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1 Introduction

In recent years, advances in technology such as the
fMRI have opened the door to a deeper understand-
ing of the brains of both humans and other animals.
The fMRI allows us to map out the activity of the
brain in a detailed resolution, which has led to new
modes of understanding the structure of the brain.

At its lowest level, the brain can be thought of as
a network of connected neurons, with neurons repre-
sented as network nodes and connections represented
as network edges. On higher levels, the brain can be
viewed as a network as well, with large-scale regions
of the brain as nodes and levels of communication be-
tween those regions as weighted edges. The brains of
complex animals such as humans are so complicated
that our current technology is incapable of generating
neuron-level data for the whole brain, but region-level
data still proves useful and complements our region-
level understanding of the brains of such animals.

Network analysis provides us with a framework for
understanding the structure of the brain with greater
clarity. Simple algorithms have provided us with in-
sight into how efficiently brain networks are laid out,
specifically how they tend to exhibit small-world be-
havior, meaning high clustering coefficients and low
average path lengths, as well as how they exhibit
scale-free behavior, meaning structural patterns are
mirrored when looking at the network on different
scales.

A more sophisticated mode of understanding these
networks comes from understanding their community
structure. This means partitioning the network into
several sub-networks which have high levels of con-

nectedness within each sub-network and have low lev-
els of connectedness between different sub-networks.
This problem has many approaches, depending on
the optimization used and the nature of the desired
communities. One novel approach to this problem
is to partition the network into communities using
motifs, or specific arrangements of a few nodes, at-
tempting not to split an occurrence of a motif across
communities.

The structural layout of the brain has been shown
to correspond with its real-world functioning, show-
ing that understanding brains using network analysis
will lead us to greater understanding of the differ-
ences between individuals and may give us insight
into known brain pathologies. Some studies have
linked cognitive performance with the global network
structure of the brain, such as “Efficiency of Func-
tional Brain Networks and Intellectual Performance”
by Van den Heuvel et al. This paper found a cor-
relation between IQ and certain metrics of network
efficiency. Other papers, such as “Functional neu-
ral network analysis in frontotemporal dementia and
Alzheimer’s disease using EEG and graph theory,”
present evidence that specific brain pathologies are
linked with large-scale disruptions in the brain’s con-
nectivity network. It is possible that similar useful
conclusions could be drawn from analyzing the com-
munity structure of brains.

This paper consists of analyzing the basic prop-
erties, community structure, and motif structure of
brain networks, cross-referencing these results with
the names and functions of the regions contained in
the communities found with these algorithms.



2 Related Work

This paper uses data sets generated from fMRI data
on live subjects. Methods for collecting such data
are summarized in “Exploring the brain network: A
review on resting-state fMRI functional connectiv-
ity,” a paper which provides a solid review of this
field of research. As well as discussing the data col-
lection methods, this paper also provides details on
some basic properties of the networks generated us-
ing these methods. For example, Heuvel et al. de-
scribe how the human brain’s network structure is
optimized for efficiency, pointing to evidence that the
brain follows a small-world organization, allowing for
both high levels of local connectivity and short paths
between any two regions of the brain. They also
point out that the degree distribution follows an ex-
ponential truncated power law, which assigns much
more probability to nodes having many connections,
meaning that in real brain networks, there are a few
nodes that serve as hubs, connecting to many differ-
ent brain regions. The power law distribution also
means that the brain exhibits scale-free properties,
implying that analyzing the connections between in-
dividual neurons may yield similar results as analyz-
ing the connections between small clusters of neurons
or larger brain regions. The authors also mention
that networks laid out according to power-law distri-
butions are known to be robust to randomized fail-
ures of nodes, meaning the brain is designed to be
able to handle the biological limitations of neurons
that don’t always perform perfectly.

Further analysis of similar properties is presented
in “Studying the human brain anatomical network
via diffusion-weighted MRI and Graph Theory” by
Iturria-Medina et al. The authors of this paper list
several global metrics to characterize the network, in-
cluding betweenness centrality, clustering coefficient,
average least path length, and degree distribution.
There is also more detailed analysis, such as the con-
cepts of local and global efficiency, which they define
as capturing how easily information can flow through
the network. Global efficiency is proportional to the
sum of the inverses of the shortest path lengths, and
local efficiency is proportional to this sum restricted
to the neighbors of a given node. Next, there is vul-

nerability, which measures how much global efficiency
decreases when a given node is removed. This metric
is important in studying brains, as their biological
hardware always has the possibility of malfunction.
Finally, the paper briefly touches on the concept of
motifs as an area of future exploration. The authors
acknowledge that they are just scraping the surface,
and better results could be yielded from more com-
plicated analysis - they mention hierarchical features
and functional motif composition as future directions.

My project aims to look at the higher-order struc-
ture of brain networks, rather than looking at purely
local or purely global phenomena, and central to this
is community detection. A popular community de-
tection algorithm is the CNM algorithm, outlined
in “Finding community structure in very large net-
works” by Aaron Clauset, M. E. J. Newman, and
Cristopher Moore, which provides an efficient and
scalable method of partitioning a network into com-
munities.

A recent insight comes from “Higher-order organi-
zation of complex networks” by Benson et al., which
outlines an algorithm to partition a graph into com-
munities based on motifs. The algorithm in Benson
et al. attempts to partition the network so that most
occurrences of the motif are each contained in a sin-
gle community, and few occurrences are split across
communities.

Partitioning brain regions into communities is
more useful with knowledge of what those regions
actually do. The data sets I use for my work
have labels which correspond to known brain regions,
which can be looked up in published tables such
as at brainmaps.org/index.php?p=abbrevs-macaca.
These labels can then be cross-referenced with known
information about these regions, and one can de-
termine whether the community partitioning makes
sense in light of this information.

3 Data Sets
My main data comes from the
“Brain Connectivity Toolbox” at

https://sites.google.com/site/bctnet /datasets.
This data includes region-level connectivity net-



works for human, macaque, and cat brains. All
the datasets are undirected and weighted, with
nodes representing brain regions and edge weights
indicating the strength of functional connections
between the regions. The human dataset has 638
nodes and 18,625 edges, the macaque network has
71 nodes and 746 edges, and the cat dataset has
52 nodes and 820 edges. Each dataset comes with
labels for all regions, allowing them to be looked
up and understood in the context of neuroscientific
knowledge about the region.

4 Methods and Algorithms

4.1 Standard Community Detection

Important algorithms used in my work are those
which analyze higher-order properties of the net-
works using community detection. One commonly-
used community detection algorithm is the Clauset-
Newman-Moore (CNM) algorithm, which is useful
because it combines both reasonable performance and
results, unlike other algorithms such as the Girvan-
Newman algorithm, which has trouble scaling to large
networks. One can find the details of the CNM algo-
rithm in “Finding community structure in very large
networks.” My project uses the CNM algorithm as
a baseline reference for comparison with other algo-
rithms which use different partitioning criteria.

4.2 Motif Sampling - Naive Method

The main algorithm I make use of is the motif-based
community detection algorithm presented in “Higher-
order organization of complex networks” by Benson
et al., which allows for community partitioning based
on the occurrence of motifs. Communities are parti-
tioned with respect to a single motif, with the parti-
tioning optimized so that many instances of the mo-
tif occur within a single community and few are cut
across different communities.

In order to find meaningful results from this algo-
rithm, one must run it using motifs which are signif-
icant in the brain network, meaning they occur more
commonly than one would expect in a random net-

work with the same degree distribution. I devised a
simple algorithm for finding the most common motifs
of size n in a network, by simply sampling n nodes at
a time and counting up how many times each motif
occurs in these sets of n nodes. One can then com-
pare the result of this algorithm with a randomly-
generated network of the same size. Those motifs
which come up more often in the brain network than
the randomly-generated network are likely significant
to the structure of the brain network, and hence de-
serve closer examination. The benefit of this algo-
rithm is that it does not require an exhaustive search
of all nodes in the network, and it works for any value
of n.

During testing, I learned that this method has its
shortcomings. As an estimator of actual motif fre-
quencies in the network, it is unbiased, but its vari-
ance is quite high. This is especially true for motifs
which occur very infrequently in the network, notably
many motifs of size 5.

4.3 Motif Sampling - 3-Path Method

More effective estimators of motif frequencies in a
network can be constructed by taking into account
structural information about the motifs themselves.
This leads to estimation methods which have lower
variance but which are less general than the naive
method presented above. I implemented one such
method, which is described in “Path Sampling: A
Fast and Provable Method for Estimating 4-Vertex
Subgraph Counts,” by Jha, Seshadri, and Pinar. This
paper presents a lower-variance method for estimat-
ing counts of motifs of size 4 in a network, but does
not extend to motifs of other sizes.

The key insights behind this algorithm have to do
with awareness of the structure of the motifs of size
4. All connected motifs of size 4 except the 3-star
(see figure 4 in Results) have at least one path of
length 3 in their structure. This means that instead
of sampling sets of nodes, one can sample 3-paths
randomly in the network and estimate total motif
counts from the frequencies of each motif occurring
along these 3-paths. One can finish by using linear
relationships between subgraph counts to extrapolate
the count of 3-star motifs from these results.



This algorithm works well for computing counts for
motifs which do not contain a 4-cycle, but converges
slowly for motifs which do. A small tweak of the al-
gorithm makes it robust to these 4-cycle motifs. At
each step, we randomly sample instead a centered 3-
path, which is a 3-path in which the two ends are
connected to form a 4-cycle, and where the labeling
order of the nodes fits certain conditions. Again, we
use these samples to count the number of times they
appear in each type of motif and calculate the esti-
mated motif counts from these samples.

4.4 Motif-Based Spectral Clustering

The above sampling methods point out motifs of in-
terest in the networks. Using the most significant mo-
tifs, I run the Benson et al. algorithm for motif-based
clustering. This algorithm partitions the network as
follows.

Begin by computing the co-occurrence matrix Wy,
an nrn matrix where n is the number of nodes in the
network. Each entry W;; in this matrix is the number
of times the two nodes occur together in the chosen
motif in the network.

From this matrix, compute its normalized Lapla-
cian and compute the spectral ordering of this Lapla-
cian. To do this, let D be the diagonal matrix
D;; = Zj(WM)ij, the matrix with row-sums of
Wy on the diagonal. Let D—'/2 be the same ma-
trix but with each entry raised to the —1/2 power.
The Laplacian matrix Lj; can now be computed as
Ly = D™Y2(D — Wy )D~Y2. To find the spec-
tral ordering, we compute the eigenvalues of Ly, and
let z be the eigenvector corresponding to the second-
smallest eigenvalue. From here, the spectral ordering
s is the by-value ordering of D~1/2z, i.e. each element
s; is the index of the i-th smallest value of D~1/22,

Finally, find the prefix set of s with the smallest
motif conductance, formally, S := argmin, ¢ (Sy),
where S, = s1,, s. Motif conductance measures the
extent to which occurrences of the given motif oc-
cur across different clusters, as opposed to occurring
within one cluster. Specifically, it is the cut divided
by the minimum wvolume of the clusters, where cut
is the number of edges within the motif that cross

between clusters, and volume is the total number of
edges within the motif in a given cluster.

The Benson et al. algorithm is a community de-
tection algorithm which takes structured information
about motifs into account. I compare the results of
the motif algorithm with the results of the CNM com-
munity detection algorithm described above.

5 Results and Analysis

5.1 Basic Properties

The first aspect of this project is getting to know the
different data sets by assessing some basic measures
of their structure.

Clustering Coefficient

Network | Clustering Coefficient
Macaque 0.496
Cat 0.553
Human 0.384

Across these three datasets, the simpler, less intel-
ligent animals had higher clustering coefficients. All
were roughly in the same ballpark.

Degree Distributions

A chart of the degree distributions of each network
is shown in figure 1. Note that the networks are of dif-
ferent sizes, which is why the human dataset, which
is the largest, has more nodes of high degree. All of
them seem to follow a “long-tailed” pattern, although
the small size of the data sets makes this hard to see
for sure.

Path Length

Figure 2 is a chart of the distribution of shortest
path length. Having short path lengths is a mea-
sure of the efficiency of information flow through the
network. Interestingly, it seems that the cat net-
work has the shortest paths, followed by human, then
macaque.

5.2 CNM Community Detection

Running CNM community detection on the Macaque
dataset led to the results in the following table, which
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Figure 1: Degree Distributions

shows its outputted community sizes and modularity
values:

Network | Community Sizes | Modularity

Macaque 17, 19, 34 0.389
Cat 13, 15, 24 0.294

Human 103, 201, 334 0.364

For the cat and macaque networks, I had
access to labels for each region, allowing me
to analyze the neuroscience significance of the
communities for each. The labels are ab-
breviations whose meanings can be found at
brainmaps.org/index.php?p=abbrevs-cat for the cat
dataset and brainmaps.org/index.php?p=abbrevs-
macaca for the macaque dataset.

Here, I simply report the contents of each cluster.
The significance of these results in terms of my
project is how they compare with the results of
motif-based partitioning, which I discuss in that
section.

Macaque network:
Community One: ['V1’, 'V2, 'V3, "V3a’, 'V4’, "V4t’, "MT’,
'PO?, 'PIP, 'VP’, 'VOT’, "MSTd’, 'MSTI’, "FST’, 'LIP’, "VIP’,
'DP’, 'PITd’, 'FEF’]
Community Two: [TF’, 'PITv’, 'CITd’, 'CITv’, ’AITV,
"TH’, 'STPp’, ’A7a’, ’AITd’, *A46’, 'STPa’, 'TGV’, 'ER’,
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Figure 2: Shortest Path Length Distributions

'A35, PA25%, PA12’, PA1D’, *A13, *A23’, "PAAL’, "TS2’, *TS3’,
PA10’, 'TGD?, "TS1’, A24°, ’A9’, ’A32’, 'PAAR’, 'KA’, 'PAL’,
"PROA’, 'REIT’, 'PAAC’

Community Three: ['A7b’, 'TPT’, 'A5’, ’S2’, 'A6’, 'SMA’,
A45°, 1D’ °G’, 'A3a’, TAL’, CA2, ’A3b’, CA4’, 'RY’, A3, 1G]
Cat network:

Community One: ['17’, ’18’, ’19’, "PLLS’, "PMLS’, "AMLS’,
VLS, 21a’, ’21b’°, ’ALLS’, ’7’, ’5Bl’, 'DLS’]

Community Two: ['20a’, ’20b’, ’EPp’, 'PS’, ’6m’, 'PFCL’, 'Ta’,
Ig’, ’35’, ’Cga’, '"CGp’, ’36’, 'RS’, ’Al’, ’AIl’, ’AAF’, 'P’, 'VP¢’,
"Tem’, "PFCMd’, "Enr’, "PFCMil’, ’Sb’, 'pSb’]

Community Three: 61, '’5A1’, ’5Bm’, "AES’, ’4g’, ’4’, ’5Am’,
SSAY, ’SSA0’, ’3a’, ’3b’, 'SIV’, ’1’, ’2’, *SII’]

5.3 Motif Sampling - Naive

For each network, I ran the naive motif detection al-
gorithm described above 5 times for 200,000 samples
each. I considered as possible motifs all connected
subgraphs of size 3-5. Visualizations of these sub-
graphs are presented below. Running the algorithm
5 times for each network allowed me to compute the
variance across these runs to determine the validity
of the estimator.

As a comparison baseline, I also ran the naive al-
gorithm on randomly-generated preferential attach-
ment networks with the same number of nodes and



a similar number of edges for each real network.
For these estimates, I ran the algorithm 5 times for
200,000 samples each, where each run used a different
randomly generated network, and I again computed
the average and variance for each network.

I then computed a comparison by computing the
ratio of occurrences of the motif in the real brain
network compared to the random preferential attach-
ment networks imitating it, called the Motif Occur-
rence Ratio. For the motifs of size 5, I applied a
smoothing in which I added 1 occurrence of each mo-
tif for every network, allowing for comparisons of net-
works in which some motifs did not appear at all.
This smoothing was not added for motifs of size 4
and 3 because every motif occurred at least once in
every network.

I report here the Motif Occurrence Ratio for each
motif. I also report some information about the stan-
dard deviations of the estimators, to get a sense of
how much of the results are due to random noise.

Motifs of size 8

Motifs of size 3
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Figure 3: Motifs of size 3

There are two connected motifs of size 3 (see figure

3).
Motif Occurrence Ratios, Naive, Size 3
Motif | Macaque | Cat | Human
1 2.02 1.74 2.16
2 0.805 0.915 | 0.707

The “motif frequency” is the chance of any
randomly-drawn set of nodes containing edges that
form the given motif. The motif frequencies for mo-
tifs of size 3 were on the order of 10~2 with a std of
104 for macaque, 10~ with a std of 10™* for cat,
and 10~2 with a std of 10~* for human.

Across the three networks, the line motif consis-
tently tended to occur more often than in random

networks and the fully-connected motif occurred less
often.
Motifs of size 4:
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Figure 4: Motifs of size 4

There are 6 connected motifs of size 4 (see figure
4). In all three networks, the top two motifs were
”fully-connected” and ”one-missing”, respectively.
This result suggests that when considering groups of
4 regions, brain networks are consistently more likely
than random networks to have extremely densely
connected groups of 4 neurons.

Motif Occurrence Ratios, Naive, Size 4

Motif | Macaque | Cat | Human
1 0.452 0.583 | 0.326
2 0.692 0.923 | 0.563
3 1.15 1.17 1.03
4 0.75 0.789 | 0.444
5 2.02 1.5 1.9
6 4.02 2.87 5.57

For more information about the variances for mo-
tifs of size 4, see the later comparison with the path-
based sampling method.

Motifs of size 5:

There are 23 connected motifs of size 5 (5).

Motif Occurrence Ratios, Naive, Size 5

Motif | Macaque | Cat | Human
17 3.46 1.84 2.83
22 5.82 2.77 6
23 3.25 3.88 2.25

The motif frequencies for motifs of size 5 were on
the order of 10~2 with a std of 10™® for macaque,




Figure 5: Motifs of size 5

102 with a std of 10~* for cat, and 10~* with a std
of 10~® for human.

The results for motifs of size 5 were more varied than
smaller sizes, likely due to their low occurrence fre-
quencies. The most connected motifs tended to have
the highest occurrence rates here as well, similar to
motifs of size 4. I reported above only these top-
occurring motifs for brevity.

5.4 Motif Sampling - Path Method

T also computed the most commonly-occurring motifs
in each network using the more sophisticated 3-path
sampling method. As mentioned above, this method
works only for motifs of size 4. As with the naive
method, I ran this algorithm 5 times with 200,000
samples each time, on both the real brain networks
and randomly-generated networks simulating them.

Motif Occ. Ratios, Path-Sampling, Size 4

Motif | Macaque | Cat | Human
1 0.522 0.578 | 0.333
2 0.793 0.927 | 0.562
3 1.29 1.19 1.04
4 0.939 0.783 | 0.494
5 2.11 1.5 1.95
6 4.75 2.8 4.96

To determine whether these results are more valid
than the naive method, I compare the variances of the
results with the two methods for the brain networks.
The following tables compare estimator variances for
each motif count on each network:

Sample Stds for Naive Method

Motif | Macaque Cat Human
1 0.000125 | 0.000321 | 6.17e-05
2 0.000236 | 0.000375 | 0.000166
3 7.19e-05 | 0.000342 | 5.73e-05
4 6.3e-05 | 0.000252 | 2.37e-05
5 9.14e-05 | 0.000557 | 5.63e-05
6 6.17e-05 | 6.8e-05 | 1.96e-05
Sample Stds for Path Sampling
Motif | Macaque Cat Human
1 3.36e-05 | 0.000262 | 1.08e-05
2 8.54e-05 | 0.00026 | 2.32e-05
3 4.48e-05 | 0.000276 | 5.53e-06
4 7.8e-06 3.8e-05 | 1.03e-06
5 6.88e-06 | 8.27e-05 | 1.86e-06
6 1.49e-06 | 1.14e-05 | 2.37e-07

One can see that the path sampling method per-
forms significantly better as an estimator of occur-
rence counts for motifs of size 4, as its standard de-
viation is lower by around an order of magnitude for
each motif.

5.5 Motif-Based Community Detec-
tion

I ran the motif partitioning algorithm for the top mo-
tif of each size for each network, as determined by the
above methodology. For each network, I report the
community sizes and motif conductance of the parti-
tioning.

Network | Motif Size | Cmty Sizes | Conductance
Macaque 3 28, 41 0.257
Macaque 4 14, 55 0.250
Cat 3 25, 26 0.346
Cat 4 15, 36 0.250
Cat 5 14, 37 0.272
Human 3 199, 439 0.290

For brevity, I am unable to discuss all of the
partitions above, so I focus on two which are of note.
First, here are the clusters found for the macaque
partitioning, based on the chordal-4-cycle motif of
size 4:



Cluster one: ['V1’,’°V2’,’V3’ "VP’, 'V3a’, 'V4’, 'VOT’, "V4t’,
' MT’, STd’, *STT, "FST’, "PIP’, *"VIP’]

Cluster two: [ITv’, ITd’, 'ITv’, 'ITd’, 'ITVv’, "TPp’, "TPa’, ’
TF,’ TH’,’ PO’, 'LIP’, * DP’, 'A7a’, 'FEF’, 'A46’, "TGV’,’
ER’, A3b’, > A1’,’ A2’,’ A5’,’ R1’,’ S2’, A7Tb’, ' IG’, ’A35’,
PAL 0 AE, SMA’, A3, PA23, PA24°, A9, PA32’, A25’,
'A10°, A45’, ’A12), 'A13’, 'AAL’, 'PAL’, 'ROA’, 'TGD’,
"TS1’, "T'S2’, "TS3’]

Cluster one seems to contain all the visual regions,
various sensory processing and perceptual-motor
coordination regions (the posterior intraparietal
area, ventral intraparietal area, and the temporal
sulcus), with a few temporal regions such as middle
temporal area and FST.

Cluster two contains all the auditory cortex re-
gions and a scattering of all other areas. It seems
that the algorithm placed into cluster one a few
highly-related regions and placed all the other “mis-
cellaneous” regions into cluster two. Importantly,
brain regions that fit very similar purposes were
put into the same clusters - for example, all the
visual cortex areas were put into cluster one and
all the auditory cortex areas were put into cluster
two. This shows that the motif partitioning took
into account regions which were highly connected
with one another, which makes sense as the motif in
question was a subgraph with very dense connections.

Next, here are the clusters found in the cat brain
based on motif #23 of size 5:
Cluster one: [’5Am’, '5Al’, ’5Bm’, ’SSA1’, ’SSA0’, ’3a’, ’3b’,
"1, 02, °SID, "SIV, *4g’, *4’, *61']
Cluster two: [17’, °18’, '19°, 'PLLS’, 'PMLS’, *AMLS’,
'ALLS’, "VLS’, 'DLS’, '21a’, '21b’, '20a’, '20b’, ’7’, 'AES’,
'PS’, 'AT’, "AID, ’AAF’, 'P’, "VP¢’, ’EPp’, "Tem’, *6m’, *5BD’,
'PFCMil’, 'PFCMd’, "PFCL’, 'Ia’, 'Ig’, 'Cga’, 'CGp’, 'RS’,
’35’, ’36”, 'pSb’, "Enr’]

Here, the partitioning was done based on an even
more dense motif. We can see again here that mo-
tifs were clustered based on very close relationships
between regions - all of the areas in regions 1-5 were
assigned to cluster one, and all of the higher regions
were assigned to cluster two.

For both of the above partitions, the small cluster
is similar to one of the communities detected using

CNM. However, the small cluster here is smaller than
its corresponding cluster under CNM. This suggests
that partitioning based on very dense motifs like we
are doing here is similar to standard community de-
tection under CNM, but with a higher threshold of
being closely connected to make it into the small clus-
ter, as the motif only counts for sets of nodes which
are connected very closely.

As another means of comparison, I also imple-
mented and ran the standard spectral community
detection algorithm on these same networks, which
attempts to minimize the number of overall cuts of
edges, rather than of motif occurrences. This algo-
rithm attempts to minimize conductance and hence
should produce similar results to CNM, and this is
exactly what I found. The algorithm is designed to
output two communities. In all the networks, it out-
put a small, densely-connected community which was
nearly identical to the small, densely-connected com-
munity returned by CNM. The other community re-
turned by the spectral algorithm was nearly identical
to the union of all the other communities returned by
CNM.

References

Madhav Jha, C. Seshadhri, Ali Pinar. ”Path Sampling: A
Fast and Provable Method for Estimating 4-Vertex Subgraph
Counts.” WWW 15. May 18 - 22, 2015. Pages 495-505.

Van den Heuvel, Martijn P. et al. ”Exploring the brain
network: A review on resting-state fMRI functional connectiv-
ity” European Neuropsychopharmacology. Volume 20, Issue 8,
August 2010, Pages 519534.

Iturria-Medina, Yasser et al. ”Studying the human brain
anatomical network via diffusion-weighted MRI and Graph
Theory” Neurolmage. Volume 40, Issue 3, 15 April 2008, Pages
10641076.

Van den Heuvel, Martijn P. et al. ”Efficiency of Functional
Brain Networks and Intellectual Performance.” Journal of Neu-
roscience. June 2009, 29 (23) 7619-7624

De Haan, Willem et al. ”Functional neural network analy-
sis in frontotemporal dementia and Alzheimer’s disease using
EEG and graph theory.” BMC Neuroscience. 2009. 10:101

Fortunato, Santo. ”Community Detection in Graphs.”
Physics Reports. Volume 486, Issues 35, February 2010, Pages
75174.

Benson, Austin R. et al. ”Higher-order organization of com-
plex networks.” Science. 08 Jul 2016: Vol. 353, Issue 6295, pp.
163-166.



Milo, R. et al. ”Network Motifs: Simple Building Blocks
of Complex Networks.” Science. 25 Oct 2002: Vol. 298, Issue
5594, pp. 824-827



