Topic mash ll: assortativity,
resilience, link prediction

CS224W



O Node vs. edge percolation

O Resilience of randomly vs. preferentially
grown networks

O Resilience in real-world networks



network resilience

O Q: If a given fraction of nodes or edges are removed...

O how large are the connected components?
O what is the average distance between nodes in the components

O Related to percolation (previously studied on lattices):




edge percolation

O Edge removal
O b(c1>nd) percolation: each edge is removed with probability
P
O corresponds to random failure of links

O targeted attack: causing the most damage to the network
with the removal of the fewest edges

O strategies: remove edges that are most likely to break apart the
network or lengthen the average shortest path

O e.g. usually edges with high betweenness



reminder: percolation in ER graphs

» As the average degree increases to
z = 1, a giant component suddenly
appears

« Edge removal is the opposite
process — at some point the average
degree drops below 1 and the
network becomes disconnected

size of giant component

average degree
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In this network each node has average degree 4.64, if you removed 25% of the
edges, by how much would you reduce the giant component?



edge percolation

50 nodes, 116 edges, average degree 4.64
after 25 % edge removal

76 edges, average degree 3.04 — still well above
percolation threshold



node removal and site percolation

Ordinary Site Percolation on Lattices:
Fill in each site (site percolation) with probability p

B low p: smallislands

m p critical: giant component forms, occupying finite fraction of infinite
lattice.

p above critical value: giant component occupies an increasingly larger
portion of the graph

http://web .stanford.edu/class/cs224w/NetlLogo/LatticePercolation.nlogo




Percolation on networks

O Percolation can be extended to networks ot arbitrary
topology.

O We say the network percolates when a giant
component forms.



Random attack on scale-free networks

O Example: gnutella filesharing network, 20%
of nodes removed at random
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574 nodes in giant component 427 nodes in giant component



Targeted aftacks on power-law networks

O Power-law networks are vulnerable to targeted attack

O Example: same gnutella network, 22 most connected nodes
removed (2.8% of the nodes)
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random failures vs. attacks

Exponential
network

Scale-free

network

(WWW,

Internet)

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-Laszlé Barabadsi.
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why the difference here for attack vs. failuree

Nature 406, 378-382(27 July 2000); hitp://www.nature.com/nature/journal/v406/n6794/abs/406378A0.himl



effect on path length
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applied to empirical networks
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Assortativity

O Social networks are assortative:

O the gregarious people associate with other
gregarious people
O the loners associate with other loners

O The Internet is disassortative:

Disassortative:
Assortative: hubs are in the
hubs connect to hubs Random periphery



Correlation profile of a network

O Detects preferences in linking of nodes to
each other based on their connectivity

O Measure N(kj,k ) — the number of edges
between nodes with connectivities ky and k

O Compare it to N, (ky,k{) — the same property
iIn a properly randomized network



Degree correlation profiles: 2D
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Average degree of neighbors

O Pastor-Satorras and Vespignani: 2D plot

average degree !
of the node’ s neighbors ({

nmn

o——0 Internet 1998 _
=——a Generalized BA y=2.2.
¢ Fitness model y=2.25\'
Rl |~ probability
of aquiring
edges is
dependent
on
‘fitness’ +
degree
Bianconi &
Barabasi

degree of node




Single number

K cor(deg(i),deg(j)) over all edges {ij}

Pinternet = -0.189

The Pearson correlation coefficient of nodes on each
side on an edge



assortative mixing more generally

O Assortativity is not limited to degree-degree
correlations other attributes
O social networks: race, income, gender, age
O food webs: herbivores, carnivores

O internet: high level connectivity providers, ISPs,
consumers

O Tendency of like individuals to associate =
‘homophily’



will a network with positive or negative degree assortativity
be more resilient to attack?

assortative disassortative



Assortativity and resilience

assortative disassortative

web.stanford.edu/class/cs224w/NetLogo/AssortativeResilience.nlogo




Is 1t really that simple®e

O Internet?

O terrorist/criminal networks?



O Electric power flows simultaneously through multiple paths in
the network.

O For visualization of the power grid, check out NPR’s interactive
visualization:
http://www.npr.org/templates/story/story.php?storyld=11099739
8




Cascading failures

O Each node has a load and a capacity that
says how much load it can tolerate.

O \When a node is removed from the network
its load is redistributed to the remaining
nodes.

O If the load of a node exceeds its capacity,
then the node fails



Case study: US power grid

Modeling cascading failures in the North American power grid
R. Kinney, P. Crucitti, R. Albert, and V. Latorq, Eur. Phys. B, 2005

O Nodes: generators, transmission substations,
distribution substations

O Edges: high-voltage transmission lines

014099 substations:

O N 1633 generators,
O Np 2179 distribution substations
O N+ the rest are transmission substations

019,657 edges



Degree distribution is exponential
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Efficiency of a path

O efficiency e [0,1], O if no electricity flows between two
endpoints, 1 if the transmission lines are working
perfectly

O harmonic composition for a path

- -1

1
epath = Z
edages eedge

B path A, 2 edges, each with €=0.5, e, = 1/4
m path B, 3 edges, each with e=0.5 e o, = 1/6
m path C, 2 edges, one with e=0 the other with e=1, e 4, = 0

B simplitying assumption: electricity flows along most
efficient path



Efficiency of the network

O Efficiency of the network:

O average over the most efficient paths from each
generator to each distribution station

1
E—NGND Z Z €ij

i€Ga j€GD

gj is the efficiency of the most efficient path between i and |



capacity and node failure

O Assume capacity of each node is proportional to initial load

Ci = OéLz'(O) gi= 1, 2ol
® Lrepresents the weighted betweenness of a node

® Each neighbor of a node is impacted as follows

e.; (t 2 1) L €ij (O)/J—l if L (t) > C load exceeds capacity
N €ij (O) if L;(t) < C;
B Load is distributed to other nodes/edges

® The greater a (reserve capacity), the less susceptible the
network to cascading failures due to node failure



O efficiency is impacted the most if the node removed is the one

power grid structural resilience

with the highest load
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O Approx. how much higher would the
capacity of a node need to be relative
to the initial load in order for the network
to be efficiente (remember capacity C =
o * L(0), the inifial load).



O efficiency is impacted the most if the node removed is the one

power grid structural resilience

with the highest load
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recap: network resilience

O resilience depends on topology

O also depends on what happens when a node
fails

O e.g. in power grid load is redistributed



Link Prediction and

Network Inference



Link Prediction in Networks

O The link prediction task:
O Given G|ty,t,] a graph on edges
up to time t,, output
of links (notin G[ty, ty]) That are
predicted to appear in G[ty, t;]

G[to, t(,)]
OEvaluation: G[ty, 1]
Oxn=|E_| #new edges that appear during

new

the test period [¢tq, t{]

O Take top n elements of L and count correct
edges

36
Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



Link Prediction via Proximity

O Predict links in an evolving collaboration network

training period Core
authors | papers | collaborations! || authors | |Eyua| | |Enew|
astro-ph 5343 5816 41852 1561 6178 5751
cond-mat 5469 6700 19881 1253 1899 | 1150
gT-qC 2122 | 3287 5724 136 519 | 400
hep-ph 5414 | 10254 47306 1790 | 6654 | 3294
hep-th 5241 9498 15842 1438 2311 1576

O Core: Because network data is very sparse
O Consider only nodes with degree of at least 3

O Because we don't know enough about these nodes to
make good inferences 7



Link Prediction via Proximity

O Methodology:

O For each pair of nodes (x,y) compute score c(x,y)

O For example, c(x,y) could be the # of
common neighbors of x and y

O Sort pairs (x,y) by the decreasing score c(x,y)

O Note: Only consider/predict edges where
both endpoints are in the core (deg. = 3)

O Predict top n pairs as new links

0 See which of these links actually
appear in G[t,,t,]

38



Link Prediction via Proximity

O Different scoring functions c(x,y) =
O Graph distance: (nhegated) Shortest path length
O Common neighbors: [['(x) N T'(y)|
O Jaccard’s coefficient: [T(x) nT(y)|/|T(x) UT()|
O Adamic/Adar: 2 crnrey) 1/10g T(2)]

O Preferential attachment: [I'(x)| - [T(y)| ['(x) ... neighbors
O PageRank: . (y) + 1, (x) of node x
O an ... stationary distribution score of y under the random
walk:

O with prob. 0.15, jump to x
O with prob. 0.85, go to random neighbor of current node

O Then, for a particular choice of c()
O For every pair of nodes (x,y) compute c(x,y)

O Sort pairs (x,y) by the decreasing score c(x,y)
O Predict top n pairs as new links

39



Relative performance ratio versus random predictions
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Supervised Random Walks for Link
Prediction




Supervised Link Prediction

O Can we learn to predict new friends?
O Facebook’s People You May Know

O Let’'s look atthe FB data: = ==

O 92% of new friendships on
FB are friend-of-a-friend N

" 'No Path
O More mutual friends helps

888888

Backstrom & Leskovec, WSDM'11



Supervised Link Prediction

= Goal: Recommend a list of possible friends

O Labeled training examples:

O For every user s have a list of others she
will create links 1o {d; ... di}in the future

O Use FB network from May 2012 and {d; ... dx}
are the new friendships you created since then

O These are the “positive” training examples @ “positive” nodes

O Supervised machine learning setting: f

O Use all other users as “negative” example ®“negative” node
O Task: . Green nodes
O For a given node s, score nodes {d; ... d} are the nodes
higher than any other node in the network to which s

creates links in
the future



Supervised Link Prediction

O How to combine node/edge features and
the network structure?

O Estimate strength of each friendship (u, v) using:
O Profile of user u, profile of user v
O Interaction history of users u and v
O This creates a weighted graph

O Do Personalized PageRank from s
and measure the “proximity” (the
visiting prob.) of any other
node w from s

O Sort nodes w by decreasing ® “positive” nodes
" e et ® “negative” nodes
proximity

45



Supervised Random Walks

Oletf s be the starfingnode

Olet fg(u,v) be afunctionthat
assigns strength a,,,, to edge (u, v)

Aupy = fﬁ(u: v) = exp(— 2 Bi - Xypli])
O x,, is afeature vector of (u,v) ® “positive” nodes
O Features of node u ®“negative” node:
O Feafures of node v
O Features of edge (u, v)
O Note: B is the weight vector we will later estimate!

O Do Random Walk with Restarts from s where
transitions are according to edge strengths a,,,

46



SRW: Prediction

Random Walk with
Restarts on the

|:> weighted graph.
Each node w has a

PageRank proximity p,,

Set edge :

=

Network strenaths Sort nodes w by the
4 =f,,g(u v) decreasing PageRank
. " ’ score p,,
O How to estimate edge sirengths?
O How to set parameters g of fy(u,v)? @

. R dtop k
Oldea: Set B such thatit (correctly) | oqaewit the hienest

predicts the known future links proximity p,, to node s

47



Personalized PageRank

Oa,, ....Sirength of edge (u,v)

0 Random walk transition matrix:

o - {Zzﬂavu — if (u,v) € E,
uv |

0 otherwise

O PageRank transition matrix: ® “positive’” nodes
/ . ® “negative” nodes
Qij = (1 — )Qi; +al(j = s)
O Where with prob. a we jump back to node s

O Compute PageRank vector:p = pT 0,

0 Rank nodesw by decreasing p,,

48



The Optimization Problem

O Positive examples

D = {dl”dk}
O examples
O What do we want? We prefer small
. o 2 weights f to prevent ® '‘positive” node
mﬁm F<5) — Hﬁ” overfitting ® “negative” nod
such that

Every positive example has to have

\v/ dGD, ZEL : pl < pd higher PageRank score than every
negative example
O Note:
O Exact solution to this problem may not exist
O So we make the constraints “soft” (i.e., optional)

49



Making Constraints “Soft”

O Want to minimize:

mﬁin F(B) = Z h(pr — pa) + MBI

deD,leL
O Loss: h(x) =0if x <0, or x? else Penalty for
violating the

. constraint
0.9 - that Pa > j9)]

0.8 -
0.7 -

-1 -08 -06 -04 -02 0 02 04 06 08 1

Pi<Pgq Pr=Pi Pi~ Pa .




Solving the problem: Intuition

O How to minimize F?

min F'(5) = Z h(pr — pa) + Al|BII7

B deD,leL

OBoth p,and p, depend on g
O Given g assign edge weights a,,, = fz(u,v)
O Using Q = [a,,] compute PageRank score  pg
O Rank nodes by the decreasing score

O Goal: Want to find g suchthat p,<p,

51



Solving the Problem: Intuition

O How to minimize F(B) ? R
min F'(§) = Z h(pi — pa) + |87 ‘

& deD.,leL
Oldea: ‘

O Start with some random g

O Evaluate the derivative of F(f) and

do a small step in the opposite direction

oF(p®
B+ — (O _ (0,8 )

O Repeat until convergence on




To optimize F(B), use gradient descent:

Pick a random starting point g(®
Using current B compute edge strenghts

11/11/15

and the transition matrix Q
Compute PageRank scores p
Compute the gradient with

respect to weight vector g® |1

Update gD

Jure Leskovec, Stanford CS22
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4AW: Socialand
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Data:; Facebook

O Facebook Iceland network
O 174,000 nodes (55% of population)
O Avg. degree 168 ®
O Avg. person added 26 friends/month

O For every node s:
O Positive examples:
O D = { new friendships s created in Nov ‘09 }
O Negative examples:
O L = {othernodes s did not create new links 1o }
O Limit to friends of friends:

O On avg. there are 20,000 FoFs (maximum is 2
million)!

54
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Experimental setting

O Node and Edge features for learning:
O Node: Age, Gender, Degree

O Edge: Age of an edge, Communication, Profile
visits, Co-tagged photos

O Evaluation:
O Precision at top 20
O We produce a list of 20 candidates

O By taking top 20 nodes x with highest
PageRank score p,

O Measure to what fraction of these nodes
s actually links to

55
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Results: Facebook Iceland

O Facebook: Predict future friends

O Adamic-Adar already works great

O Supervised Random Walks (SRW) gives slight

Improvement
Learning Method Prec(@Top20
Random Walk with Restart 6.80
Adamic-Adar 7.35
Common Friends 7.35
Degree 3.25
SRW: one edge type 6.87
SRW: multiple edge types 7.57

11/11715 Jure Leskovec, Stantord CSZ224W: socialand
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Results: Facebook

02.3x improvement over previous FB-PYMK
(People You May Know)

Fraction of Friending from PYMK

W

1/22/2010 3/13/2010 5/2/2010 6/21/2010 57



Results: Co-Authorship

O Arxiv Hep-Ph collaboration network:

O Poor performance of unsupervised methods

O SRW gives a boost of 25%!

Learning Method Prec(@Top20
Random Walk with Restart 3.41
Adamic-Adar 3.13
Common Friends 3.11
Degree 3.05
SRW: one edge type 4.24
SRW: multiple edge types 4.25

58



Topic mash-up write-up

O Network structure matters to resilience
O and assortativity too

O Link prediction is an inferesting and
useful task



