would increase both accuracy
and efficiency.

Another key insight is that the entire Pinterest net-
work, with regards to a single candidate node pair,
can simply be represented as a vector time-series.
That is, we can discretize the entire network’s history
as a series of graph transitions, where each transition
is defined by a particular feature vector. A worth-
while extension would thus be to train a Recurrent
Neural Network (such as a Gated Recurrent Unit or
Long Short-Term Memory network) over this infor-
mation, given that RNNs have proven to be inher-
ently suited for forecasting events based on temporal
sequences. At each time step, we could simply input
the feature vector of the corresponding graph interval,
and train the RNN to predict node-pair connectivity.

Lastly, another significant extension would be to
utilize predictions at the indirect graph level as fea-
tures for link prediction on the original graph. That
is, if we believe that two users will ultimately follow
a common board in the future, this perhaps makes it
more likely that a given candidate (user, board) will
be connected in the eventual graph. If we could then
incorporate this knowledge into the link prediction
over the original network, we might be able to pro-
duce a more informed model.

In any case, we believe that there is much po-
tential for further (P)interesting developments in this
field, and we look forward to performing continued
research in this domain.

Acknowledgements

The authors would like to thank Jure Leskovec and
the rest of the CS224W staff for providing access to
the Pinterest dataset, as well as for their continued
guidance and advice during the course of the project.

References

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and
Mohammed Zaki. 2006. Link prediction using super-
vised learning. In SDM06: workshop on link analysts,
counter-terrorism and security.

Catherine A Bliss, Morgan R Frank, Christopher M Dan-
forth, and Peter Sheridan Dodds. 2014. An evolution-
ary algorithm approach to link prediction in dynamic
social networks. Journal of Computational Science,
5(5):750-764.

Phillip Bonacich. 2007. Some unique properties of eigen-
vector centrality. Social networks, 29(4):555-564.

Darcy Davis, Ryan Lichtenwalter, and Nitesh V Chawla.
2011. Multi-relational link prediction in heterogeneous
information networks. In Advances in Social Networks

Analysis and Mining (ASONAM), 2011 International
Conference on, pages 281-288. IEEE.

Zhepeng Li, Xiao Fang, and Olivia R Liu Sheng. 2015.
A survey of link recommendation for social networks:
Methods, theoretical foundations, and future research
directions. Theoretical Foundations, and Future Re-
search Directions (October 28, 2015).

Andy Liaw and Matthew Wiener. 2002. Classification and
regression by randomforest. R news, 2(3):18-22.

David Liben-Nowell and Jon Kleinberg. 2007. The link-
prediction problem for social networks. Journal of the
American society for information science and technol-

ogy, 58(7):1019-1031.

Laurens van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-sne. Journal of Machine Learn-
ing Research, 9(Nov):2579-2605.

Paulo RS Soares and Ricardo BC Prudéncio. 2013.
Proximity measures for link prediction based on tem-

poral events. Expert Systems with Applications,
40(16):6652-6660.

