

Topic mash II: assortativity, resilience, link prediction

CS224W

Outline

- Node vs. edge percolation
- Resilience of randomly vs. preferentially grown networks
- Resilience in real-world networks

network resilience

- Q: If a given fraction of nodes or edges are removed...
 - how large are the connected components?
 - what is the average distance between nodes in the components

■ Related to percolation (previously studied on lattices):

edge percolation

- Edge removal
 - bond percolation: each edge is removed with probability (1-p)
 - corresponds to random failure of links
 - targeted attack: causing the most damage to the network with the removal of the fewest edges
 - strategies: remove edges that are most likely to break apart the network or lengthen the average shortest path
 - e.g. usually edges with high betweenness

reminder: percolation in ER graphs

- As the average degree increases to z = 1, a giant component suddenly appears
- Edge removal is the opposite process – at some point the average degree drops below 1 and the network becomes disconnected

Quiz Q:

In this network each node has average degree 4.64, if you removed 25% of the edges, by how much would you reduce the giant component?

edge percolation

50 nodes, 116 edges, average degree 4.64 after 25 % edge removal 76 edges, average degree 3.04 – still well above percolation threshold

node removal and site percolation

Ordinary Site Percolation on Lattices: Fill in each site (site percolation) with probability p

- low p: small islands
- **p critical**: giant component forms, occupying finite fraction of infinite lattice.

p above critical value: giant component occupies an increasingly larger portion of the graph

http://web.stanford.edu/class/cs224w/NetLogo/LatticePercolation.nlogo

Percolation on networks

- Percolation can be extended to networks of arbitrary topology.
- We say the network percolates when a giant component forms.

Random attack on scale-free networks

■ Example: gnutella filesharing network, 20% of nodes removed at random

Targeted attacks on power-law networks

- Power-law networks are vulnerable to targeted attack
- Example: same gnutella network, 22 most connected nodes removed (2.8% of the nodes)

574 nodes in giant component

301 nodes in giant component

random failures vs. attacks

why the difference here for attack vs. failure?

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

effect on path length

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

applied to empirical networks

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

Assortativity

- Social networks are assortative:
 - the gregarious people associate with other gregarious people
 - the loners associate with other loners
- The Internet is disassortative:

Assortative: hubs connect to hubs

Random

Disassortative: hubs are in the periphery

Correlation profile of a network

- Detects preferences in linking of nodes to each other based on their connectivity
- Measure N(k₀,k₁) the number of edges between nodes with connectivities k₀ and k₁
- Compare it to $N_r(k_0, k_1)$ the same property in a properly randomized network

Degree correlation profiles: 2D

source: Sergei Maslov

Average degree of neighbors

■ Pastor-Satorras and Vespignani: 2D plot

Single number

cor(deg(i),deg(j)) over all edges {ij}

$$\rho_{internet}$$
 = -0.189

The Pearson correlation coefficient of nodes on each side on an edge

assortative mixing more generally

- Assortativity is not limited to degree-degree correlations other attributes
 - social networks: race, income, gender, age
 - food webs: herbivores, carnivores
 - □ internet: high level connectivity providers, ISPs, consumers

■ Tendency of like individuals to associate = 'homophily'

Quiz Q:

will a network with positive or negative degree assortativity be more resilient to attack?

Assortativity and resilience

assortative

disassortative

http://web.stanford.edu/class/cs224w/NetLogo/AssortativeResilience.nlogo

Is it really that simple?

- ■Internet?
- terrorist/criminal networks?

Power grid

- Electric power flows simultaneously through multiple paths in the network.
- For visualization of the power grid, check out NPR's interactive visualization:
 - http://www.npr.org/templates/story/story.php?storyId=11099739

Cascading failures

- Each node has a load and a capacity that says how much load it can tolerate.
- When a node is removed from the network its load is redistributed to the remaining nodes.
- If the load of a node exceeds its capacity, then the node fails

Case study: US power grid

Modeling cascading failures in the North American power grid R. Kinney, P. Crucitti, R. Albert, and V. Latora, Eur. Phys. B, 2005

- Nodes: generators, transmission substations, distribution substations
- Edges: high-voltage transmission lines
- 14099 substations:
 - \square N_G 1633 generators,
 - \square N_D 2179 distribution substations
 - \square N_T the rest are transmission substations
- 19,657 edges

Degree distribution is exponential

 $P(k > K) \approx \exp(-0.5K)$

Efficiency of a path

- efficiency e [0,1], 0 if no electricity flows between two endpoints, 1 if the transmission lines are working perfectly
- harmonic composition for a path

$$e_{path} = \left[\sum_{edges} \frac{1}{e_{edge}} \right]^{-1}$$

- path A, 2 edges, each with e=0.5, $e_{path} = 1/4$
- path B, 3 edges, each with e=0.5 e_{path} = 1/6
- path C, 2 edges, one with e=0 the other with e=1, $e_{path} = 0$
- simplifying assumption: electricity flows along most efficient path

Efficiency of the network

- Efficiency of the network:
 - average over the most efficient paths from each generator to each distribution station

$$E = \frac{1}{N_G N_D} \sum_{i \in G_G} \sum_{j \in G_D} \epsilon_{ij}$$

 ε_{ii} is the efficiency of the most efficient path between i and j

capacity and node failure

Assume capacity of each node is proportional to initial load

$$C_i = \alpha L_i(0)$$
 $i = 1, 2..N$

- L represents the weighted betweenness of a node
- Each neighbor of a node is impacted as follows

$$e_{ij}(t+1) = \left\{ \begin{array}{l} e_{ij}(0) / \frac{L_i(t)}{C_i} \text{ if } L_i(t) > C_i \\ e_{ij}(0) \text{ if } L_i(t) \leq C_i \end{array} \right. \quad \text{load exceeds capacity}$$

- Load is distributed to other nodes/edges
- The greater α (reserve capacity), the less susceptible the network to cascading failures due to node failure

power grid structural resilience

efficiency is impacted the most if the node removed is the one with the highest load

highest load generator/transmission station removed

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. B, 2005

Quiz Q:

Approx. how much higher would the capacity of a node need to be relative to the initial load in order for the network to be efficient? (remember capacity $C = \alpha * L(0)$, the initial load).

power grid structural resilience

efficiency is impacted the most if the node removed is the one with the highest load

highest load generator/transmission station removed

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. B, 2005

recap: network resilience

- resilience depends on topology
- also depends on what happens when a node fails
 - e.g. in power grid load is redistributed

Link Prediction and Network Inference

Link Prediction in Networks

■The link prediction task:

Given $G[t_0, t'_0]$ a graph on edges up to time t'_0 , **output** of links (not in $G[t_0, t'_0]$) that are predicted to appear in $G[t_1, t'_1]$

 $G[t_0, t_0']$ $G[t_1, t_1']$

Evaluation:

- $n = |E_{new}|$: # new edges that appear during the test period $[t_1, t_1']$
- Take top n elements of L and count correct edges

Link Prediction via Proximity

■ Predict links in an evolving collaboration network

	training period			Core		
	authors	papers	$collaborations^1$	authors	$ E_{old} $	$ E_{new} $
astro-ph	5343	5816	41852	1561	6178	5751
cond-mat	5469	6700	19881	1253	1899	1150
gr-qc	2122	3287	5724	486	519	400
hep-ph	5414	10254	47806	1790	6654	3294
hep-th	5241	9498	15842	1438	2311	1576

- Core: Because network data is very sparse
 - Consider only nodes with degree of at least 3
 - Because we don't know enough about these nodes to make good inferences
 37

Link Prediction via Proximity

■ Methodology:

- \square For each pair of nodes (x,y) compute score c(x,y)
 - For example, c(x,y) could be the # of common neighbors of x and y
- \square Sort pairs (x,y) by the decreasing score c(x,y)
 - Note: Only consider/predict edges where both endpoints are in the core (deg. ≥ 3)
- \square Predict top n pairs as new links
- See which of these links actually appear in $G[t_1, t'_1]$

Link Prediction via Proximity

- \square Different scoring functions c(x, y) =
 - Graph distance: (negated) Shortest path length
 - □ Common neighbors: $|\Gamma(x) \cap \Gamma(y)|$
 - Jaccard's coefficient: $|\Gamma(x) \cap \Gamma(y)|/|\Gamma(x) \cup \Gamma(y)|$
 - Adamic/Adar: $\sum_{z \in \Gamma(x) \cap \Gamma(y)} 1/\log |\Gamma(z)|$
 - Preferential attachment: $|\Gamma(x)| \cdot |\Gamma(y)|$ of node x
 - PageRank: $r_x(y) + r_y(x)$
 - $\mathbf{r}_{x}(y)$... stationary distribution score of y under the random walk:
 - with prob. 0.15, jump to x
 - with prob. 0.85, go to random neighbor of current node
- \square Then, for a particular choice of $c(\cdot)$
 - \square For every pair of nodes (x,y) compute c(x,y)
 - \square Sort pairs (x,y) by the decreasing score c(x,y)
 - \square Predict top n pairs as new links

Results: Improvement

Results: Common Neighbors

■Improvement over #common neighbors

Supervised Random Walks for Link Prediction

Supervised Link Prediction

- □ Can we learn to predict new friends?
 - Facebook's People You May Know
 - Let's look at the FB data:
 - 92% of new friendships on FB are friend-of-a-friend
 - More mutual friends helps

Backstrom & Leskovec, WSDM'11

Supervised Link Prediction

- Goal: Recommend a list of possible friends
- Supervised machine learning setting:
 - Labeled training examples:
 - For every user s have a list of others she will create links to $\{d_1 \dots d_k\}$ in the future
 - Use FB network from May 2012 and $\{d_1 \dots d_k\}$ are the new friendships you created since then
 - These are the "positive" training examples
 - Use all other users as "negative" example
 - Task:
 - For a given node s, score nodes $\{d_1 \dots d_k\}$ higher than any other node in the network

- "negative" node

Green nodes

are the nodes to which s creates links in the future

Supervised Link Prediction

- How to combine node/edge features and the network structure?
 - \blacksquare Estimate **strength** of each friendship (u, v) using:
 - \blacksquare Profile of user u, profile of user v
 - \blacksquare Interaction history of users u and v
 - This creates a weighted graph
 - Do Personalized PageRank from s and measure the "proximity" (the visiting prob.) of any other node w from s
 - Sort nodes w by decreasing "proximity"

Supervised Random Walks

- Let s be the starting node
- Let $f_{\beta}(u,v)$ be a function that assigns strength a_{uv} to edge (u,v)

$$a_{uv} = f_{\beta}(u, v) = \exp(-\sum_{i} \beta_{i} \cdot \mathbf{x}_{uv}[i])$$

- \square x_{uv} is a feature vector of (u, v)
 - \blacksquare Features of node u
 - \blacksquare Features of node v
 - \blacksquare Features of edge (u, v)
 - $lue{\Box}$ Note: eta is the weight vector we will later estimate!
- lacktriangle Do Random Walk with Restarts from s where transitions are according to edge strengths a_{uv}

"negative" node:

SRW: Prediction

Random Walk with
Restarts on the
weighted graph.
Each node w has a
PageRank proximity p_w

Sort nodes w by the decreasing PageRank score p_w

Recommend top k nodes with the highest proximity p_w to node s

- How to estimate edge strengths?
 - How to set parameters β of $f_{\beta}(u,v)$?
- Idea: Set β such that it (correctly) predicts the known future links

Personalized PageRank

- $\square a_{uv}$ Strength of edge (u,v)
- Random walk transition matrix:

$$Q'_{uv} = \begin{cases} \frac{a_{uv}}{\sum_{w} a_{uw}} & \text{if } (u, v) \in E, \\ 0 & \text{otherwise} \end{cases}$$

$$Q_{ij} = (1 - \alpha)Q'_{ij} + \alpha \mathbf{1}(j = s)$$

- \blacksquare Where with prob. α we jump back to node s
- lacktriangle Compute PageRank vector: $p = p^T Q$
- \blacksquare Rank nodes w by decreasing p_w

"negative" nodes

The Optimization Problem

■ Positive examples

$$D = \{d_1, \dots, d_k\}$$

■ Negative examples $L = \{other nodes\}$

■ What do we want?

$$\min_{\beta} F(\beta) = ||\beta||^2$$

We prefer small weights β to prevent overfitting

such that

$$\forall d \in D, l \in L: p_l < p_d$$

Every positive example has to have higher PageRank score than every negative example

- Note:
 - Exact solution to this problem may not exist
 - So we make the constraints "soft" (i.e., optional)

Making Constraints "Soft"

■ Want to minimize:

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

Loss: h(x) = 0 if x < 0, or x^2 else

Penalty for violating the constraint that $p_d > p_l$

Solving the problem: Intuition

■ How to minimize F?

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

- Given β assign edge weights $a_{uv} = f_{\beta}(u,v)$
- Using $Q = [a_{uv}]$ compute PageRank score p_{β}
- Rank nodes by the decreasing score

Solving the Problem: Intuition

■ How to minimize $F(\beta)$?

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

- \blacksquare Start with some random $\beta^{(0)}$
- lacktriangle Evaluate the derivative of $F(\beta)$ and do a small step in the opposite direction

$$\beta^{(t+1)} = \beta^{(t)} - \eta \frac{\partial F(\beta^{(t)})}{\partial \beta}$$

Repeat until convergence

Optimizing $F(\beta)$

- \square To optimize $F(\beta)$, use gradient descent:
 - \blacksquare Pick a random starting point $\beta^{(0)}$
 - Using current $\beta^{(t)}$ compute edge strenghts and the transition matrix Q
 - \blacksquare Compute PageRank scores p
 - $lue{}$ Compute the gradient with respect to weight vector $eta^{(t)}$
 - Update $\beta^{(t+1)}$

Data: Facebook

■ Facebook Iceland network

- 174,000 nodes (55% of population)
- Avg. degree 168
- Avg. person added 26 friends/month

■ For every node s:

- Positive examples:
 - \square D = { new friendships s created in Nov '09 }
- Negative examples:
 - \blacksquare L = { other nodes s did not create new links to }
- Limit to friends of friends:
 - On avg. there are 20,000 FoFs (maximum is 2 million)!

Experimental setting

■ Node and Edge features for learning:

- Node: Age, Gender, Degree
- **Edge:** Age of an edge, Communication, Profile visits, Co-tagged photos

■ Evaluation:

- Precision at top 20
 - We produce a list of 20 candidates
 - lacktriangle By taking top 20 nodes x with highest PageRank score p_x
 - Measure to what fraction of these nodes s actually links to

Results: Facebook Iceland

- Facebook: Predict future friends
 - Adamic-Adar already works great
 - Supervised Random Walks (SRW) gives slight improvement

Learning Method	Prec@Top20
Random Walk with Restart	6.80
Adamic-Adar	7.35
Common Friends	7.35
Degree	3.25
SRW: one edge type	6.87
SRW: multiple edge types	7.57

Results: Facebook

■2.3x improvement over previous FB-PYMK (People You May Know)

1/22/2010

Results: Co-Authorship

■ Arxiv Hep-Ph collaboration network:

- Poor performance of unsupervised methods
- SRW gives a boost of 25%!

Learning Method	Prec@Top20	
Random Walk with Restart	3.41	
Adamic-Adar	3.13	
Common Friends	3.11	
Degree	3.05	
SRW: one edge type	4.24	
SRW: multiple edge types	4.25	

Topic mash-up write-up

- Network structure matters to resilience
 - and assortativity too
- Link prediction is an interesting and useful task