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1 Introduction

In this paper we will be examining and ana-
lyzing the white matter structure of pre-teens
and adolescent individuals with autism spec-
trum disorder (ASD) as collected through dif-
fusion tensor imaging and developed with
tractography. Given the pivotal nature of axon
tracts on coordinating communication among
brain regions (Fields, 2008), and the inher-
ent network-like structure of these tracts, we
believe that network and graph analysis may
provide greater insight and understanding on
the relationship between ASD and white mat-
ter structure.

More specifically, we will be examining the
neural networks of 52 subjects with ASD and
43 under typical development (TD) as unique,
weighted, undirected graphs, with nodes be-
ing brain regions and edges being the exis-
tence and number of neural connections be-
tween these regions. Our initial focus is on
understanding various features of these re-
gions and their interconnections, including
centrality and clustering. Our ultimate goal
is to highlight any significant differences be-
tween the two subject groups and tie our re-
sults back to current medical knowledge on
the relationship between ASD and white mat-
ter structure in the brain.

2 Related Work

2.1 DTI and Autism

Diffusion tensor imaging (DTI) tractography
is a technique used to represent white-matter
neural tracts in the brain — namely, axon
tracts and commissures. White matter has
an active effect on learning, self-control, and

mental illness, controlling the signals that
neurons share (Fields, 2008).

Autism spectrum disorder (ASD) is a group
of neurodevelopmental disorders with charac-
teristics that include impaired social cognition
and reciprocity, and repetitive, restricted be-
havior (NIMH, 2016; Lord et al., 2000).

There is evidence that a connection be-
tween ASD and abnormal white matter struc-
ture exists with studies on children and ado-
lescents with autism finding that disruption of
white matter tracts in white matter adjacent to
the ventromedial prefrontal cortices, in the an-
terior cingulate gyri and the temporopatietal
junctions may be implicated in impaired so-
cial cognition for individuals with with ASD
(Barnea-Goraly et al., 2004). Developmen-
tal studies of white matter in males suffering
from ASD has found that there is a reduc-
tion in the structural integrity of white mat-
ter (namely, lower fractional anistrophy near
the corpus callosum and in the right retro-
lenticular portion of the internal capsul) that
may underlie the behavioral pattern observed
in autism (Keller et al., 2007). However, it is
known that children suffering from ASD often
display an increase in postnatal head circum-
ference which may be caused by delayed and
prolonged myelination, which is the produc-
tion of white matter myelin sheath surround
nerve cell axons (Volkmar et al., 2005). Thus,
recent studies have been placing more atten-
tion on analyzing how the nature of abnormal-
ity in white matter integrity affects ASD be-
havioral phenomena, though most work has
been kept within the boundaries of biologi-
cal analysis of white matter fiber tracts (Pry-
weller et al., 2014; ACE, 2016). We believe
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Figure 1: ASD white matter structure from DTI tractography

that representing white matter structure as a
graph and using complex network methods
and measures to analyze information gathered
with DTI scans may help us gain further in-
sight as to how ASD is associated with white
matter formation and structure in the brain.

2.2 Brain Neural Network Analysis

The network structure of the brain is a pop-
ular topic of research and exploration. The
uses and interpretations of a wide array of
network measures and tools have been well
documented, including measures of segrega-
tion and integration, centrality, and resilience
(Rubinov and Sporns, 2010). Various map-
ping techniques, including functional mag-
netic resonance imaging, electroencephalo-
gram, magnetoencephalography, and suscep-
tibility tensor imaging, which capture dif-
ferent aspects of the functional or anatom-
ical structure of the brain, have been ana-
lyzed with various network tools and methods
(Sporns et al., 2007; Joyce et al., 2010). For
instance, eigenvector centrality has been used
to analyze connectivity patterns in temporal
fMRI data of the brain, with the authors con-
cluding that the tool is an effective and com-
putationally efficient tool for capturing intrin-
sic neural architecture at a voxel-wise level
(Lohmann et al., 2010).

An effort to evaluate the brain architecture
in autism does exist, with the Autism Imaging
Data Exchange consortium aggregating and
sharing over a thousand resting-state fMRI

datasets of male subjects with ASD and TD
(D1 Martino et al., 2014). However, the struc-
tural information captured by fMRI scans is
very different to that collected in DTI trac-
tography methods — while DTI tractography
attempts to reveal the white matter structure
of the brain, fMRI measures brain activity
through changes in blood flow (Matthews and
Jezzard, 2004). Functional MRI measures
and detects changes in blood flow and oxy-
gen metabolism, correlated with neural acti-
vation, in the brain, typically while an indi-
vidual is performing a specific behavioral or
cognitive task (Shirley et al., 2005). For this
reason, fMRI excels at localizing cortical ar-
eas specific to certain functions or behaviors.
On the other hand, DTI tractography targets
the ansiotropic nature of water diffusion to ex-
tract the white matter tracts in the brain. For
this reason, representing the results from DTI
tractography as a network is a more accurate
method of mapping the neural structure of the
brain than interpreting fMRI results.

Notably, while local decreases of grey mat-
ter, composed of neural cell bodies, neuropil,
synapses, capillaries, and glial cells, have
been found in individuals with autistic spec-
trum disorder (Waiter et al., 2004), little work
has been done in analyzing and comparing the
white matter structure of the brain of individ-
uals with ASD, despite the strong belief that
myelination and white matter development in
infant and teenage years can be different for
people with ASD.



3 Data

We will be working with diffusion tensor
imaging (DTI) data collected by the Center
for Autism Research and Treatment at UCLA,
obtained from the USC Multimodal Conenc-
tivity Database (Brown et al.,, 2012). The
sample consists of 52 subjects with autism
spectrum disorders (ASD) and 43 individuals
under typical development (TP), all between
the ages of 8 and 18. These two groups do
not have statistically significant differences in
their sex, age, mean and maximum head mo-
tion, or their full-scale, verbal, and perfor-
mance 1Q (Rudie et al., 2013). The data was
collected on a Siemens 3T Trio scanning de-
vice at UCLA. After being asked to relax and
keep their gaze focused on a fixation cross
on a screen, T2*-weighted functional images
were captured, with a TR of 3000ms, TE of
27ms, a 128 x 128 matrix size, 192mm FoV
and 3.0 x 3.0mm in-plane voxel dimensions.
These scans were consequently analyzed and
preprocessed, with individuals with excessive
motion not included in the final dataset (Rudie
et al., 2013). Brain deterministic tractogra-
phy, which aims to represent the neural tracts
collected by the diffusion MRI images, was
then preformed on the scans using the Fiber
Assignment by Continuous Tracking (FACT)
algorithm (Mori and van Zijl, 2002), a state
of the art method for fiber tracking from DTI
imaging data. The maximum turn angle of
fibers propagating from voxels was of 50°
(Zalesky et al., 2010), forcing us to discard
fibers shorter than three voxels (no turn an-
gle can be determined from just two vOX-
els). Fibers were consequently smoothed us-
ing spline filters (Rudie et al., 2013).

The final data consists of 264 putative func-
tional areas as defined by (Power et al., 2011),
where edges between these regions corre-
spond to the number of fibers where one end-
point finished in one region and the other end-
point in the other (Rudie et al., 2013). The
data was structured in a 264 x 264 whole brain
structural connectivity matrix. Each of the 94
subjects has a corresponding connectivity ma-
trix. Figure 1 shows the graph for one of the

individuals with ASD.

4 Methods

We will survey the various tools and measures
we are going to use to analyze the graphs, as
well as the statistical methods we are going to
use to evaluate the statistical significance of
the differences captured by these models on
the two subject groups. Some of these mea-
sures are on an entire graph, while others cap-
ture information on a per-vertex basis.

4.1 Clustering

Clustering of brain networks attempts to cap-
ture the interconnectivity of groups or clus-
ters within the network. The organization
of dependencies captured by these methods
may indicate the existence of segregated neu-
ral processing (Rubinov and Sporns, 2010).
We will be calculating the local clustering co-
efficient of every node in every graph. This
coefficient c is for node 7 is defined as

ln
kn(kn — 1)
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where ¢,, is the number of triangles around a
node n and k,, is the degree of node n. We will
also be calculating the global clustering coef-
ficient, defined as the average of the clustering
coefficients of each node.

4.2 Weighted Transitivity

The weighted transitivity is defined as follows

znGN zt”,
ZnEN kn(kn - 1)

where ¢, is the geometric mean of the total
weight of triangles around node n (Rubinov
and Sporns, 2010; Onnela et al., 2005). This
can be thought of as a weighted global clus-
tering coefficient.

T =

4.3 Centrality

We’ll be using a number of measures to cal-
culate the centrality of the brain region nodes
of our graphs. Each of these centrality mea-
sures captures different nuances about the im-
portance and influence of various nodes in our



graphs. We proceed with short introductions
of the various centrality measures utilized in
this project.

4.3.1 Closeness Centrality

The closeness c of any given vertex n; is de-
fined as

1
By =

i

where n; are the neighbors of n; and wy, ,,; 1s
the weight of the edge between nodes n; and
n; (Opsahl et al., 2010).

4.3.2 Betweenness Centrality

We define the betweenness centrality of a
node n as

e(n) = Z O,y (1)

Tn.n;
n;FEN; #n T

where oy, ,,; 1s the number of shortest paths
between n; and n;, and oy, ,,(n) the number
of shortest paths between n; and n; that pass
through n (Brandes, 2001).

4.3.3 Authority and Hubs

Authorities y and hubs x are defined as

X = aAy

V= ﬁATX

where A is the weighted adjacency matrix and
A = (a3)~! is the largest eigenvalue of AAT
(Kleinberg, 1999). Since our graphs are undi-
rected, then our adjacency matrix is symmet-
ric along the diagonal. Thus, A will be the
singular value of A and x = y. Therefore,
the authority and hub value for every node
will be the same (we will be reporting a single
value for each node). This is equivalent to the
eigenvector centrality, which is defined as the
eigenvector with the largest eigenvalue A of a
list of vectors n with weighted adjacency ma-
trix A (Langville and Meyer, 2005). Namely,
it is the solution of Ax = Ax where X is the
largest eigenvalue.

4.3.4 PageRank

For any node n the PageRank value R(n) is
defined iteratively by

1—d V{7 .
R(n) = (—) +d Y =t
N :EEF(TL) Zy Anyy

where A is a weighted adjacency matrix, I'(n)
are the neighbors of 7, and d is a damping
factor (Page et al., 1999).

— ASD
— Typical

Average Frequency

| ‘,W]”[Lh N

00 300
Edge Weights

Figure 2: Average edge weight distributions
for TD and ASD individuals

4.4 Statistical Tests

We will be using statistical tests to capture
the statistical significance between any differ-
ences found between the two subject pools,
while controlling for multiple testing error.
We proceed by highlighting the various statis-
tical tools and procedures used in this project.

4.4.1 Mann-Whitney U Test

The Mann-Whitney U non-parametric test
will help us test the statistical significance of
the means of the metrics calculated from the
graphs of both ASD and TD groups.

The principal reason why we are using the
Mann-Whitney U test rather than the Stu-
dent’s t-test is because it does not require us to
assume that our distribution is sampled from a
normal distribution (Fay and Proschan, 2010).
Given that we have a relatively small number
of examples, we do not want to rely on the
central limit theorem. In the case that our data
is normally distributed, it is nearly as efficient
as the t-test.
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Figure 3: Average degree distributions for TD and ASD individuals

4.4.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov, or KS test, is a
non-parametric test of the equality of a hypo-
thetical cumulative and continuous probabil-
ity distribution with an empirial distribution
function (Massey Jr, 1951). It is sensitive to
differences of location and shape of the dis-
tributions provided, making it a desired test
for comparing per-node metrics across both
datasets. Similar to the Mann-Whitney U test,
it does not rely on the assumption of normal-

ity.
4.4.3 Benjamini-Hochberg Procedure

Given the large number of statistical tests that
we plan on running in this project, it is im-
perative that we control the false discovery
rate of our results. The Benjamini-Hochberg
procedure does exactly that, controlling for
multiple testing error by essentially decreas-
ing the rejection threshold of the null hypoth-
esis (Benjamini and Hochberg, 1995).

5 Results
5.1 General Metrics

We begin by extracting and analyzing some
general network metrics of both sets of
graphs. We calculated simple global charac-
teristics of our networks, presented in Table
1, including the number of edges and nodes,
the number of triangles, the global clustering
coefficient, the weighted transitivity, and the

Metric ASD TD

|E| 3210.8 3159.7
V| 2640 264.0
Number of Triangles 12121 11691
Global Clustering 0.4014 0.4026
Weighted Transitivity  0.4427  0.4434
Global Efficiency 0.08571 0.0856

Table 1: Average graph statistics for ASD and
TD datasets

global efficiency. Each of these metrics is the
average over all graphs in that dataset. There
are not, at first glance, any drastic differences
between both groups.

We also calculated the degree distributions
for both groups, as can be seen in Figure 3,
as well as the edge weight distributions, pre-
sented in Figure 2. Both of these metrics seem
to be quite similar between both groups. Inter-
estingly,

We used the Mann-Whitney U test to ver-
tify whether there is a statistically significant
difference between these values. We then
used Benjamini-Hochberg to correct for mul-
tiple hypothesis testing. However, even at an
alpha level of 0.1, none of the tests are signif-
icant.

5.2 Node Metrics

We proceed at looking at statistics at a ver-
tex level. For each different metric (i.e. node



betweenness centrality) we check whether the
values for each node are statistically sig-
nificant from its corresponding node in the
other dataset using the Mann-Whitney U test.
We specifically calculated the authority, be-
tweenness centrality, closeness centrality, and
PageRank of each node in each graph.

On an alpha level of 0.1, we find that only
one test is statistically significant—namely,
the authority of the anterior division of the
Left Inferior Temporal Gyrus (LITGad). We
proceed by using the Kolmogorov-Smirnov
test to check whether these distributions are
the same or not. Ideally, we would treat each
metric as a draw from a multi-dimensional
distribution and then compare each. Good 2-
and 3-dimensional versions of the KS test ex-
ist (Fasano and Franceschini, 1987; Loudin
and Miettinen, 2003) — however, we would
require a 94-dimensional test given that our
data would be sampled from a 94-dimensional
distribution. Therefore, we instead treat each
node’s statistic as if it were from a univariate
distribution and then test to see if there is a
statistically significant difference between the
ASD and TD datasets.

We find that the authority of the anterior di-
vision of the Left Inferior Temporal Gyrus is
different at a statistical level between the ASD
and TD groups at an alpha level of less than
0.002. This allows us to reject the null hy-
pothesis that the authority of this node is from
the same distribution for both groups.

5.3 LITGad Centrality

Given the results on LITGad’s authority, we
decided to investigate the node with greater
detail. Table 2 presents all centrality mea-
sures for the LITGad node. For all central-
ity measures except closeness the node has a
higher value in the ASD dataset than in the
TD dataset, even though this is only statisti-
cally significant for authority.

5.4 LITGad Neighborhood Analysis

We proceed by analyzing the 1-hop neighbor-
hood of the LITGad node. This consists of
extracting the subgraph of all nodes that LIT-

Metric ASD TD

Authority 0.001984 0.001831
Betweenness 0.008243 0.006266
Closeness 0.2335 0.2420
PageRank 0.002304 0.002135
Table 2: Average LITGad node metrics for
both ASD and TD groups
Metric ASD TD
LITGad Clustering 0.007939 0.006226
3-edge motif 0.2085 0.2177
2-edge motif 0.7915 0.7823
1-edge motif 0.0000 0.0000
0-edge motif 0.0000 0.0000

Table 3: Average LITGad neighborhood
graph metrics for ASD and TD datasets

Gad is connected to in every graph. Sample
LITGad 1-hop neighborhoods for both ASD
and TD are presented in Figure 4 and Figure
5, respectively.

For all of these 1-hop neighborhoods for
both the ASD and TD sets of graphs we calcu-
lated the average clustering and 3-node motif
proportions, presented in Table 3.

The presence of the two predominant mo-
tifs does not seem to vary between the two
sets. However, the local clustering for LIT-
Gad node within its neighborhood in ASD is
higher than in TD individuals. These results
are aligned with the results founds previously,
where the LITGad node had a higher central-
ity in ASD individuals than in typical devel-
opment individuals when analyzing the com-
plete DTI tractography networks.

6 Conclusions

The inferior temporal gyrus is commonly as-
sociated with the representation of complex
objects, and may play an important part in
face perception (Haxby et al., 2000) and num-
ber recognition (Shum et al., 2013). The an-
terior region is principally connected with the
fusiform gyrus, an area related to recognition,
the middle temporal gyrus, known to play a
part in for face recognition and word meaning
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Figure 5: Sample TD LITGad 1-hop neighborhood subgraphs

access during reading (Acheson and Hagoort,
2013), and the superior temporal gyrus, which
contains several important areas responsible
for sound and language processing and recog-
nition.

Previous studies have found increases in
grey matter volume in ASD subjects in the
fusiform gyrus, the superior temporal sulcus
(the sulcus separating the superior temporal
gyrus from the middle temporal gyrus), and
the superior temporal gyrus (Waiter et al.,
2004). However, we were unable to find stud-
ies that uncovered the effects that ASD has on
the white matter connectivity of the anterior
division of the left inferior temporal gyrus,
leading us to believe that our results may be
novel findings. Given that many of the behav-
ioral differences of individuals suffering from
autism spectrum disorder are related to those
governed by this brain region and its immedi-
ate neighbors — including problems develop-
ing and understanding nonverbal communica-

tion — these results may shed light on how the
structure of white matter in the brain can have
cognitive and behavioral effects in individuals
suffering from autism spectrum disorder.

Furthermore, the fact that we evidenced an
increase in the connectivity and clustering of
the area around the anterior division of the left
inferior temporal gyrus is aligned with current
belief that ASD is correlated with increased
and delayed myelination, although further re-
search needs to be done to make this conclu-
S1ve.

7 Future Work

The results and findings presented in this pa-
per are a glimpse into the rich field of re-
search of brain white matter structural anal-
ysis using graph theory. There are many di-
rections and dimensions further work in this
subject may take. First, autism spectrum dis-
order describes a wide range of neurodevel-
opmental disorders that span from mild social



impairments to severe impairment of recip-
rocal social interaction. Developing conclu-
sions on such a wide berth of disorders, par-
ticularly with relatively small sample sizes, is
difficult. Future studies and research on white
matter structure of a specific ASD condition,
or of individuals experiencing very similar
symptoms, may be more fruitful. Second, the
same principles and techniques presented and
used in this project may be applied to under-
standing the effects that other neurodevelop-
mental disorders, including down syndrome,
attention deficit hyperactivity disorder, and
schizophrenia, have on the brain’s white mat-
ter structure. Ultimately, we believe that this
project hints at the potential that using net-
work analysis on white matter neural structure
has on furthering our understanding of the hu-
man brain.
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