
abotros 1

Connecting the World:

Building a social network recommation system for both
local and global connectedness

Abraham Botros
SUNet ID: abotros

abotros@stanford.edu

Stanford University, Fall 2015 - CS224W Final Project Report

1 Introduction

We all share the same home - this pale blue dot we call
Earth. Yet we allow ourselves to be thoroughly divided
by things such as cultures, skin color, and invisible lines
on the ground. How can we nurture new relationships,
new understanding, and new perspectives in this discon-
nected world? As one possible piece of the solution, with
the rise of online social networks, we are able to instantly
connect with people anywhere around the world - no
longer just people only in our city, state, or even coun-
try. However, such connections are relatively few and far
between, even given that the infrastructure is certainly
there. Thus, to improve on this, here we build a foun-
dation for a social network recommendation system that
can encourage diverse, distant, and yet relevant relation-
ships between users across the globe, in addition to our
familiar nearby neighbors and friends. Our system lever-
ages properties and tools of/for social graphs, user ge-
olocation information, and machine learning to provide
meaningful friend/follower/contact suggestions to users,
with some desirable balance between more local/typical
recommendations and more distant/global suggestions.

In doing all this, we hope that such connections can
foster novel and otherwise unlikely and impractical com-
munication and information exchange, which in turn can
nudge us to move forward in our ability to comprehend,
accept, and grow with people from different locations,
backgrounds, and cultures across the world. We hope
that related future work can provide some contribution,
even if minimal, to creating truly global (as well as local)
connectedness between people across the world, facilitat-
ing people to realize how different yet the same we all
are on this single spaceship we call home.

2 Related work

2.1 YouTube recommendation system

[6] discusses the video recommendation system behind
YouTube circa 2010. The goal of the system in general
is to provide personalized recommendations that help

users find high-quality videos relevant to their interests,
even given the extremely large amount of video data
possessed by YouTube; these recommendations are up-
dated regularly and are based on recent user activity on
the site. Some complications involve: no or very poor
metadata for a video at upload time; videos are usually
relatively short (under 10 minutes in length), leading
to relatively short and noisy user interaction data; and
videos can often go viral quite quickly, requiring con-
stant renewal of recommendations to users.

Figure 1: Visualization using Gephi of network containing users with
locations obtained as in Section 3.1. This is quite representative of the
visualization of the corresponding network for only ego users, which is
therefore not shown here.

In order to accomplish efficient and effective video rec-
ommendation given the environment and the challenges
described above, the system uses a user’s personal ac-
tivity (watched, favorited, liked videos) as seeds and
expands on this set by traversing a co-visitation-based
graph of videos. A co-visitation count for each pair of
videos captures how often they were co-watched within
any user’s session in (usually) the last 24 hours; this
gives a relatedness score that can be used as weights for
edges in a directed graph over the set of all videos that
can then be searched. Ranking then occurs in three
stages: (1) video quality (global view count, overall
rating/favoriting/commenting/etc), (2) user specificity
(consider properties of the seed video in the user’s his-
tory to boost videos that are closely matched with a
user’s unique taste and preferences), and (3) diversifica-
tion (videos that are too similar in the recommended set

1

mailto:abotros@stanford.edu

abotros 2

are removed to further increase diversity).

Evaluation of performance using live A/B testing
showed this approach gave a 200% click-through rate
compared to baseline approaches, showing this system
is successful for YouTube video recommendation.

2.2 Twittomender recommendation system
for Twitter

In [7], the authors create a recommender system to sug-
gest followees for users using the Twitter API. There are
two main modes for this tool: (1) “user search”, where
the user provides query terms to receive a ranked list of
relevant Twitter users, and (2) “user recommendation”,
where the user’s own Twitter profile acts as a query to
generate recommended users to follow.

First, a target user is profiled by collating their recent
tweets, their followees and followers, and their followees’
and followers’ recent tweets. Users are then represented
using weighted term-vectors using TF-IDF weighting by
parsing these tweets or user ID lists accordingly.

Offline tests using the various sources (and also hy-
brids/combinations) over data imported from 20,000
Twitter users were measured based on their “relevant
recommendations” - for each target profile, we count how
many of the recommendations are in the user’s known
followees list (ground-truth; in other words, how often
the recommender suggests people that the target user
is known to have followed). For various output recom-
mendation list sizes (top 5, top 20, etc.), performance
on relevant recommendations is measured via average
precision (average percentage overlap between given rec-
ommendation list and target user’s actual followees-list)
and average relevant recommendation position (the po-
sition of relevant/verifiable recommendations in the out-
put recommendation list). Results across different input
sources are promising, and this is verified in a live trial
with real users using both the “user search” method and
the “user recommendation” method on their own profiles
and picking which of the recommended users they would
actually want to follow.

2.3 Geographic routing in social networks

[8] discusses coming up with improved models for rout-
ing across geography and distances in social networks
(using “rank-based friendship”). The authors use a sub-
set of the LiveJournal blogging social network, consisting
of around 500,000 users with known city locations in the
U.S. and whose friends (and their respective locations,
too) we can readily see. A successful initial routing sim-
ulation is done using the geographically-greedy routing
algorithm “GEOGREEDY” (if person u currently holds
the message and wants to eventually reach a target t,

then she considers her set of friends and chooses as the
next step in the chain the friend in the set who is geo-
graphically closest to t), which yielded a success rate of
13% completion of the chain with an average length of
just over four.

The authors then explore mathematically modeling
the relation between geographic distance and friendship
in the network. For each distance δ, let P (δ) denote the
proportion of pairs u, v separated by distnace d(u, v) = δ
who are friends. As we expect, as δ increases, P (δ)
decreases, indicating that geographic proximity indeed
increases the probability of friendship. At distances
greater than 1000km, the δ-vs-P (δ) curve flattens, in-
dicating some background probability ε of friendship in-
dependent of geography (such as meeting online through
a shared interest, not geography-based meetings like in
the workplace).

However, the authors point out that previous theo-
retical results contradict their finding in the LiveJour-
nal data that the probability f [d(u, v)] of geographic
friendship is roughly proportional to 1/d(u, v)2 (which
explains the finding of short paths by GEOGREEDY).
To reconcile this, the authors show that previous theo-
retical results based solely on distance between people
is insufficient to explain the geographic nature of friend-
ships. Instead, they propose a new model that uses rank
- when examining a friend v of u, the relevant quantity
(rank) is the number of people who live closer to u than
v does, such that: ranku(v) := |{w : d(u,w) < d(u, v)}|.
Then, under the rank-based friendship model, the proba-
bility that u and v are geographic friends is proportional
to the inverse of ranku(v). Such a model is especially
helpful for explaining data that involves message-passing
across geographies with non-uniform populations (such
as from the East Coast, through the more sparse Mid-
west, to the West Coast). This model is shown to pro-
vide a better fit to the LiveJournal network (with an
approximately inverse linear fit from rankv(u) to the
probability that u is a friend of v) than the slopes given
by previous theoretical models, thus suggesting this is
a viable model for more accurately explaining the rela-
tionship between geography and friendship in real-world
networks.

2.4 Differences from current work

The primary goal of the current work is to apply meth-
ods related to those discussed in these previous pub-
lications in order to produce quality recommendations
over a social network, but with the added feature of
considering geographic location and distances between
users when selecting recommendations. The YouTube
and Twitter recommendation systems above do not con-
tain any mention of explicit handling of geographic loca-

2

abotros 3

tion/distance of content. The geographic routing study
certainly does include geographic location/distance in
its work, but deals with probabilities of friendships as a
function of geographic distance, rather than full recom-
mendation over user-specific features, network features,
and geographic distance. Thus, in the current work,
we connect all of these points, developing a social rec-
ommendation system that, in addition to user-specific
and network features, considers geographic distances be-
tween users as a central component when producing new
user recommendations.

3 Technical Details

3.1 Data

We will use a subset of the Twitter social network for
the base for our work. User IDs and directed “followee”
edges (an edge from A to B means A follows B) were
obtained from [4], which contains ego networks for 973
Twitter users, with a full dataset of more than 81,000
nodes and almost 1.8 million edges. However, due to
the extremely low similarity between random users in
the given features in this dataset, the features provided
were unusable for our purposes. On average, users had
13.66 hashtags associated with their profile (hashtags
they had tweeted recently on the social media network);
however, already-connected users shared only about 1.7
hashtag features in common on average, and random
users shared a negligible 0.03 hashtag features on aver-
age. Given these statistics for feature vectors describing
user profiles, recommendation would be quite impracti-
cal; recommendation likely would fail every time if we
have essentially zero features in common between almost
all random users. As a result, we only are able to use
the user IDs and followee edges from this dataset, and
no other data.

From here, we extract location data from user profiles
(Twitter users have a free-form location entry on their
profile they can optionally fill out). We discard users
from our network who either have no location entered,
or who have locations that we are unable to automati-
cally process using the Google Maps API [1]. For users
who do have a location entered, but only an approxi-
mate one (this is the typical case, with U.S. users of-
ten listing their city or state, for example), we obtain
a bounded area from the Google Maps API represent-
ing the total area corresponding to a location query; we
then randomly and uniformly select an exact latitude-
longitude coordinate within the bounded area to rep-
resent the user’s exact location. This randomness will
allow us to compare locations for nearby users without
making the impractical assumption that they are at ex-
actly zero distance from one another (if two users both

list “Stanford, CA”, without any random injection, they
will be given the exact same single latitude-longitude co-
ordinate tuple representing the center of this area).

A visualization of all users with locations after these
steps is shown in Figure 1. In total, we ended up with
56,690 total users that still have valid public accounts
on the network and that also include a valid location on
their profile, with 989,463 edges among them. This in-
cluded a total of 746 ego users, which are the only users
in our set where we have full in-bound/out-bound edge
information and are therefore the only users we will be
focusing on for recommendation (all other users can be
recommended to these ego users, but we will not recom-
mend for these other non-ego users).

It is also worth noting that unfortunately simply
processing all the user profiles and collecting the lo-
cation data ended up consuming a non-trivial portion
of the time spent on this project, from setting up in-
terfaces with the API’s to dealing with imposing rate
limiters (especially Twitter’s, which prevented us from
freely obtaining more information/users/edges in rea-
sonable time). In addition, the author was unable to
find any better datasets (such as ones already containing
locations, tweets, a full graph instead of ego networks,
etc.) due to Twitter’s recent limitations and restrictions
on publicly-available Twitter datasets containing tweets
(see [3] as an example). As a result, we were forced to
download all relevant information (aside from the IDs
and followee edges for the given users given in [4]) man-
ually, step by step.

3.2 Problem details

Given a subset of the Twitter graph (certain users with
locations represented as nodes, and following repre-
sented as edges), and given the data we mention (each
user has an associated numerical ID and location), our
approach can be outlined as follows:

• Computing geographic distances from every ego
user and all other users with locations; see Section
3.3.

• Constructing vectors for each user in the graph de-
scribing that individual’s network-based features;
see Section 3.4.

• Generation of vectors representing topic-interest
probabilities for each user; see Section 3.5.

• For each ego user, construct a ranking/scoring
across users they are not already following based
on network-based features, topic-interest features,
and location features; see Section 3.6.

• Use this ranked list of scores to to propose a small
set of recommendations specific for each ego user;
see Section 3.7.

3

abotros 4

3.3 Geographic location and distance

To begin, we want to compute the geographic distances
between users. Since we will be focusing on recom-
mending only for our ego user subset, we really only
need to compute the distances from each ego user to
all other users with locations. Thus, for each ego user
ue, we have a precomputed map from every other valid-
location user to the current ego user ue. This map is
stored and used for quick look-up as described in Section
3.6. To compute the geographic distance between two
points in latitude-longitude space, we use the Haversine
formula [2]. We then normalize these distances to the
range [0,1], where 0 corresponds to the minimum Haver-
sine distance we observe from ue to any other user, and 1
corresponds to the maximum we observe. Thus, we can
think of a different user having a normalized distance of
0 to ue as being essentially at the same location as ue;
a normalized distance of 1 means the different user is as
far away as possible - on the opposite side of the world.
We denote the normalized distance between an ego user
ue and another user v as Due,v.

3.4 Network features

We use 6 network features to describe any given user u:

• In-degree; here, the number of users following user
u.

• Out-degree; here, the number of users u follows,
or the size of their set of followees.

• Degree; the total number of users u follows and is
followed by.

• Degree centrality; computed as degree of a user di-
vided by (N − 1), where N is the total number of
users with locations in the dataset.

• Closeness centrality; computed as the reciprocal of
the sum of distances from a user to all other users
via shortest paths.

• PageRank; computed according to the now-
common PageRank algorithm, which iteratively
estimates the importance of a user based on the
number and importance of the users connected to
that user.

All these features are computed for each user with
valid location; these features are computed separately
from any other component in our system’s pipeline.
Each feature is independently normalized across all users
(each of the 6 features is normalized only with regards to
itself, but across all users), such that the normalized in-
degree for a given user is in the range [0,1], with 0 and 1
corresponding to the minimum and maximum in-degrees
observed in the network across all users. We denote the
vector of these 6 network features for user u as fnet,u,

where F represents all features, and we are specifically
interested in the network features for user u.

Figure 2: Log degree distribution for full network. Note the log axis
and heavy skew.

As a visualization, see Figure 2 for a histogram of
the (log) degree distributions (across all users). As we
can see, the degree distribution is extremely skewed; al-
most all users have a relatively small degree (1-500), and
there are only a handful of users with very large degrees
in comparison.

3.5 Topic-interest generation

Ideally, we would download numerous (recent) tweets
from each user through the Twitter API, then use some
natural language processing techniques (such as keyword
detection/similarity, sentiment detection, or TF-IDF as
in [7]) and any other related techniques at our dispoal
to discover what topics interest each particular user; we
could then compute similarity between any pair of users
given these descriptive interests. However, this proved
impractical for the purposes of this project, primarily
due to time constraints. Downloading a large number
of tweets would have been time-prohibitive given the
harsh rate limiting in the Twitter API for timeline/tweet
scraping and the large number of users we would need
to do this for; in addition, topic detection for each user
and semantic similarity between users on this dataset
would be large natural language undertakings even on
their own, and thus are certainly out of the scope of this
project. Despite this, we still want to have some notion
of topic-interest description for each user. This will give
us a notion of similarity of interests between users, and
therefore similarity between users and likelihood that a
recommendation/friendship would be fitting.

To accomplish this, we generate synthetic interest vec-
tors to describe each user using 10 latent interest cate-
gories (one can imagine that a corresponding vector in

4

abotros 5

practice for the Twitter graph might correspond to top-
ics such as science, technology, sports, fashion, news,
business, etc.). We first start with the ego users, which
we can think of as the “centers” or “roots” of their re-
spective ego networks. For each ego user, we generate a
vector of 10 random probabilities (each component in the
vector is in the range [0,1]), representing the probabili-
ties that the ego user is interested in each topic (a natu-
ral representation would be that a value of 0 means the
user is certainly not interested in that topic, 0.5 means
we are unsure, and 1 means we are certain they are in-
terested in the corresponding topic). For a given user u,
denote their interest vector Iu.

Then, given the features generated for our ego users,
we iteratively assign interest vectors to each of the users
the ego is following (given we our dataset is based on ego
networks, if we do this for every ego user, we will reach
all possible users in the network). To do this, we have
to make some relatively arbitrary decisions; in particu-
lar, we assert for the purposes of these assignments that,
on average, users follow other users due to similarity in
topic interests about 75% of the time. Since we want to
assign an interest vector Iv to a new user v followed by
the ego u, we loosely propagate u’s interests Iu to v; v is
assigned a vector of probabilities sampled from a multi-
variate Gaussian distribution centered on Iu, with some
moderate amount of noise (we used a diagonal matrix of
0.1 values in practice). The remaining 25% of the time,
we assign a followee of u an entirely random vector of 10
probabilities, not based on Iu.1 An example of possible
interest vectors is shown in Table 1.

User Topic-interest vector, I

u [0.81, 0.04, 0.36, 0.99, 0.43, 0.08, 0.93, 0.49, 0.53, 0.05]

v [0.67, 0.13, 0.35, 0.97, 0.29, 0.00, 1.00, 0.47, 0.76, 0.00]

w [0.79, 0.00, 0.51, 1.00, 0.47, 0.38, 0.95, 0.65, 0.80, 0.00]

x [0.65, 0.77, 0.11, 0.37, 0.88, 0.53, 0.56, 0.20, 0.30, 0.44]

Table 1: Example topic-interest vectors for four users; u is an ego node,
and therefore has its vector Iu generated first randomly. v and w are
two other users that u follows, and that happen to fall into the 75% case
where we generate interest vectors based on the ego’s interests; we can
see that Iv and Iw have vectors relatively similar to Iu. On the other
hand, u also follows x but x falls into the 25% case where we randomly
generate an entirely new interest vector; we can see that Ix is relatively
different from Iu.

3.6 Scoring

Given all the relevant features (geographic distance, net-
work features, and topic-interest vectors, as described in
the previous few sections), we can now compute a score

between an ego user and all other users that encom-
passes weightings of all of these features into a single
compositie scalar score. This will allow us to rank users
for recommendation to the ego based on these composite
scores.

This can be outlined as follows:

1. For each ego user u, we:

(a) For each other user v ∈ V , where V is the set
of all users that have a location and that u
does not already follow:

i. Look-up the precomputed Haversine dis-
tance between u and v, Du,v.

ii. Look-up the precomputed network fea-
tures for v.

iii. Compute the L2-norm between Iv and Iu.
Represent this as ‖Iv, Iu‖.2

iv. Compute the average L2-norm between
Iv and all other users that u already fol-
lows. This tells us how similar/different
Iv is to the interests of all the users we
know u already follows. Represent this
as ‖Iv, Ifollowees of u‖.

As a side note, we mention that, in practice, we ac-
tually have to limit the number of other users in V ; V
is too large otherwise, especially since we theoretically
want to iterate through all v ∈ V for each ego user u.
This quickly becomes intractable. To alleviate this, in
practice, we randomly sample 2,000 users v from V , in-
stead of iterating over the entire space of V .

Combining all of these features gives us a vector of
length 9 (1 for distance, 6 for network features, 1 for di-
rect L2-norm, 1 for averaged L2-norm). We will refer to
this full feature vector as Fu,v, which is specific to each
pair u (the ego user) and v (the user being scored). We
can explicitly write this out as:

Fu,v =

[
Du,v, Fnet,1, Fnet,2, Fnet,3, Fnet,4, Fnet,5, Fnet,6,

‖Iv, Iu‖, ‖Iv, Ifollowees of u‖
]

(1)

We can then take a dot product/weighted linear com-
bination of these features with a vector of weights, where
we can represent our weights as:

W =

[
wD, wN1, wN2, wN3, wN4, wN5, wN6, wI,direct, wI,avg

]
(2)

1We note that these assumptions are indeed assumptions, and future work could be done to develop proper models of interest
similarity between users, or the semantic analysis of actual profiles could be done as mentioned above.

2When computing L2 norms, we note that the larger the result, the greater the difference between the two vectors; when computing
this for two topic-interest vectors, a large result means the corresponding users have very different topic interests and little similarity.

5

abotros 6

Where the wN · terms are the corresponding weights for
the 6 (ordered) network features described in Section
3.4; wI,direct is the weight term for the direct L2-norm
between Iv and Iu; and wI,avg is the weight term for the
averaged L2-norm between Iv and all the interests of the
users u already follows.

wD is a special weighting term for the distance be-
tween two users. In particular, as mentioned in our prob-
lem outline, we want to have essentially two “modes”:
one mode where we recommend users that are similar
in interests and locations and that have strong network
features (call this the “distance-penalizing” mode), and
another mode where we do everything the same but want
to encourage larger distances (the “distance-rewarding”
mode). Based on which mode we are in, we set wD

differently to either demote or promote proportional to
distance between possible recommended users and the
ego user we want to recommend for. Specifically, if we
set wD to a larger negative constant, we can penalize
large distances heavily; if we set wD to a larger positive
constant, we instead reward large distances.3

Given the (unchanging) weighting vector W and our
actual feature vector Fu,v, our weighted linear combina-
tion score for ego user u and v is given simply as the
scalar score, Su,v:

Su,v = W · Fu,v (3)

3.7 Recommending

For a given ego user u, if we have scores Su,v for all
possible v ∈ V , we can easily rank these scores by
sorting them in descending manner. The first entry
in our list will represent some user v∗ ∈ V for which
Su,v ≤ Su,v∗ ∀v ∈ V (i.e., v∗ received the best score);
the second entry will have the second-highest score, etc.

Remembering that we have two “modes” as in Section
3.6:

• For the “distance-penalizing” mode, we compute
scores over all v ∈ V after setting our distance
weight term wD to a negative value to discourage
larger distances.

• For the “distance-rewarding” mode, we do the
same for all v ∈ V , but with a positive wD value
to encourage larger distances.

We keep a separate scoring/recommendation list for
each mode, and sort each of these individually after get-
ting all the appropriate scores. We then take the top
users from each list separately and use these as our fi-
nal recommended user set to the ego user u. Call the

set of recommended users for ego user u in the distance-
penalizing mode Ru,dp; call the set of recommended users
in the distance-rewarding mode Ru,dr. Call the full set
of recommended users Ru.

We have to explicitly hard-code the number of
“distance-rewarding” users we put into our final rec-
ommendation list; we desire to make 20 recommenda-
tions for each ego user, and want 20% of those (4 of
them) to be for longer-distance users from our “distance-
rewarding” recommendations. If we want a total of
|Ru| = 20 recommendations, and want |Ru,dp| = 16
distance-penalizing recommendations and |Ru,dr| = 4
distance-rewarding recommendations, we simply take
these corresponding numbers of users from the top of
their appropriate scoring lists mentioned above.

3.8 Recommendation evaluation

Finally, we want to evaluate our recommendation results
Ru,dp and Ru,dr for a given ego user u (we can then re-
peat this over all ego users). To do so, we look at a few
specific values:

• Average of L2-norms between all r ∈ Ru and u.
Normalized by the minimum and maximum dis-
tances between u and all possible v ∈ V we en-
countered in the previous steps.

• Average of L2-norms between each r ∈ Ru and
all of the users that the ego already follows. Nor-
malized by the minimum and maximum distances
between u and all possible v ∈ V we encountered
in the previous steps.

• Average of each of the 6 network features across all
r ∈ Ru. Note that since the network features are
already normalized, we do not need to normalize
again here.

• Average distance between u and all the users it
already followed, versus the average distance be-
tween u and r ∈ Ru,dp, versus the average distance
between u and r ∈ Ru,dr. Note that since the dis-
tances are already normalized, we do not need to
normalize again here.

• Number of “long-distance recommendations”,
which is the number of recommended users r ∈ Ru

where the distance between u and r is greater or
equal to the average distance between u and all
the users it already followed.

Overall, these metrics give us a fairly holistic view
of how our recommendations did: how similar are their
interests to the ego user and to the users the ego al-
ready follows; how strong are their network features;

3In practice, we used the following weights: wD = −2.5 when penalizing distances, wD = +2.5 when rewarding distances; wN1 = 2.0
for in-degree weighting, wN2 = 0.5 for out-degree weighting, wN3 = 1.0 for degree weighting; wN4 = wN5 = wN6 = 1.0 for central-
ity/PageRank weighting.

6

abotros 7

how well did we recommend closer users when encourag-
ing smaller distances; and how well did we recommend
farther users when encouraging farther distances.

3.9 Implementation

All work was implemented in Python, with the help of
the Snap.py Python library [5] for network node/edge
representation, and a Haversine-computing library [2]
for computing geographic distances between latitude-
longitude locations.

4 Results

Tables 2, 3, and 4 show summary statistics for our en-
tire run over all ego users (and using only 2,000 random
v ∈ V possible recommendation candidates when scor-
ing for a particular ego user u). As a result, to clarify,
the numbers shown are averages (over all ego users) of
averages (over all recommendations for a specific ego
user).

See Figure 3 for a visualization of the distribution
of distances (unnormalized) from ego users to their
previously-existing followees in the network.

Figure 3: Visualization of histogram of distances of all ego users to
their existing followees already present in the network (without any rec-
ommendation). Distances are given in miles.

5 Conclusion

5.1 Analysis

Recalling that smaller L2-norms between topic-interest
vectors correlate to higher similarity, Table 2 shows that
we do relatively well on average for recommending simi-
lar new users to an ego user based on topic-interest vec-
tors; since the numbers are normalized, 0.23345 on the
range [0,1] is relatively good. Unfortunately, we do not
do quite as well for recommending similar-interest users
compared to the ego’s followees, but we expect larger

variance over the set of interests of ego followees any-
way, especially since approximatley 25% of them had
interest vectors that were generated randomly and not
based on the ego.

Table 3 shows our performance on average for our rec-
ommended users in terms of their network features. In
particular, while the numbers seem low at first glance,
we must remember that (1) we are using normalized-
averaged values on the range [0,1], and (2) we have a very
skewed distribution in degree (and as a result, we can
imagine this largely skews all centrality and PageRank
metrics), as we saw in Figure 2. If we look at the normal-
ized average degree (0.01180), for example, we see that
this corresponds to an unnormalized degree of 44.938,
which is on the upper end of the bulk of nodes we see in
the degree distribution. We then must consider that we
had to sample only 2,000 of approximately 57,000 can-
didate recommendation users for each ego user for our
computations to be tractable given the size of our net-
work; given this, it is very likely that an unnormalized
degree of around 40-50 is very much on the upper end
of the possible users we sampled that we could have had
the chance of even selecting as a recommendation. Fu-
ture work would need to be done on breaking down the
three centrality scores (degree centrality, closeness cen-
trality, and PageRank), and comparing them explicitly
to the minimum and maximum values on the network
for these metrics.

Finally, Table 4 shows the overall location-centric re-
sults that are critical to our problem. We see that this
actually worked very well! In particular, beforehand,
our assumptions were confirmed - ego users on average
followed other users that were relatively close to them
(0.27493 on the range [0,1], in particular). Figure 3 fur-
ther confirms this, as we see that an overwhelming ma-
jority of the existing followees for our ego users are rela-
tively close in location to them (shown in unnormalized
distance in the figure). When we penalize larger dis-
tances from the ego user to recommended users, we see
that we got an average normalized distance of 0.07199,
which is quite low (and what we wanted and expected);
however, future work could be done on tweaking the hy-
perparameters to penalize larger distances less extremely
when in the distance-penalizing mode, as this might al-
low us to have more flexibility in choosing users with
better topic-interest similarity and stronger network fea-
tures. That said, when we instead reward larger dis-
tances, which is one of our primary goals in this project,
we see we indeed get larger distances (0.79342 on aver-
age on the range [0,1], so relatively long-distance users
on average); this is exactly what we want. Lastly, we
note that our average count of “long-distance” recom-
mendations as we described in Section 3.8 is exactly

7

abotros 8
Table 2: Summary statistics - topic-interest similarity. Data has already been normalized for each ego user as in Sections 3.6 and 3.7, and averaged
across ego users.

Topic-interest L2-norm, ego Topic-interest L2-norm, ego followees

0.23345 0.54832

Table 3: Summary statistics - network features. Data has already been normalized for each ego user and network feature as in Section 3.4. Note
that a normalized degree of 0.01180 corresponds to approximately an unnormalized degree of 44.938.

In-degree Out-degree Degree Degree centrality Closeness centrality PageRank

0.00619 0.01943 0.01180 0.00987 0.37263 0.00107

what we want, too - on average, we want to recom-
mend 4 out of 20 users that are larger distances away
from the ego user compared to their existing followees,
and our average count of 4.24531 is almost exactly spot-
on. Some noise is likely introduced by users on the
border in one of the two modes (distance-penalizing or
distance-rewarding modes); for example, a user who is
very similar in interests and has very strong network fea-
tures but a medium-to-lower (but not trivial) distance
might still get recommended in the distance-penalizing
mode, bringing the count slightly up (recommending
some medium-distance users that might be just above
the previous-followee average distance).

5.2 Future work

Some future paths to explore regarding this project
include: (1) much more exploration of the hyper-
parameter settings, particular for the weight vector W ’s
components; (2) more analysis of centrality measures,
such as closeness centrality and PageRank score; (3)
cleaner handling of normalized versus unnormalized val-
ues, such that normalized values can still be easily re-
lated at a glance to an intuitive measure of how well a
particular metric did (as mentioned before, this includes
simple additional steps, such as getting the distributions
of centrality scores so we can see where along the spec-
trum our centrality scores lie); and (4) perhaps explore
the redundancy in degree-related network features we
used - is there a use of having several degree-related
metrics, such as in-degree, out-degree, degree, and de-
gree centrality, or would a subset (such as simply degree,
for example) work just as well?

5.3 Closing

Overall, we consider the project a relative success. Un-
fortunately, the author’s time was extremely crunched
when executing this project (had only approximately 3
days after completing the basic data-gathering phase to
work on this project), and so much more is left to be
done and explored in this topic. In general, though,
we were able to accomplish the general goal we were
seeking: build a recommendation system that can rec-

ommend users with a bias towards long-distance users
throughout the world for some subset of the time. We
hope that this base will prove useful in future studies of
network analysis and social network recommendation,
and that ultimately this will somehow prove to be of
some (even miniscule) contribution to some future work
(by the author or others) that will increase the connec-
tivity between all types of people across the face of this
small single planet we call home.

8

abotros 9
Table 4: Summary statistics - location/distance. Data has already been normalized as in Section 3.3. Also see Section 3.8 for details on
terminology, such as “long-distance” recommendations.

Previous followee distance Distance, penalized Distance, rewarded “Long-distance” recommendations
0.27493 0.07199 0.79342 4.24531

References

[1] Google Maps API. https://github.com/

googlemaps/google-maps-services-python,
https://developers.google.com/maps/.

[2] Haversine formula and related Python li-
brary. https://en.wikipedia.org/wiki/

Haversine_formula, https://github.com/

mapado/haversine.

[3] SNAP: Network datasets: 476 million Twit-
ter tweets. https://snap.stanford.edu/data/

twitter7.html.

[4] Snap: Social circles: Twitter data. https://snap.

stanford.edu/data/egonets-Twitter.html.

[5] Snap.py - SNAP for Python. http://snap.

stanford.edu/snappy/index.html.

[6] James Davidson, Benjamin Liebald, Junning Liu,
Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy
Gupta, Yu He, Mike Lambert, Blake Livingston, and
Dasarathi Sampath. The youtube video recommen-
dation system. In Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10,
pages 293–296, New York, NY, USA, 2010. ACM.

[7] John Hannon, Mike Bennett, and Barry Smyth. Rec-
ommending twitter users to follow using content and
collaborative filtering approaches. In Proceedings of
the Fourth ACM Conference on Recommender Sys-
tems, RecSys ’10, pages 199–206, New York, NY,
USA, 2010. ACM.

[8] David Liben-Nowell, Jasmine Novak, Ravi Kumar,
Prabhakar Raghavan, and Andrew Tomkins. Geo-
graphic routing in social networks. Proceedings of the
National Academy of Sciences of the United States of
America, 102(33):11623–11628, 2005.

9

https://github.com/googlemaps/google-maps-services-python
https://github.com/googlemaps/google-maps-services-python
https://developers.google.com/maps/
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://github.com/mapado/haversine
https://github.com/mapado/haversine
https://snap.stanford.edu/data/twitter7.html
https://snap.stanford.edu/data/twitter7.html
https://snap.stanford.edu/data/egonets-Twitter.html
https://snap.stanford.edu/data/egonets-Twitter.html
http://snap.stanford.edu/snappy/index.html
http://snap.stanford.edu/snappy/index.html

	Introduction
	Related work
	YouTube recommendation system
	Twittomender recommendation system for Twitter
	Geographic routing in social networks
	Differences from current work

	Technical Details
	Data
	Problem details
	Geographic location and distance
	Network features
	Topic-interest generation
	Scoring
	Recommending
	Recommendation evaluation
	Implementation

	Results
	Conclusion
	Analysis
	Future work
	Closing

