
Predicting Stock Movements Using Market Correlation Networks

David Dindi, Alp Ozturk, and Keith Wyngarden
{ddindi, aozturk, kwyngard}@stanford.edu

1 Introduction

The goal for this project is to discern whether network properties of financial markets can be used to predict
market dynamics. Building on previous work involving networks derived from market price correlations,
we augment basic price correlation networks with additional information (revenue, sentiment, and news-
flow). Our intuition is that these alternative networks will capture relationships beyond price correlations
(e.g. business model exposures) that could eventually enhance downstream predictive models. The final
insight we aim to provide is a prediction of future market behavior based on features that incorporate both
standard trading information (price, volume, etc.) and market network characteristics (centrality, clustering
coefficient, etc.).

The project methodology composes of three components: structural, analytical, and predictive. In the
structural component, we filter the data to find and visualize the underlying structural motifs of the network.
In the analytical component, additional metrics are computed for graphs built from the full dataset, and
we do statistical testing to see whether our graph features have predicting power for stock prices. These
two components use correlations of both prices and the newly introduced news/sentiment variables when
building networks. They also featurize properties of our market correlation networks for sub-periods of years
or quarters to see how these networks change over time. Finally, the predictive component incorporates
features/metrics generated by the structural and analytical components into a recurrent neural network
(RNN) to predict binary market movements (up/down) over a future period of interest.

2 Related Work

There have been several previous explorations of graphs built from stock market prices, where stocks are
nodes and correlations in price movements are edge weights. Tse, Liu, and Lau (2010)[1] show that this
type of graph built from US equities has power-law degree distributions under sufficiently high correlation
thresholds. The authors built networks from correlations in daily closing prices, price returns, and trade
volumes. All three networks had degree distributions following a power law with sufficiently high thresholds,
though the power law exponent varied. The authors did not attempt to use these networks to predict future
price movements, but instead used high-degree nodes to automatically create new stock indexes to track
performance of the entire market. Their basic network and thresholding setup is the starting point for our
structural and analytical components.

In an earlier paper, Boginski, Butenko, and Pardalos (2004)[2] explored structural differences between a
similar graph structure built over daily price return correlations and the complementary graph containing
edges with correlations below the threshold. The complementary graph was intended to represent inde-
pendent equities which could form a diversified index fund. However, the authors found several structural
properties present in the thresholded network but not the complementary graph, including a high clustering
coefficient and the existence of very high-degree nodes. In addition to exhibiting scale-free behavior, the
thresholded correlation network allowed automatic node clustering, while this task was much more difficult
for the complementary graph. We will keep these advantages in mind by focusing on just the above-threshold
part of any threshold applied to a network.

There is also some previous work on predicting future financial movements from noisy, non-stationary
time series data. Tsoi et al (2001)[3] focused on predicting future foreign exchange rates based on noisy,
low-volume time series data from prior exchange rates, which closely matches our task. We follow some of
the authors’ techniques here, including data range reduction and quantization and the use of RNNs.

Stock price prediction is a common task for new series forecasting methods. The efficient market hy-
pothesis from the field of economics implies that time series of stock prices are unforecastable, since the
market automatically incorporates all information currently known into price. Timmermann and Granger
(2004)[4] explore the efficient market hypothesis with respect to potentially novel forecasting techniques,
noting that new techniques may have short-term success because the knowledge they provide is not immedi-
ately incorporated into the market at scale. However, the authors note that applying a successful forecasting
technique affects prices and causes the technique to self-destruct in the long term. Still, it will be interesting
to determine whether a RNN with market-based features has predictive power within a controlled dataset.

1

3 Data Collection and Preprocessing

We aggregated daily time-series of all 2800 companies traded at the New York Stock Exchange (NYSE)
between January 2010 and October 2015 from Bloomberg Market Data Services. The primary variables
retrieved were closing price, high price, low price, trading volume, market cap, daily number of news stories
and twitter sentiment. Additionally, we obtained descriptive information about every company; this included
field such as the Global Industry Classification Standard (GICS) sector codes as well as the main country of
operation.

3.1 Preprocessing for Model Input

Using raw stock-specific daily data points as features would lead to poor generalization due to the non-
stationarity and noisiness of the time-series data. We thus performed transformations on the raw values
for the basic variables (closing price, number of news stories, etc.) designed to combat each issue before
organizing the data for model input.

3.1.1 Differencing and Dynamic Range Reduction

To handle non-stationarity of raw values, we differenced and normalized, transforming the raw daily time-
series into an absolute daily percent change of the underlying value. We encoded the sign of the percent
change as separate feature, e.g. “Direction of Change in Closing Price.” We then reduced the dynamic range
of each of the transformed time series by applying the log transformation proposed by Tsoi et al [3]:

δ1 =
(xt−1 − xt)

xt−1

x′t = sign(δt) ∗ (log(|δt|) + 1)

3.1.2 Quantization

To further counteract the noisiness of the ensuing time-series, we discretized each variable into a finite number
of bins that correspond to percentile ranges of the data. To illustrate this point further, in a setting where 10
bins are applied, the 5th would be populated by values that fall between the 40th and 50th percentile of the
specific variables. Our motivation for applying these transformations was to reduce noisy continuous data
into discrete levels. Once discretized, time windows within the time series can be thought of as patterns; thus
transforming what would otherwise be a regression task, into a pattern recognition problem. This allows
recurrent neural networks that are designed primarily to process patterns, to achieve higher generalization.
Tsoi et al [3] chose instead to quantize their resulting times series by using a self-organizing map (SOM). We
choose not to follow this approach, due to the extraneous complexity in hyper-parameter optimization that
this would require.

3.1.3 Selecting Data for Model Input

With all continuous variables quantized, we applied a 6:3:1 split of our dataset into training, validation and
testing partitions. We performed this split by partitioning our time series for every company into a finite
number of non-overlapping windows of length w. Within a given window, features taken from day 0 to day
w − 1 served as sequence inputs to our recurrent model that aimed to predict the price direction of the
given company at day w. We randomly assigned every window to either the training, testing or validation
partitions in order to avoid seasonality biases. In other words, as opposed to classifying 2010 to 2012 as our
training period, we randomly selected time windows between 2010-2015, during which every company in that
window will serve as a training example. We did the same for the validation and test sets.

3.2 Preprocessing for Correlation Networks

The raw time-series data retrieved from Bloomberg Market Data Services was also preprocessed to enable
construction of market networks for use in the structural and analytical graph analysis project segments.
Specifically, the data was used to build, for each basic variable and time period, a matrix of variable change
correlations between each pair of stocks.

For a given time period (a particular quarter or year), this process began by filtering out variables that
had undefined values for more than 20% of trading days. Differencing was then performed to turn the series
of raw values for a particular stock and variable into a series of percentage changes between trading days.

2

Figure 1: Network built from correlations in closing price above a 0.975 threshold, colored by industry sector.

Variable xmin α Log-Likelihood

Market cap 1 2.44 -3.1
News heat 1 2.44 -4.4

Number of news stories 1 2.21 -43.5
Closing price 1 2.44 -8.1

High price 1 2.44 -5.6
Low price 1 1.49 -181.1

Twitter sentiment 1 2.17 -47.4
Volume 1 1.50 -135.3

Table 1: Power law fits for the degree distributions of networks built from the full dataset, thresholded at a
0.9 correlation coefficient.

Then for each remaining variable and for each pair of stocks, we calculated the Pearson correlation between
their respective series of daily percentage changes.

Note that stocks were added and removed from the market between the relevant years, 2010-2015. To
ensure correlations were not calculated in the case where one or both stocks had extensive missing data,
we required at least 30 coincidental trading days for the two stocks in the quarterly series and at least 60
coincidental trading days in the annual series.

4 Methodology: Market Correlation Networks

As previously stated, we split our methodology into three components: structural, analytical, and predictive.

4.1 Structural Component

In the structural component, we use correlation thresholds to restrict our market network edges to stocks that
have highly correlated movements in one of our variables. The non-singular connected components of one
such thresholded network over the full 2010-2015 period are shown in Figure 1. Notably, there is a dominant
connected component with companies from a variety of sectors. This cluster is dominated by the financial
sector (28.3% of equities in the component), as also found by Tse et al [1], but there are visible subclusters
from the Consumer Discretionary (14.5%), Industrials (14.2%), Health Care (13.1%), and Utilities (7.3%)
sectors. The next largest connected components are much more homogeneous and represent the Energy and
Materials sectors.

3

Figure 2: Clustering coefficients and modularity scores for networks built from all variables and thresholds.

A key structural property of thresholded market correlation networks found by previous authors is a
power law degree distribution for appropriate correlation thresholds [1][2]. As in Tse et al, we found that
correlation thresholds of 0.85 and 0.9 resulted in degree distributions that were well-fit by power laws. The
power law fits for each variable are given in Table 1. Except for low price and volume, which had worse power
law fits than the other variables, the power law exponents are between 2.17 and 2.44, typical for empirical
data. Several variables had very similar degree distributions at high thresholds and thus very similar power
law fits. That the degree distribution follows a power law suggests that a few equities are highly correlated
(in terms of changes in price, volume, etc.) with the rest of the network, while the majority of stocks are
not very correlated with most other stocks. Intuitively, and as found by previous authors, financial-sector
equities, and especially funds holding a variety of stocks, usually dominate the tail of the degree distributions.
For example, the equities with the 10 highest degrees in a closing price correlation graph over the 2010-2015
period with a threshold of 0.85 are UDR, EQR, ESS, AVG, CPT, EOI, ETG, ETO, ETY, and EVT. With
the exception of AVG (security software), these equities are all either investment funds or real estate firms.

We also explored clustering properties of thresholded graphs for the various variables and thresholding
levels. Figure 2 shows two clustering measures, clustering coefficient and modularity, for all variables over
thresholds between 0.8 and 0.95. Interestingly, Twitter sentiment, trade volume, and news-related variables
lead to better modularity scores than strictly price-related variables, so properties of graphs based on these
variables may help our eventual model (section 4.3) distinguish between network communities more easily
than properties based on price-related variables’ graphs. However, they also had much lower overall clustering
coefficients than graphs built from price-related variables, which tend to have a large, highly connected
component (as we saw in Figure 1).

With these graph-wide structural properties in mind, our goal is to generate stock-specific (and thus
node-specific) graph-based features that can be used as inputs to our prediction model (section 4.3). In
particular, we would like to give the model the preprocessed variable values (section 3.1), some notions of
how central or influential stocks are in our market correlation networks, and the knowledge of which stocks
are connected (have an edge remaining after thresholding) in these networks. With this information, we hope
the model can capture latent market structure and predict a stock’s future price movements based on the
recent movements of its neighboring (highly correlated) stocks and the market as a whole. Therefore, we
computed both a collection of graph-based features and a list of neighboring nodes for each node (stock).

The graph-features chosen are intended to convey numerical measures of a stock’s (node’s) centrality,
connectivity, or membership in larger structures. After exploring the degree distributions of these networks,
we included a node’s degree as well as the number of neighbors at 2, 3, and 4 hops as features. For centrality,
we computed PageRank, betweenness, and closeness (with less extreme thresholding; see the next section).
To capture membership in the dense market core that typically appears in these correlation networks (as
shown earlier in Figure 1), we added a feature for the size of a node’s weakly connected component. To
attempt identification of stocks that bridge market sectors, we added an indicator feature for whether nodes
were articulation points. Finally, to measure local clustering, we calculated the number of triads in which a
stock’s node was a member.

4

Rank Equity PageRank Sector

1 UTF 0.0003976 Financials
2 BDJ 0.00039759 Financials
3 EOS 0.00039758 Financials
4 FEO 0.00039757 Financials
5 NIE 0.00039757 Financials
6 CII 0.00039746 Financials
7 MGU 0.00039745 Financials
8 AVK 0.0003974 Financials
9 NFJ 0.0003974 Financials
10 FFS 0.0003974 Financials

Rank Equity Betweenness Sector

1 UTF 50.125 Financials
2 PMC 48.685 Health Care
3 FLC 48.388 Financials
4 DPM 48.286 Energy
5 GEL 48.121 Energy
6 CII 48.000 Financials
7 BDJ 47.672 Financials
8 MIL 47.592 Industrials
9 KHI 47.485 Financials
10 WMB 47.355 Energy

Table 2: Equities with top PageRank and betweenness centrality for a 0-thresholded network built from
correlations in percent changes in closing price over the entire 2010-2015 period.

Graph-Based Feature Correlated? Causal Variables at p=0.01

Degree at hops 1, 2, 3, 4 no price closing, price high, price low
Number of triad memberships no -
Articulation point indicator no price closing, price low

WCC size no price closing, price high, price low
Closeness no price closing, price high, price low, volume
PageRank no -

Table 3: Correlation and causation testing results between changes in the various graph features and changes
in stock price.

4.2 Analytical Component

For the analytical component, we first analyzed the centrality measures of the full graph (considering every
positive correlation as an edge, but still discarding missing and negative correlations, following findings in
Boginski et al [2]) in order to investigate the companies with the highest centrality. We then performed
statistical analysis on various graph features to see if we could detect any correlation or causation with raw
stock price changes, to determine if any features had predictive value.

4.2.1 Centrality in Full Graph

Table 2 shows the top 10 equity nodes by PageRank and betweenness for a network based on closing price and
all positive correlations. Both centrality measures are dominated by financial companies, which is consistent
with previous work by Tse et al [1]. Financial companies likely dominate as their fortunes are linked directly
to the performance of many other companies (their investments). Additionally, the performance of financial
companies is heavily linked to the performance of the market at large. If stocks in general are rising, then so
will the prices of financial companies. Thus their price is positively correlated with a large number of varied
stocks. This interconnectivity results in high PageRank and betweenness ratings.

Energy companies are also heavily represented in the betweenness table. Looking at figure 1, we see that
energy companies are not very connected with the main connected component of nodes, and instead are very
interconnected between themselves in clusters of their own. Thus, some energy companies end up being large
fish in a small pond and end up with high betweenness.

4.2.2 Correlation and Causality Between Graph Features and Price Movements

To analytically determine whether the graph-based features previously detailed had possible value for our
prediction task, we performed statistical analysis on the time series of graph features with regards to stock
movements. Specifically, we took the quarterly graph-based features for each variable used by the model
(closing price, high price, low price, and volume) and applied differencing to find quarterly percentage
changes. We constructed a similar series of quarterly percentage changes by differencing raw stock prices on
the first and last trading days of each quarter. We concatenated these series across all stocks to gather all
pairs of graph and price percentage changes. We then computed the correlation coefficient of each variable’s
series. In addition, we applied the Granger causality test (lagged F-tests) to these series for lags of 1 and 2
quarters, making sure to adjust the concatenated format so that graph features and prices of different stocks
were never compared. The results of statistical testing are summarized in Table 3.

5

Feature Class Example Feature Example Value

Intrinsic Features (A) Quantized Percent Change in Closing Price Level 1 Positive
Graph Features (B) Closeness Score of Stock Over Prior Period 2.5

Network Locality Features (C) Mean Closing Price Levels of Neighboring Stocks 25% Level 2

Table 4: Summary of feature classes.

Figure 3: Long short-term memory (LSTM) equations.

We found no strong correlations between the quarterly change in graph features and price changes; the
magnitude of the largest correlation coefficient was just 0.177. However, for significance level p=0.01 and
after applying the Bonferroni correction to account for testing multiple feature/variable pairs, the lagged F-
tests found causal relationships between some of the graph features (primarily degree, closeness, and size of
a node’s weakly connected component) and variables (primarily price-related variables) for lags of 1 quarter,
2 quarters, or both. It is worth noting that quarterly data is coarse and that causation without correlation
may merit deeper investigation. However, our tests provide some quantitative basis for including a subset of
the graph features as model inputs.

4.3 Predictive Framework

4.3.1 Featurization

We modeled the daily directional change of the 2800 NASDAQ-listed stocks between 2010 and 2015. Our
dataset is composed of 86,427, 39,285, and 13,095 training, validation and testing examples respectively. We
employ the three classes of features show in Table 4. Class A features are derived from stock-specific daily
data points (e.g. closing price) preprocessed in the fashion outlined in section 3.1. Class B features are
derived from graph metrics of networks computed over the quarter prior to our trade execution date. We
only incorporated metrics that exhibit causality into our Class B features (Table 4). Class C features are
the average quantized Class A feature of all stocks that exhibited a Pearson correlation of 90% to the closing
price of the stock of interest, over the prior quarter. We incorporate Class C features to examine whether a
company’s network locality provide any additional predictive information.

We develop four Recurrent Neural Network (RNN) models that incorporate different combinations of our
features classes (Table 3). RNNs are well-positioned for prediction over financial time series due to their
capacity to internalize and process arbitrary sequences of inputs. However, RNNs tend to forget long-term
information. Given weeks of data, a vanilla RNN would base its prediction mostly on the last few days.

4.3.2 LSTM

To overcome this constraint, we employ the long short-term memory (LSTM) technique.[5] Under LSTM;
gates are applied at each activation unit to preserve long-range memory across our input sequence. The five
mathematical steps preceding the final hidden unit calculation that make up the LSTM unit are shown in
Figure 3.

First, the current input and previous hidden state are linearly combined and non-linearly transformed
to create the New memory cell. Two gates, the Input gate and Forget gate, are then calculated; the first
governs the importance of the current input and the second indicates how much of the previous state must
be remembered or forgotten. The Final memory cell is generated by filtering the New memory cell from
the current state through the Input gate and the New memory cell from the previous state through the
Forget gate. Lastly, the final memory cell is passed through an Output/Exposure Gate to determine which
information to preserve in that unit’s hidden state.

6

4.3.3 Tuning Hyperparameters

With regards to our input features, we optimized for the sequence length and the number of discretization
levels of Class A features. The optimal sequence length was determined by evaluating the precision of a näıve
model that bases its prediction on whether it has seen more ups or downs over the sequence window. For
instance, if in the last 5 days this model had seen more positive trading days than negative ones, it would
predict that the next day would be a positive day. We found that predictions that employed a longer window
performed better than those that did not. We settled on the optimal window size of 25 days that achieved
a precision score of 36%. The fact that this time frame corresponds exactly to one month (25 trading days)
indicates that predictive patterns in stock prices occur over a monthly time scale.

The optimal bin size was determined by evaluating the performance of a shallow 200-d hidden unit LSTM
when supplied with differently discretized Class A features. We found there to be no statistically significant
difference in performance based on discretization if four or more bins are used. This result indicates the
magnitude of stock price changes over a past window is of little consequence in comparison to the directions
of change. We proceeded with 10 bins, due to its natural interpretation as decile percentiles.

With regards to model hyper parameters, we employed a greedy approach to optimization: Starting with
our default 200-d hidden unit shallow LSTM that utilizes only Class A features, we successively optimized for
depth, hidden unit dimension, learning rate, momentum, regularization, mini batches, and training epochs.
Our optimal parameters were as follows: depth 2, hidden dimension size 300, learning rate 1e-4, Nestrov
momentum 0.9, regularization 1e-5, mini batches 100, and training epochs 3. We intuit that the optimal
depth of 2 allows the model to capture patterns that occur at different timescales [6].

5 Results

Metric LSTM-A/B LSTM-A LSTM-A/C LSTM-A/B/C Random Contrarian Optimistic

F1-Score Tot. 55.95 53.91 48.89 51.67 50.28 70.26 62.87
F1-Score Pos. 51.87 49.42 49.30 51.09 46.57 0.00 45.85
F1-Score Neg. 58.20 55.62 42.38 48.36 52.20 54.15 0.00
Precision Tot. 56.00 53.96 48.54 51.40 50.28 54.15 45.85
Precision Pos. 51.92 49.74 45.24 47.54 46.14 0.00 45.85
Precision Neg. 59.78 57.91 53.14 56.39 54.45 54.15 0.00

Recall Tot. 55.90 53.86 49.24 51.94 50.28 100.00 100.00
Recall Pos. 54.35 52.97 57.86 58.43 50.46 - 100.00
Recall Neg. 57.44 54.74 40.62 45.44 50.14 100.00 -

Table 5: Development set results for the LSTM model with various combination of feature classes, as well
as the baseline random, contrarian, and optimistic models. Metrics are given both for all stocks (total) and
broken down by positive and negative movements.

6 Discussion

6.1 Graph Features

Table 5 presents the development results of the four LSTM variants trained using different combination of
feature classes. We observed that LSTM-A/B (a network that uses Class A and Class B features) all other
LSTM variants in overall precision, recall and F1 scores. We observe that the graph features chosen (see
Table 5) due to their passing of the Granger causality test, provided a 2.94% increase in precision over
a model that predicts price-movements based on stock intrinsic features alone. Graph features add new
information about the market dynamics that is not captured by stock intrinsic features. Overall we observe
that the LSTM-A/B outperforms a randomly predicting model in precision by 5.72%. We observe as well
that 54.15% of trading instance in our validation set were negative. On a directional basis, we note that
LSTM-A/B features provide a 5.63%, and 6.07% increase in precision over a contrarian strategy (short only)
and an optimistic strategy (buy and hold) respectively.

6.2 Network Locality Features

Our results further reveal that Class C features (average intrinsic features of a company’s graphical neighbors)
are detrimental to performance. For LSTM-A/C we observe a precision score that is 1.74% lower than of

7

Figure 4: Development (validation) and test set precision results, broken down by sector.

the random strategy, and 7.46% lower than that of LSTM-A/B. By definition, Class C features are highly
correlated to Class A features. We recognize that this high correlation may have led to over-fitting due to
the extraneous degrees of freedom that are supplied to the network. The fact that adding Class C features to
LSTM-A/B, i.e. LSTM-A/B/C, mitigated the loss in generalization, provides further evidence of the utility
of graph features.

6.3 Performance By Sector

On a per-sector basis (see Figure 4) we observe that non-industry stocks (e.g. index stocks such as Exchange
Traded Funds) and Financial Stocks are most amenable to pattern based prediction in our validation set.
We observe, however, that precision drops across all sectors in our test-set. This drop in performance
is a consequence of the fact that our model was trained, validated and tested in three different market
environments. 50% of the trading instances were positive in our training set; 45% were positive in our
validation set; and 58% we positive in our testing set. We recognize that our models are sensitive to the
market environments in which they are trained. We attempted to counteract this bias by randomly assigning
time windows to partitions. A five year period, however, was not sufficient to eliminate the bias completely.
Nonetheless we observe high precision (53.14%) relative to a a random strategy (∼ 50%) for Non-industry
type stocks. We posit that these stocks are more amenable to pattern based prediction, because they track
market indices and are consequently less susceptible to company-specific idiosyncrasies (i.e. catalytic events)
that might offset pattern based predictions.

7 Future Work

Future iterations on this work should first try to improve model generalization error and reduce overfitting.
Using training, development, and testing data of roughly the same general market trend (similar percent of
stocks with upwards vs. downwards movements over a given period of time) would allow for more accurate
measures of model performance. In addition, adding more training data, reducing the size of the feature
space through feature selection or similar techniques, and tuning the model hyperparameters would help
tackle overfitting.

Additional computing power could be used to work with network-derived data at much more granular
periods of time, such as weekly or intraday data, as opposed to the quarterly splits used in this paper.

Another avenue for further improvement involves the compilation of more centrality/connectedness fea-
tures, including those not specific to the stock but rather to the whole network (such as graph diameter).
Additionally, many centrality features were disqualified by being inapplicable to a non-connected graph but
could be adopted for use. Considering that the graph edges often have vastly different correlation values, the
adoption of centrality measures incorporating weighted edges may also be beneficial.

8

8 Team Contributions

David: obtaining and preprocessing data, model setup, model optimization
Keith: structural graph properties, computing graph features for model
Alp: analytical graph properties, statistical feature testing

References

[1] Tse, C. K., Liu, J., and Lau, F. C.M., 2010. A network perspective of the stock market. Journal of
Empirical Finance 17 (2010), p. 659-667.

[2] Boginski, V., Butenko, S., and Pardalos, P. M., 2004. Statistical analysis of financial networks. Compu-
tational Statistics & Data Analysis 48 (2005), p. 431-443.

[3] Giles, C., Lawrence, S., and Tsoi, A., 2001. Noisy Time Series Prediction using a Recurrent Neural
Network and Grammatical Inference. Machine Learning, Volume 44, Number 1

2 , July/August, pp. 161-
183.

[4] Timmermann, A., and Granger, C. W.J., 2004. Efficient market hypothesis and forecasting. International
Journal of Forecasting, Volume 20, Issue 1, January-March 2004, p. 15-27.

[5] Hochreiter, S., and Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation 9, p. 1735-
1780.

[6] Hermans, M., and Schrauwen, B., 2013. Training and Analyzing Deep Recurrent Neural Networks. NIPS
2013. http://machinelearning.wustl.edu/mlpapers/paper files/NIPS2013 5166.pdf

9

