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Introduction

The story of the United States is a story of migration. From the initial colonization of the
Americas, to the westward migration with manifest destiny, to the California gold rush, vast movements
of people have defined the history of the country for good or ill. In the last century, availability of jobs,
social conditions, and a host of other factors have caused massive internal migrations that have reshaped
the character of the nation. The great migration (1910-1960, see figure 1.) saw six million African
Americans move from the south to the north and midwest in search of better economic opportunities and
less acute racism and exclusion. After 1960, migration to the sunbelt has reshaped the country by shifting
the demographic center of the United States away from the north and midwest and towards sunny and
rapidly growing states like California, Arizona, Florida and Texas. For muchs of the 60s, 70s and 80s,
American cities either shrunk or stagnated as wealthier families migrated to the suburbs. Now this trend
shows signs of reversing as many young professionals are drawn to city centers.

What trend is next? Are we in the midst of the next migration that will change the fabric of our
country? Can we predict where migration flows are headed in the future? Are there interesting
undiscovered migration trends that lurk beneath the data? These are the questions that our project seeks to
answer. We have taken advantage of the wealth of data that the US census bureau has collected on
county to county migration flows over the past three decades. Leveraging this data, we have analyzed the
dynamics of past migration and built a dynamic model that we use to predict future migration. By
applying and extending the computational techniques previously used to study migration patterns, we can
improve our ability to predict future migration patterns, and unearth novel and heretofore unknown
features of the network of internal migration in the United States.

The First Great Migration: The Second Great Migration:
1910-1940 1940-1970
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figure 1. The great migration was one of the largest internal migrations in US history



Related Work

Our approach to analyzing migration networks is heavily indebted to the analytic framework
presented in A universal model for mobility and migration patterns by Filipo Simini, Marta Gonzalez,
Amos Maritan, and Albert Laszlo Barbasi. Their paper presents and summarizes two different models for
predicting commuting (analogous to migration), the gravity model and a model they created, the radiation
model. The authors illustrate the limitations of the gravity model and present solutions in their design of
the radiation model. The authors then go on to demonstrate that the radiation model performs markedly
better than the gravity model when predicting population movements between counties, allowing the
authors to propose it as a new state of the art model for predicting migration flow. However, as figure 2
shows, it is still far from perfect, leaving ample opportunities for a more specialized algorithm to further
improve performance.

It is worth examining the basic intuition of the gravity and radiation models as they form the basis
of our project. The gravity model predicts migration based on a mechanism analogous to the Newtonian
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law of gravity. The gravity model represents the propensity to move between two cities as proportional to
their respective populations over the distance between the two of them. Formally, it is defined as follows:

Tij is the number of individuals that we predict will migrate from city i (the source) to city j (the
destination).
m represents the population at the source, » is the population at the destination, alpha and beta are
adjustable exponents and f{) is a function to model the “distance” between two locations.

The authors extend the gravity model in two ways to create their new and improved radiation
model. Firstly, they take into account the number of people who actually move from place to place in a
given year relative to the entire population. Secondly, they take into account the total population that
lives in the area between the two cities. This is a quite insightful modification--intuitively it makes sense
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that when deciding to move from one city to another, an individual is probably considering a wide range
of cities near the city they actually decide to move to. Formally, the authors define the radiation model
equation as follows:

Here Ti represents the number of people who migrate from city 7 in a given year. Sij represents the
number of people living near cities i and j, specifically the number of people who live inside the circle



centered on city 7 with its radius equal to the distance between city i and j, excluding the people who live
in cities 7 and j themselves.

Also of note is Thomas Schelling’s chapter, Micromotives and Macrobehavior, from Norton
1978, Chapter 4: “Sorting and Mixing.” Schelling’s article looks at how different small motives can sum
up to create macro-phenomena such as segregation. He takes into account how even in the absence of top
down directed efforts at segregation such as discriminatory policies, segregation is still often an inevitable
product because of the dynamics that drive individual decisions. He explains a model that he calls the
self-forming neighborhood model which can explain the way in which neighborhoods become segregated.
Schelling provides an interesting perspective on the sorts of micro level preferences or structures in the
graph that can lead to large structural properties. His frame of analysis and research heavily influences
the way in which we featurize our dataset. We selectively include some network measures and not others
and design augmented network based machine learning features with Schelling’s frame of analysis in
mind.

Model and Algorithmic Method

Our project implements the gravity and migration models presented in Simini, Gonzalez, Maritan, and
Laszlo with the appropriate modifications necessary to apply the models to the US census dataset. We
then build a competing machine learning based model and compare its efficacy to the radiation and
gravity models. We featurize our dataset, incorporating node based features (characteristics like
population) and network features. We then train a model using those features using SGD and linear
regression. By applying machine learning side by side with the gravity and radiation models we hope to
be able to discover the features that make each algorithm efficacious and the features that limit them. We
then hope to be able to propose changes to the gravity and radiation models based on our machine
learning results that can create a maximally effective combined algorithm for predicting migration.

i. Adapting the Gravity and Radiation Models

Adapting the Simini, Gonzalez, Maritan and Laszlo model to the US Census migration dataset requires
myriad changes and optimizations. Below are the mathematical definitions of the gravity and radiation
model:

In the paper, Tij represents the total number of people who are expected to commute between cities i and ;.
We make it applicable to migration by redefining 7ij as the number of people we expect to migrate from
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cities i to city j in a single year (as our dataset shows year to year migration). m and n, which represent



the total populations of cities i and j remain unchanged in our adaptation of the formula. Simini et al set
alpha + beta = 1. Simini et al. define f{7ij) as 4. We use this same function for our baseline
re-implementation of the gravity model.

The radiation model includes the term 7i. Simini et al. define that 77 as the number of people
from city i who commute each day. They define 7i as the population of city 7 times the fraction of the
population of the country as a whole that commutes each day. We define our 7i to be equal to the fraction
of people in a given city that migrate each year (p) times the population of the city. We have empirically
defined p to be .0376 based on the following calculation:

There were 312,295,000 people in the most recent census data. According to the data, 36,324,000

migrated. Subtracting out those who moved within the same county (because our dataset only

takes into account intra-county migration), and those who moved to or from a foreign country, we
are left with 11,746,000 internal migrants, who comprise 3.76% of the US population. Thus we

define 77 to be equal to .0376*mi (the population of city 7).

As mentioned previously, the radiation model defines sij to be the total number of people who live within
a circle of radius rij centered at city i (see figure 3). We define the circle by treating cities i and j as two
points in two dimensional x, y space based on their latitude and longitude. We discount the effect of the
curvature of the earth on the distances and geometry for simplicity and because the distances within the
United States are small enough not to be dramatically affected by the curvature of the earth.
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figure 2 (top left). Simini et al. demonstrate graphically how their model significantly outperforms the
gravity model in predicting migration
figure 3(top right). Simini et al. show how the circle of surrounding counties works in their model



ii. Featurizing the Dataset and Designing our Linear Classifier

After implementing the gravity and radiation models from Simini et al, we worked to design a
competing machine learning application. Our hope was to use the results from the machine learning
migration prediction algorithm to contextualize and suggest improvements in the design of the gravity and
radiation models.

Both the gravity and the radiation model are fundamentally centered on geographic distance. The
gravity model has the parameter rij, representing the geographic distance between two cities. The
radiation model uses 7ij to define sij, a circle that encompasses all the cities. The algorithms are premised
on the intuition that all else being equal, people prefer to move to places that are closer to where the live.
But closeness is not the same as geographic distance. To motivate this understanding, consider the
following example: Palo Alto, East Palo Alto, and Tiburon are cities in the Bay Area. Palo Alto and East
Palo Alto sit adjacent to each other in the south bay area, while Tiburon is about 50 miles away, north of
San Francisco in Marin. Palo Alto and Tiburon are both extremely affluent communities with median
home prices well over two million dollars. East Palo Alto on the other hand, has a significantly lower
median house value (around 600,000). The gravity and radiation model only factor in geographic
distance. As such, they would believe that someone is significantly more likely to move from Palo Alto
to East Palo Alto than from Palo Alto to Tiburon. We however know that this is not the case, someone in
Palo Alto may feel that the community in Tiburon is closer socioeconomically and demographically and
prefer to migrate there even though it is significantly further away geographically. By analyzing the
features we use for our linear classifier and the efficacy they have in improving our results, we hope to be
able to see concrete ways to propose improvements to the gravity and radiation models that can overcome
these limitations.

We decided to implement linear regression using a stochastic gradient descent model trained on
hand selected features. We extracted multiple features from our dataset. We are predicting an edge
feature, migrant flow, with a combination of node and edge features. As such, we sought to design our
features so that they would be relevant for predicting edge characteristics rather than node characteristics.

We reuse distance and population as features even though they show up as parameters in the
gravity and radiation model. We do this because we believe that there may be other more subtle effects of
population besides what the gravity and radiation model capture. Simini et al. view population in analogy
to mass-the more of it there is the more attraction a city exerts on potential migrants. Intuitively there are
likely also other more subtle effects of population at play. For example, maybe people from small towns
are more predisposed to relocate to other small towns or people in cities are more prone to relocate to
midsize suburbs. We try to prime our linear regression model to capture these subtleties by giving it
population as a feature along with auxiliary features such as the product of the population of two cities or
the inverse of its population.

Our model also integrates network features and leverages them as components of our linear
regression model. We use the following features:

e Closeness Centrality
Degree Centrality
Node Cluster Coefficient
Graph Cluster Coefficient
Betweenness Centrality



In Degree

Out Degree

PageRank

e D corresponding to its connected component

Each one of these features offers a unique lens for interpreting the migration data. Closeness centrality
captures cities that are hubs, where connections to people who have migrated there in the past are
plentiful. Degree centrality similarly will capture hubs of the migration graph, but in a subtly different
way. Cities with high degree centrality will be cities with dynamic populations with people freely and
rapidly flowing in and out. The clustering coefficients can capture areas of the graph where there is a
dense network centered around a particular region. This can capture networks of areas where people
move freely and oftenly because of the connections that link the areas. In degree and out degree can
capture cities that are attracting disproportionate numbers of migrants or who are shedding large numbers
of migrants. This can actually serve as an interesting proxy of city ascension or decline as validated by
changes in population. PageRank offers insights into the dynamics of the network-whether there are
cities that are particularly likely to be visited by migrants, namely cities that are likely to draw people at
some portion of their life. Finally, the ID of the connected component feature could help pinpoint the
regionality of certain migration networks or the ways in which

Our linear regression model takes all of these features into account and uses them to predict
volumes of migration flow. We compare this to the results that the gravity and radiation models give us.

iii. Technical Implementation Challenges

Working with a massive dataset has presented us with numerous unforeseen technical challenges. The
US Census data on migration represents a graph with thousands of nodes and millions of edges.
Furthermore, the edges all change for each year of migration represented in the dataset. To mitigate this
challenge, we compile all the data from multiple years (which the census bureau gives us in myriad
separate files) into a single combined file. We then preprocess the data file so, which is written in as a
JSON before we run our main linear regression algorithm. This gives us tremendous runtime
performance improvement. Furthermore, we face challenges with calculating some of the network
features, because they require O(n”2) time. To solve this we calculate our network measures ahead of
time because we are analyzing a static graph.

Results and Findings

We found that our linear classifier significantly outperformed both the gravity and radiation
models in predicting the migration flows between counties. We evaluated all models by comparing their
predicted migration flows to the actual observed migration flows. This gave us a grasp on the different
magnitudes by which the algorithms succeeded or failed in predicting migration. We then looked at our
linear regression model and quantified the degree to which different features affected our predictive
power. By doing this we pinpointed the features that were most useful for the linear regression model,
and thus what we believe to be the most important features impacting migration.

Our model managed to predict migrant flows with 7% standard error, whereas the gravity model
performed atrociously with 19,380 standard error, and the radiation model performed well, but still worse



than our algorithm, with -0.603 standard error. We were surprised by this result. We suspected that our
model would be vulnerable to overfitting, or that it would overemphasize migration to large cities.
Instead, it seems that a simple linear classifier was able to discover and adequately understand the
majority of migration in the United States. Our results demonstrate that in this context the brute power of
machine learning can still outstrip our best dynamical based explanations.

Delving further into the results, we were further surprised to learn that the most effective
predictive features for our linear classifier were not the characteristics the gravity and radiation model
take into account (population, distance etc). We discovered that pagerank and betweeness centrality stood
out far and away as the most informative predictive features for our graph. This means that these two
network measures are capturing profound and relevant insights about the US internal migration network.
This makes intuitive sense for betweeness centrality--a city that is on multiple shortest paths is a city that
commonly attracts migrants from a diverse set of areas and that is deeply embedded in the economic
networks of the United States. PageRank is central for a similar reason. PageRank captures nodes in a
graph that are likely to be visited. In the context of migration, a node that is likely to be visited is a city
that will likely draw a constant and wide ranging stream of migrants over time. Being able to pick up on
these dynamically central cities turns out to be more informative and powerful that pinpointing cities that
simply have high degree centrality.

It is also instructive to look at the network features that did little to improve the performance of
our linear classifier. For one, features like population and distance actually had only a marginal impact on
the performance of the linear classifier. In the end, we actually threw away many of our augmented
features related to distance and population because they significantly slowed down the program without
measurably improving performance. This observation is particularly interesting to us in light of the fact
that both the gravity and the radiation models use population and distance as the central parameters for
their equations. Do we not need these features because the network centrality measures manage to
implicitly encode this information from analyzing the structure of the network? Or is it because
population and distance are actually fundamentally uninformative for predicting population movements?
The answer has eluded us, but our intuition is that it is a little bit of both.

Distance and population must have some bearing on migration. Obviously people are more prone
to move to places that are closer to them, and more likely to move to a big city than a small one. But we
realized with our linear classifier that much of this information is actually already embedded in the graph
itself. The past history of migration--the fact that in the past people have moved from city A to a nearby
city, city B, but not to a far away city, city C, is encoded in the graph. We will have edges from city A to
city B but not from city A to C. By using a dataset as big and expansive as the US Census dataset, we can
largely empirically bootstrap the entirety of the assumptions present in the gravity and radiation model
from empirical data. But because we have observed that removing the specific features added to our
model to account for population and distance do not measurably affect the accuracy of the results our
linear classifier produces, we can deduce that the structure of the migration network exhaustively contains
all the relevant effects of population and distance on migration and including these variables is simply
redundant. This is an intriguing finding--distance and population may have been the driving force or
many of the dynamics and structures of migrations present in the United States, but now today, the past
history of the network and its structure tell us all we need to know without looking at the dynamical
forces at work.



In the end, our project demonstrated that training a machine learning model on the historical
patterns of US migration can create a predictive system that outperforms even the state of the art
dynamical prediction models. This is a nice achievement for networks where we have extensive data such
as the census network--we conclusively show that building a machine learning model with smart features
can lead to quite accurate (7% error) performance. But there are many networks with similar dynamics to
the migration network that don’t come with such an extensive suite of useful training data. For these
networks, we still need to use dynamical models such as gravity and radiation rather than machine
learning based on past network history. But we believe that the results demonstrated by our linear
classifier can offer fertile ideas for extending and improving the gravity and radiation models. We
discovered that a complex set of interdependent network centrality measures presented as features to a
linear regression model offer remarkable predictive power. Going forward, we would hope that further
research could disentangle the interdependencies of these centrality measures and discover a single
parameter or network feature that gives our model it’s extensive predictive power. By finding this model
we could propose a way forward to a better and more expressive form of the gravity and radiation models
and better way to predict migrations in many dynamic contexts.
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