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1 Introduction

The YouTube social network is often seen as a typical publisher-subscriber network. Research has
shown that while YouTube deviates from typical online social networks due to its publisher-subscriber
nature, social interactions occur in the form of indirect relationships through comments on videos or video
reaction to other videos. However, not much in-depth work has been done examining the indirect social
aspects of the video-video network of YouTube. By analyzing the network of related videos, we can learn
about its structural properties, especially around popular videos, and in turn, hypothesize about indirect
user relationships through videos and also features that potentially lead to popularity of videos.

Related videos serve as a very important aspect of YouTube allowing users to easily navigate between
videos that they would enjoy watching hence, being able to predict related videos for new videos is a very
important problem. This is an application of Link Prediction but due to the nature of this graph, being
across videos rather than people, standard techniques may not be enough since we should be looking at
both structural graph properties as well as node/video properties. In this report, we compare different
link prediction algorithms and adapt them for the application of predicting related YouTube videos.

2 Related Work

Previous research focused more on the publisher-subscriber model of YouTube and the comment network
of YouTube. Wattenhofer, Wattenhofer and Zhu [2] found that YouTube differed from traditional online
social networks with its lack of homophily, reciprocative linking, and assortativity and social interactions
occur in the form of indirect relationships through comments on videos or video reaction to other videos.
However, this paper looks at popularity based on subscriptions only, and does not consider video popularity
based on views and with respect to the comment network.

Other research has also looked at some characteristics of the video to video network in the form of
related video networks and video response networks. Benevenuto et al [3] examines a characterization of a
social network created by video response interactions among users in YouTube, finding that the network’s
degree distributions follow power laws and fall in line with many other real-world networks. The user
interaction network shows a structure similar to the Web graph, where pages with high in-degree tend to be
authorities and pages with high out-degree act as hubs, whereas other social networks exhibit a significant
degree of symmetry. Chen et al. [1] looks at the social networking aspect of YouTube and analyzes different
kinds of YouTube networks (users, videos, subscriptions etc.). Using counts of views/ratings/comments
for the YouTube network from 2007 and 2008 along with the fact that 40.3% of users have no friends, the
researchers conclude that user-user social networks have less impact than video-video networks in YouTube.
Hence, we are more interested in doing more in-depth work to examine the indirect social aspects of the
video-video network of YouTube and using these insights to better predict related videos.

Proximity based link prediction is a quite common method and are generally presented in most link
prediction surveys [5][7]. These techniques generally calculate some scores between all pairs of nodes and
then predict the top scores as new edges. A lot of work has been done to develop new and better such
scores as in [7][8][10]. More recent work focuses more on using supervised learning where they employ
these proximity scores as features leading to higher accuracy ([8]).
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One challenge in link prediction is in building a model that cleverly combines both information about the
network structure and information about the nodes (videos) themselves in a principled manner. Backstrom
and Leskovec [9] propose an algorithm based on supervised random walks that performs link prediction by
combining these two kinds of information. Predictions are made based on the scores of a random walk, but
the edge transition probabilities between pairs of nodes are learned based on a similarity score between their
associated metadata. This similarity score is learned using a gradient-based optimization technique that
minimizes a loss function defined over the set of training examples. The supervised random walk algorithm
mentioned in the paper outperformed many other approaches, both supervised and unsupervised.

According to Lichtenwalter et al. [8], while unsupervised techniques are popular in link prediction, those
techniques struggle to take into account the unique properties found in networks. Supervised learning is
not new to link prediction, but typical problems arise around high class skew (sparse networks). However,
training a model can capture important interdependency relationships between topological properties. [8]
also presents a list of features used in supervised learning for link prediction. Furthermore, the authors
discuss many local proximity based scoring techniques to predict new edges and then propose a new scoring
method based on a depth-limited BFS. A high score is given to a node based on amount of flow possible
between the two nodes. They go on to use this along with other features in a supervised training model
as well. We make use of a modified version of this algorithm for our application.

3 Problem Statement

We are given a YouTube graph where nodes are videos and edges represent links between a video
to its related videos. We analyze this video-related video network in two main phases. In the first half
we characterize our network in terms of structural properties to understand how they relate to other
Online Social Networks (OSNs) and Random Graphs. More specifically, we look at degree distributions,
centrality /reciprocity measures etc. We also compute PageRank/HITS scores and explore any trends that
they follow with respect to video properties like age, views, comments etc. Finally, we calculate clustering
coefficients and check for the presence of small world phenomenon and compare our results with those of
random graphs and other OSNs.

The second phase entails link prediction. Given a set of already existing videos and their related
videos, the aim is to predict new edges i.e. more related videos based on the graph structure as well as
node properties. The main application of this is to provide better related video coverage so that both
publishers and viewers can benefit. Also, this can be used to predict links for new videos that get added to
the network. We survey four methods and evaluate them in context of the YouTube related video network:
proximity scoring, supervised random walks, PropFlow, and supervised learning algorithms, along with
variations in scoring/weighting methods and different combination of video metadata and graph structure
features.

4 Dataset

We will be using the related video YouTube data set from Simon Fraser University [4]. This data set’s
graph is defined as follows: each node represents a video and each directed edge from A to B denotes that
A’s top 20 related video list includes B. Each video has some metadata, including the uploader, video age,
category, length, number of views, rating, number of ratings, and number of comments. For our analyses,
we will be looking specifically at the related video data acquired in March 1, 2007, which has 155513 videos
(crawled over 3 depths of a BFS starting from an initial set of videos).



5 Related Video Graph Characteristics

5.1 Degree Distribution and Power Law

The out-degree distribution of the related video network has a somewhat even distribution. There are
more videos with just a few related videos, which makes sense considering there are many newer videos
that have not yet established connections with other nodes. We see a slight increase of nodes with 20
out-degree, but the data set only looked at the top 20 related videos for each video, where the initial video
set is the crawl day’s popular videos. The distribution does not look like other graph models encountered
in class, but this is most likely due to the nature of the data set.

We do see something that resembles a power-law distribution in the in-degree distribution. Since new
videos arrive one at a time and form edges with existing nodes, older videos are expected to have higher
in-degree values. Compared to other random graph models and real-world networks encountered in class,
the in-degree distribution most closely resembles the collaboration network (from PSET1).
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We found that the average path length between any pair of nodes on a directed path is approximately
14.174991 and on an undirected path is approximately 7.574534. Even in the undirected case, small world
(approx. 6 degrees of separation) does not seem to quite hold for the whole related video network. This
may have to do with the fact related videos have less of a social aspect than person-to-person relations and
that related videos are likely found via keywords and other topic tags computed by YouTube’s algorithms.

5.2 Measures of Centrality Compared to Video Age
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We hypothesized that the network may exhibit some characteristics of the Preferential Attachment
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model. For the network of depth 2, we computed the betweenness and degree centrality of each video and
plotted them against their age. The two graphs are presented above and both show a pattern where videos
of higher centrality are more likely to be of higher age compared to those of lower centrality, suggesting
that the longer a video has existed, the higher centrality score it tends to hold, which is a trend that agrees
with the preferential attachment model.

5.3 Clustering Coefficient

We find that average clustering coefficient for the entire graph is about 0.52. Average clustering
coefficient for each category subgraph is also very similar, lying in the range of 0.46 for the ”Comedy”
subgraph up to a value of 0.57 for the "Music” subgraph, but the difference is not significant enough to
make any conclusions. Also, the high clustering coefficient for our graph is likely an artifact of the crawling
process since we are starting from random videos and performing a BFS for up to a depth of 3 for 20
neighbors each.

As expected for random graph models, the Erdos-Renyi model has a very low clustering coefficient in
the order of 10~° and the Preferential Attachment model has about 0.0022. This can be explained by the
small-world phenomenon that is present in real-world networks. Comparing with other OSNs, we find that
it is even higher; for example, [6], user-network such as Flickr has a clustering coefficient of 0.313 while
the YouTube user network has a clustering coefficient of 0.136. This suggests that the video network of
YouTube is much more connected, which makes sense as related videos are vital to YouTube. This also
further strengthens our thought that video-video networks may be more important than user networks in
YouTube.

5.4 PageRank and HITS

We computed the PageRank and Hub/Authority scores for all videos in the graph. We were not able
to detect any special characteristics of the videos with high scores but we did observe that high PageRank
scores did not necessarily correlate with videos that have high rating/comments/views. We found videos
with either high ratings/comments/views or high PageRank scores but not both which was a bit surprising.
Intuitively, we would expect videos with high views to also have high PageRank. Also, we observed that
on a log scale, views vs. PageRank seems to very closely resemble a bivariate normal distribution. Such
a distribution along with video properties could be potentially used to predict views for new videos that
come up.
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6 Link Prediction

6.1 Edge Prediction with Proximity

The aim is to predict more edges, i.e. predict more related videos for a given video. We will first do this
via proximity score calculations. We compare certain scores between each pair of videos representing how
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close they are based on the graph structure such as common neighbors etc. ([5]) Then, we sort the pairs
based on this score and predict new edges for the highest scoring pairs. We will be using and comparing
some of the most popular proximity score functions:

Graph distance: (negated) Shortest path length between 2 nodes

e Common number of neighbors - For node = and node y, if we use I' to denote set of neighbours, this
would be |T'(z) N T'(y)|

Jaccard’s coefficient for the sets of neighbors - [I'(x) N I'(y)|/|T'(z) U T'(y)|

Adamic/Adar score - 3= .cp)nre) 1/ log(|T'(2)]) [10]

Preferential Attachment - |I'(z)|.|T'(y)|

This procedure has run-time quadratic in the number of nodes since we need to calculate the score for
each pair of nodes, and therefore too time taking for our entire graph. Another critique of this method is
that it does not use the video properties such as length, category, age etc. in any way. It does have an
advantage in its simplicity yet being versatile since the score could be potentially defined in any way:.

6.2 Edge Prediction with Supervised Random Walks

Next, we predict new edges using Supervised Random Walks ([5]). We combine node/edge features with
the network structure, and run personalized PageRank from a node v’ in order to compute the strength of
candidate edges. The goal is to recommend a list of possible edges by interpreting the network as a set of
labeled training examples.

For every source node v, we take a portion of its edges (v,e*) € E and take them as positive training
examples while taking all (v,e”) ¢ E as negative examples. Our aim is to obtain higher proximity values
for positive training examples compared to negative examples when we run the personalized PageRank
algorithm. The PageRank algorithm essentially performs random walk with restarts from v using a set of
transition probabilities we derive and estimate from a weight function f(u,v) that assigns strength a,, to
edge (u,v):

T 0
+ eXP(—ﬂ xu'v)

where x,, is a feature vector that gives some measure of similarity between nodes u and v, and /S is
the weight vector which we aim to optimize. The personalized PageRank algorithm is performed by the
following sequence of steps:

Aoy = f(u? 'U)

1. Initialize transition matrix A where (A)yy 1= @y * 1[(u,v) € E]

2. Initialize PageRank proximity vector p(®) where (p)gp) = 1[j = v]

3. Run until convergence:
p = (1 - a)Ap® + ax p (2)

4. Finally, rank nodes j by decreasing p;.

In order to optimize our weight function f(u,v), we want p; < p; for every positive example j and
negative example i so we define a loss function h(z) where

h(z) = 2° * 1{z > 0] (3)

We will also add regularization to 8 with a parameter \ to prevent over-fitting; then our total loss
function J(p) is the following:

J(8) =>_h(pi —p;) + AlIB|I* (4)



This loss function is minimized using stochastic gradient descent. Although the partial derivatives Vp;
with respect to f cannot be computed in an exact manner, they can be approximated with an iterative
process as described in details in the Backstrom and Leskov [8] paper. However, we took the simpler
approach of numerically computing the gradient using the difference quotient with a sufficiently small
delta. This technique is easier to implement while still running with acceptable speed and accuracy.

The model parameters o, A and the learning rate used in gradient descent were tuned using standard
machine learning techniques such as cross-validation and grid search.

6.3 Edge Prediction with PropFlow Algorithm

The PropFlow method computes a score from a node to all other nodes in the network from which
the top nodes can be predicted as new edges. This is based on a depth-limited BFS performed from the
source node and scores are assigned according to the amount of flow that reaches a particular node. Flow
is distributed evenly among a node’s outgoing edges proportional to the edge weights. This method was
introduced in [8]. We believe their algorithm presented in their paper had a few mistakes so we have
corrected those shown below in Algorithm 1. We further modify the algorithm to calculate edge weights
based on node/video properties. This allows us to include similarity of nodes into our edge weights thus
allowing our flow to be distributed to nodes which are similar. In doing so, we get better predicted edges
since we are using more information (i.e. video properties) to score them.

Data: Graph G = (V, E), Source node vs, Max depth d
Result: Score S, for all nodes u reachable from vs by at most d edges
insert vg into Flound
push vs into NewSearch
set S[vs] + 1
for CurrentDepth = 0 to d do
OldSearch < NewSearch
NewSearch + []
for v; € OldSearch do
Nodelnput <+ S[v;]
SumQutput < 0
for v; € neighbours of v; do
wij < GetWeight(vi,v;)
SumQutput+ = w;;
end
for v; € neighbours of v; do
w;j < GetWeight(v;,v;)
Flow + Nodelnput x (#ﬁ,wut)
S[v;] < Flow
if v; ¢ Found then

insert v; into Found

push v; into NewSearch
end

end

end
end

Algorithm 1: PropFlow algorithm

6.4 Edge Prediction with Supervised Learning

Finally, we will train a model to predict edges. Using L1 regularized logistic regression, we can classify
pairs of nodes as 0=noEdge or 1=edge. We will use video metadata as features as well as proximity scores.
For a pair of nodes u and v, we will use the following metadata-based features:

1. whether v and v belong to the same category
whether u and v were uploaded by the same user
inverse difference in video length
inverse difference in the number of views
inverse difference in video ratings
inverse difference in the number of ratings

7. inverse difference in the number of comments.

In addition, to further improve recall while maintaining high precision, we will also use a pair of node’s
common neighbor score, Jaccard score, Adamic/Adar score, and their node degrees as features (as described
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in section 6.1).

As with the previous methods, we will use 80% of edges present in the graph as positive training
examples, and an equal amount of random node pairs that do not have an edge as negative training
examples. To limit computation time and memory usage, we find the core nodes (defined as nodes that
have at least k positive examples in training and testing sets). We train on all edges with at least one core
node endpoint and on an equal random subset of no-edge node pairs with at least one core node. Our test
set consists of any of removed edge with at least one core node end point and a equal random subset of
no-edge node pairs with at least one core node.

7 Results and Discussion

7.1 Evaluation Criteria

We follow evaluation criteria similar to those in [7]. First, we assign 80% of our edges as Training edges
and the 20% as Testing edges uniformly at random. We then perform training using only our training
edges. For testing, we only look at the ”core” set of nodes. This only includes nodes that have at least ky.q;,
training edges and at least ki testing edges. We count the number of testing edges occurring between
these ”core” nodes as k and then predict top k edges based on our training data. In the supervised learning
algorithms, we classify potential edges into edges or non-edges. In all cases, we define our success as the
Recall rate (i.e. fraction of correctly predicted edges over all true test edges). We also compare our results
with a baseline which is just a random edge predictor between these ”core” nodes.

7.2 Proximity and PropFlow Algorithms

We plot the Recall rate obtained versus various values of kyqqin = Kies: in the Figure below. Among the
traditional proximity measures, we find that Preferential Attachment and Graph Distance perform very
badly giving us only 0-1 % recall, very similar to predicting just random edges. This is likely due to the way
the data was crawled. For example, the graph has many pairs of nodes that are a certain graph distance
apart, but that alone does not tell if the nodes themselves are likely to be related since many videos can
cover different topics, resulting in a diverse related video list. For preferential attachment, because two
highly popular videos in the same topic will result in a high score and two highly popular videos in different
topics will also result in a high score, the preferential attachment score cannot tell the difference between
the two cases; this is unlike a human social network, where if two people are popular, they are likely to
know each other. Adamic/Adar measure gives intermediate results of about 30 % recall while Common
number of neighbours and Jaccard score give us upto 50-55 % recall. Unweighted Propflow is also able
to attain similar recall of about 45-50 %. Propflow with edges weighted according to the video metadata
helps improve the recall rate by a bit to around 55 %.
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7.3 Supervised Random Walks (SRW)

We trained the algorithm using the set of metadata-based features defined in Section 6.4. The training
process is quite slow and quadratic in the number of nodes in the graph. For every source node v, we
ran supervised random walk algorithm on a subgraph defined by the set of nodes encountered by running
BF'S starting from v up to a depth of 4. The subgraphs obtained from this operation end up with roughly
500-800 nodes. Since the predictions for each node rely on every edge weight in the graph and because
the number of features is very small, we believe there isn’t much danger of overfitting despite doing this.
Backstrom and Leskov similarly chose a reduced set of nodes to train on, for example only using 200 for
the Facebook dataset. The algorithm generally converges within 50 iterations, where convergence occurs
when the changes in total loss and in the norm of g became insignificantly small between iterations.

We plot the recall rate obtained verses various values of Kigin = kiest Shown in the figure below.
Note that unlike the other link prediction algorithms we have implemented, the supervised random walk
algorithm only trains on out-going edges rather than all edges connected to the source node, so Krgin 1S
effectively halved during our training process. The features we trained are based purely on video metadata.
As k increases from 10 to 25, recall increases. The model averaged over 70% recall for £ = 25. This indicates
that the model performs better for nodes with high degrees, and is a reasonable result because the random
walk process is highly dependent on the out-degree of the source node. Furthermore, a high node degree
provides more positive examples to feed into the training algorithm and conceivably results in a more
generalizable vector of model parameters [3.

One note that deserves some attention is that the recall scores depend heavily on the network structure
(corresponding to the random walk part of the prediction algorithm) and not significantly on the similarity
of videos based on metadata information (corresponding to the edge strengths of the algorithm). In fact,
we discovered that if 3 is set to a zero vector, the prediction recall scores only drop by 10%. This suggests
that the network structure of the YouTube related video network is more telling of the relationship between
related videos rather than the video metadata, at least for Supervised Random Walks.
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7.4 Supervised Learning Algorithms

We trained a logistic regression model on a variety of features. A baseline untrained binary classifier
would uniformly and randomly classify node pairs as edge or no-edge, resulting in an average recall of
approximately 50% and precision of 50%. With looking purely at video metadata and not considering
the graph properties at all, the model averaged around 85 — 90% recall rate (at approximately 59 — 60%
precision for k = 25 and is significantly different from the baseline model p = 1.3734177721008256e — 12).
This high recall with lower precision indicates that the model is too liberal in classifying examples as
having an edge (top right, red). As the number of training examples decreases (increasing k), recall drops
while precision increases. To improve on this model, we combined previously implemented proximity scores
as features as well, including common neighbors, Jaccard, and Adamic/Amar scores. This combination



implementation has better results, with a recall at around 85% and precision close to 100% at k = 25
(statistically different from baseline p = 5.7030447076743596e — 15). Averaged over 10 trials for each k, we
see that precision remains high, while recall fluctuates between 75 — 85% (top right, green). The decrease
in recall as k increases is likely explained by the fact that as k increases, the number of training examples
decreases.

7.5 Comparision and Discussion

Overall, by comparing recall rates between the different algorithms, we find that the supervised learning
method using a combination of video metadata and proximity scores as features does the best. Proximity
scores using preferential attachment and graph distance did the worst (0 to 1 % recall), as bad as our
baseline which is just a random edge prediction. The other proximity scoring methods do a bit better
as they take into account who the neighbors are in some way, not just the number of neighbors. These
proximity scoring methods do reasonably well in that they are simple and do not require training time,
while the downside is that they do not take into account important video metadata such as category or
uploader.

We see that PropFlow is comparable to proximity scores and that using video metadata-based features
when generating weights in the modified PropFlow algorithm increases recall. The benefits of PropFlow
include the depth-limited BFS which speeds up the process and that it also does not require training time.
The recall is comparable to the best of the proximity scoring methods, but with some more features and
hand-tuning of parameters for each feature, the modified PropFlow algorithm has the potential to predict
edges better and faster.

Supervised random walks on average seems to work better on dense graphs (nodes with more edges).
The best results from supervised random walks does even better than the best results from PropFlow or
proximity scoring, but with not enough edges, supervised random walk does poorly in predicting edges
on the YouTube related video network. Using video features does seem to help in recall for supervised
random walks as compared to the previous algorithms.

The supervised learning algorithm using just video metadata as features is comparable to supervised
random walks. Supervised learning actually does well with nodes with less edges, but with it’s low precision,
this is likely due to overfitting. The video features alone do not take into account the graph structure as
proximity scoring does, so adding these proximity scores as features boosts recall while maintaining high
precision. This combination of video meta-data and graph structure does best. This helps us confirm that
traditional link prediction applications are not directly applicable to YouTube related videos networks due
to the different graph structure, including higher clustering coefficient, degree distribution etc. and also
the presence of video properties. We need to use video meta-data in some way or fashion (as we showed
in Supervised Random Walks and Learning) in addition to graph structure in order to predict edges with
high success rate.

8 Conclusion

We do not see small world phenomena in the YouTube related video network, but we found a power law
distribution in degrees. The network has a high clustering coefficient. This is different from other OSNs
which can be explained by the fact that the nodes are videos rather than people and hence, edges are not
quite like friend relationships. In a survey of edge prediction algorithms, we find that a combination of
video metadata and graph structure does the best in predicting edges in the YouTube related video graph,
specifically via using supervised learning, rather than traditional proximity score based approaches.

Future work includes exploring more features to use in the PropFlow algorithm and hand-tuning pa-
rameters for each feature to yield better results. This PropFlow score can also be utilized as another
feature for supervised learning methods to more accurately predict edges. Because video uploader seems
to be a useful feature in supervised random walks and supervised learning, another potential direction
to explore using more user/uploader data as features (which were not present in our data set), as for a
network like YouTube, an uploader is likely to upload videos about related topics.
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