Link Prediction and Network Inference

CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University
http://cs224w.stanford.edu
The link prediction task:

- Given \(G[t_0, t_0'] \) a graph on edges up to time \(t_0' \) output a ranked list \(L \) of links (not in \(G[t_0, t_0'] \)) that are predicted to appear in \(G[t_1, t_1'] \)

Evaluation:

- \(n = |E_{new}| \): # new edges that appear during the test period \([t_1, t_1'] \)
- Take top \(n \) elements of \(L \) and count correct edges
Link Prediction via Proximity

- Predict links in a evolving collaboration network

<table>
<thead>
<tr>
<th></th>
<th>training period</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>authors</td>
<td>papers</td>
</tr>
<tr>
<td>astro-ph</td>
<td>5343</td>
<td>5816</td>
</tr>
<tr>
<td>cond-mat</td>
<td>5469</td>
<td>6700</td>
</tr>
<tr>
<td>gr-qc</td>
<td>2122</td>
<td>3287</td>
</tr>
<tr>
<td>hep-ph</td>
<td>5414</td>
<td>10254</td>
</tr>
<tr>
<td>hep-th</td>
<td>5241</td>
<td>9498</td>
</tr>
</tbody>
</table>

- **Core**: Because network data is very sparse
 - Consider only nodes with in-degree and out-degree of at least 3
Methodology:

- For each pair of nodes \((x,y)\) compute score \(c(x,y)\)

 - For example: # of common neighbors \(c(x,y)\) of \(x\) and \(y\)

- Sort pairs \((x,y)\) by the decreasing score \(c(x,y)\)

 - Note: Only consider/predict edges where both endpoints are in the core (\(deg. > 3\))

- Predict top \(n\) pairs as new links

- See which of these links actually appear in \(G[t_1, t'_{1}]\)
Different scoring functions $c(x, y) =$

- **Graph distance:** (negated) Shortest path length
- **Common neighbors:** $|\Gamma(x) \cap \Gamma(y)|$
- **Jaccard’s coefficient:** $|\Gamma(x) \cap \Gamma(y)| / |\Gamma(x) \cup \Gamma(y)|$
- **Adamic/Adar:** $\sum_{z \in \Gamma(x) \cap \Gamma(y)} 1 / \log |\Gamma(z)|$
- **Preferential attachment:** $|\Gamma(x)| \cdot |\Gamma(y)|$
- **PageRank:** $r_x(y) + r_y(x)$
 - $r_x(y)$... stationary distribution score of y under the random walk:
 - with prob. 0.15, jump to x
 - with prob. 0.85, go to random neighbor of current node

Then, for a particular choice of $c(\cdot)$

- For every pair of nodes (x, y) compute $c(x, y)$
- Sort pairs (x, y) by the decreasing score $c(x, y)$
- **Predict top** n **pairs as new links**
Results: Improvement

Performance score: Fraction of new edges that are guessed correctly.

\[
\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}
\]
Results: Common Neighbors

- Improvement over #common neighbors
Supervised Random Walks for Link Prediction
Can we learn to predict new friends?

- Facebook’s People You May Know
- Let’s look at the data:
 - 92% of new friendships on FB are friend-of-a-friend
 - More common friends helps

Supervised Link Prediction
Goal: Recommend a list of possible friends

Supervised machine learning setting:

- Labeled training examples:
 - For every user s have a list of others she will create links to $\{d_1 \ldots d_k\}$ \textit{in the future}
 - Use FB network from May 2012 and $\{d_1 \ldots d_k\}$ are the new friendships you created since then
 - These are the “positive” training examples
 - Use all other users as “negative” example

Task:

- For a given node s \textbf{score} nodes $\{d_1 \ldots d_k\}$ \textit{higher} than any other node in the network
Supervised Link Prediction

- How to combine node/edge features and the network structure?
 - Estimate **strength** of each friendship \((u, v)\) using:
 - Profile of user \(u\), profile of user \(v\)
 - Interaction history of users \(u\) and \(v\)
 - This creates a **weighted graph**
 - Do **Personalized PageRank** from \(s\)
 and measure the “**proximity**” (the visiting prob.) of any other node \(w\) from \(s\)
 - Sort nodes \(w\) by decreasing “**proximity**”
Let s be the center node

Let $f_\beta(u, v)$ be a function that assigns strength a_{uv} to edge (u, v)

$$a_{uv} = f_\beta(u, v) = \exp(-\sum_i \beta_i \cdot x_{uv}[i])$$

- x_{uv} is a feature vector of (u, v)
 - Features of node u
 - Features of node v
 - Features of edge (u, v)

Note: β is the weight vector we will later estimate!

Do Random Walk with Restarts from s where transitions are according to edge strengths a_{uv}
SRW: Prediction

- **How to estimate edge strengths?**
 - **How to set parameters β of $f_\beta(u,v)$?**
 - **Idea:** Set β such that it (correctly) predicts the known future labels

Network

Set edge strengths

$\alpha_{uv} = f_\beta(u,v)$

Random Walk with Restarts on the weighted graph.

Each node w has a PageRank proximity p_w

Sort nodes by the decreasing PageRank score p_w

Recommend top k nodes with the highest proximity p_w to node s
Personalized PageRank

- a_{uv} Strength of edge (u, v)
- Random walk transition matrix:
 \[
 Q'_{uv} = \begin{cases}
 \frac{a_{uv}}{\sum_w a_{uw}} & \text{if } (u, v) \in E, \\
 0 & \text{otherwise}
 \end{cases}
 \]
- PageRank transition matrix:
 \[
 Q_{ij} = (1 - \alpha)Q'_{ij} + \alpha 1(j = s)
 \]
 - Where with prob. α we jump back to node s
- Compute PageRank vector: $\mathbf{p} = \mathbf{p}^T Q$
- Rank nodes w by decreasing p_w
The Optimization Problem

- **Positive** examples
 \[D = \{ d_1, \ldots, d_k \} \]

- **Negative** examples
 \[L = \{ \text{other nodes} \} \]

- **What do we want?**
 \[\min_{\beta} F(\beta) = ||\beta||^2 \]

 such that
 \[\forall d \in D, l \in L : p_l < p_d \]

- **Note:**
 - Exact solution to this problem may not exist
 - So we make the constrains “soft” (i.e., optional)

Every positive example has to have higher PageRank score than every negative example.
Want to minimize:

\[
\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda \|\beta\|^2
\]

Loss: \(h(x) = 0 \) if \(x < 0 \), or \(x^2 \) else
How to minimize F?

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

Both p_l and p_d depend on β

- Given β assign edge weights $a_{uv} = f_{\beta}(u, v)$
- Using $Q = [a_{uv}]$ compute PageRank scores p_β
- Rank nodes by the decreasing score

Goal: Want to find β such that $p_l < p_d$
How to minimize $F(\beta)$?

$$\min_{\beta} F(\beta) = \sum_{d \in D, l \in L} h(p_l - p_d) + \lambda ||\beta||^2$$

Idea:

- Start with some random $\beta^{(0)}$
- Evaluate the derivative of $F(\beta)$ and do a small step in the opposite direction
 $$\beta^{(t+1)} = \beta^{(t)} - \eta \frac{\partial F(\beta^{(t)})}{\partial \beta}$$
- Repeat until convergence
Gradient Descent

- What’s the derivative \(\frac{\partial F(\beta(t))}{\partial \beta} \)?

\[
\frac{\partial F(\beta)}{\partial \beta} = \sum_{l,d} \frac{\partial h(p_l - p_d)}{\partial \beta} \begin{pmatrix} \frac{\partial p_l}{\partial \beta} \\ \frac{\partial p_d}{\partial \beta} \end{pmatrix} + 2\lambda \beta
\]

- We know:

\[
p = p^T Q \quad \text{that is} \quad p_u = \sum_j p_j Q_{ju}
\]

- So:

\[
\frac{\partial p_u}{\partial \beta} = \sum_j Q_{ju} \frac{\partial p_j}{\partial \beta} + p_j \frac{\partial Q_{ju}}{\partial \beta}
\]

\(F(\beta) = \sum_{d \in D, t \in L} h(p_l - p_d) + \lambda \|\beta\|^2 \)

\(h(x) = \max\{x, 0\}^2 \)

Easy!
Gradient Descent

- **We just got:**
 \[\frac{\partial p_u}{\partial \beta} = \sum_j Q_{ju} \frac{\partial p_j}{\partial \beta} + p_j \frac{\partial Q_{ju}}{\partial \beta} \]

 - Few details:
 - Computing \(\frac{\partial Q_{ju}}{\partial \beta} \) is easy. **Remember:** \(Q'_{uv} = \begin{cases} \frac{a_{uv}}{\sum_w a_{uw}} & \text{if } (u,v) \in E, \\ 0 & \text{otherwise} \end{cases} \)
 - We want \(\frac{\partial p_j}{\partial \beta} \) but it appears on both sides of the equation. Notice the whole thing looks like a PageRank equation: \(x = Q \cdot x + z \)

- **As with PageRank we can use the power-iteration to solve it:**
 - Start with a random \(\frac{\partial p^{(0)}}{\partial \beta} \)
 - Then iterate:
 \[\frac{\partial p^{(t+1)}}{\partial \beta} = Q \cdot \frac{\partial p^{(t)}}{\partial \beta} + \frac{\partial Q_{ju}}{\partial \beta} \cdot p \]
To optimize $F(\beta)$, use gradient descent:

- Pick a random starting point $\beta^{(0)}$
- Using current $\beta^{(t)}$ compute edge strengths and the transition matrix Q
- Compute PageRank scores p
- Compute the gradient with respect to weight vector $\beta^{(t)}$
- Update $\beta^{(t+1)}$
Facebook Iceland network
- 174,000 nodes (55% of population)
- Avg. degree 168
- Avg. person added 26 friends/month

For every node s:
- Positive examples:
 - $D = \{ \text{new friendships} \ s \ \text{created in Nov '09} \}$
- Negative examples:
 - $L = \{ \text{other nodes} \ s \ \text{did not create new links to} \}$
- Limit to friends of friends:
 - On avg. there are 20,000 FoFs (maximum is 2 million)!
Experimental setting

- **Node and Edge features for learning:**
 - **Node:** Age, Gender, Degree
 - **Edge:** Age of an edge, Communication, Profile visits, Co-tagged photos

- **Evaluation:**
 - **Precision at top 20**
 - We produce a list of 20 candidates
 - By taking top 20 nodes x with highest PageRank score p_x
 - Measure to what fraction of these nodes s actually links to
Results: Facebook Iceland

- **Facebook**: Predict future friends
 - Adamic-Adar already works great
 - Supervised Random Walks (SRW) gives slight improvement

<table>
<thead>
<tr>
<th>Learning Method</th>
<th>Prec@Top20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk with Restart</td>
<td>6.80</td>
</tr>
<tr>
<td>Adamic-Adar</td>
<td>7.35</td>
</tr>
<tr>
<td>Common Friends</td>
<td>7.35</td>
</tr>
<tr>
<td>Degree</td>
<td>3.25</td>
</tr>
<tr>
<td>SRW: one edge type</td>
<td>6.87</td>
</tr>
<tr>
<td>SRW: multiple edge types</td>
<td>7.57</td>
</tr>
</tbody>
</table>
Results: Facebook

- 2.3x improvement over previous FB-PYMK

Fraction of Friending from PYMK

- 2.3x improvement over previous FB-PYMK
Results: Co-Authorship

- **Arxiv Hep-Ph collaboration network:**
 - Poor performance of unsupervised methods
 - SRW gives a boost of 25%!

<table>
<thead>
<tr>
<th>Learning Method</th>
<th>Prec@Top20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk with Restart</td>
<td>3.41</td>
</tr>
<tr>
<td>Adamic-Adar</td>
<td>3.13</td>
</tr>
<tr>
<td>Common Friends</td>
<td>3.11</td>
</tr>
<tr>
<td>Degree</td>
<td>3.05</td>
</tr>
<tr>
<td>SRW: one edge type</td>
<td>4.24</td>
</tr>
<tr>
<td>SRW: multiple edge types</td>
<td>4.25</td>
</tr>
</tbody>
</table>
Network Inference
Many networks are implicit or hard to observe:

- Hidden/hard-to-reach populations:
 - Network of needle sharing between drug injection users
- Implicit connections:
 - Network of information propagation in online news media

But we can observe results of the processes taking place on such (invisible) networks:

- Virus propagation:
 - Drug users get sick, and we observe when they see the doctor
- Information networks:
 - We observe when media sites mention information

Question: Can we infer the hidden networks?
There is a hidden diffusion network:

- We only see times when nodes get “infected”:
 - Cascade c_1: (a,1), (c,2), (b,3), (e,4)
 - Cascade c_2: (c,1), (a,4), (b,5), (d,6)

Want to infer who-infects-whom network!
Examples and Applications

- Information diffuses through the blogosphere

- We only see the mention but not the source

- Can we reconstruct (hidden) diffusion network?
Examples and Applications

Virus propagation

- Process: Viruses propagate through the network
- We observe: We only observe when people get sick
- It’s hidden: But NOT who infected whom

Word of mouth & Viral marketing

- Process: Recommendations and influence propagate
- We observe: We only observe when people buy products
- It’s hidden: But NOT who influenced whom

Can we infer the underlying network?
Inferring the Diffusion Network

Network G^*

Cascade c_1

Cascade c_2

Cascade c_3
Goal: Find a graph G that best explains the observed infection times

- Given a graph G, define the likelihood $P(C|G)$:
 - Define a model of information diffusion over a graph
 - $P_c(u,v)$... prob. that u infects v in cascade c
 - $P(c|T)$... prob. that c spread in particular cascade-tree T
 - $P(c|G)$... prob. that cascade c occurred in G
 - $P(C|G)$... prob. that a set of cascades C occurred in G

Questions:

- How to efficiently compute $P(G|C)$? (given a single G)
- How to efficiently find G^* that maximizes $P(G|C)$? (over $O(2^{N^2})$ graphs)
Continuous time cascade diffusion model:

- Cascade \(c \) reaches node \(u \) at \(t_u \) and spreads to \(u \)'s neighbors:
 - With probability \(\beta \) cascade propagates along edge \((u, v)\)
 - And we determine the infection time of node \(v \):

\[
t_v = t_u + \Delta
\]

E.g.: \(\Delta \sim \text{Exponential} \) or \(\text{Power-law} \)

We assume each node \(v \) has only one parent!
Cascade Diffusion Model

- The model for one cascade:
 - Cascade reaches node \(u \) at time \(t_u \), and spreads to \(u \)'s neighbors \(v \):
 With prob. \(\beta \) cascade propagates along edge \((u,v)\) and \(t_v = t_u + \Delta \)
 - Transmission probability:
 \[
P_c(u,v) \propto P(t_v - t_u) \text{ if } t_v > t_u \text{ else } \varepsilon
 \]
e.g.: \(P_c(u,v) \propto e^{-\Delta t} \)
- \(\varepsilon \) captures influence external to the network
 - At any time a node can get infected from outside with small probability \(\varepsilon \)
Cascade Probability

- **Given node infection times & cascade-tree \(T \):**
 - \(c = \{ (a,1), (c,2), (b,3), (e,4) \} \)
 - \(T = \{ a \rightarrow b, a \rightarrow c, b \rightarrow e \} \)

- **Prob. that \(c \) propagates in cascade-tree \(T \):**

 \[
 P(c|T) = \prod_{(u,v) \in E_T} \beta P_c(u,v) \prod_{u \in V_T, (u,x) \in E \setminus E_T} (1 - \beta)
 \]

 - Edges that “propagated”
 - Edges that failed to “propagate”

- **Approximate it as:**

 \[
 P(c|T) \approx \prod_{(u,v) \in E_T} P_c(v,u)
 \]
How likely is cascade c to spread in graph G?

\[c = \{(a, 1), (c, 2), (b, 3), (e, 4)\} \]

Need to consider all possible ways for c to spread over G (i.e., all spanning trees T):

\[P(c|G) = \sum_{T \in \mathcal{T}_c(G)} P(c|T) \approx \max_{T \in \mathcal{T}_c(G)} P(c|T) \]

Consider only the most likely propagation tree.
The Optimization Problem

- Score of a graph G for a set of cascades C:

$$P(C|G) = \prod P(c|G)$$

$$F_C(G) = \sum_{c \in C} \log P(c|G)$$

- Want to find the “best” graph:

$$G^* = \arg\max_{|G| \leq k} F_C(G)$$

The problem is **NP-hard**: MAX-k-COVER [KDD ’10]
Given a cascade c, what is the most likely propagation tree?

$$
\max_{T \in \mathcal{T}_c(G)} P(c|T) = \max_{T \in \mathcal{T}(G)} \sum_{(i,j) \in T} w_c(i,j)
$$

- **Maximum directed spanning tree**
 - Edge (i,j) in G has weight $w_c(i,j) = \log P_c(i,j)$
 - The **maximum weight spanning tree** on infected nodes: Each node picks an in-edge of max weight:
 $$
 = \sum_{i \in V} \max_{Par_T(i)} w(Par_T(i), i)
 $$
 Local greedy selection gives optimal tree!
Theorem:

$F_c(G)$ is monotonic, and submodular

Proof:

- Single cascade c, some edge $e=(r,s)$ of weight w_{rs}
- Show $F_c(G \cup \{e\}) - F_c(G) \geq F_c(G' \cup \{e\}) - F_c(G')$
- Let w_s be max weight in-edge of s in G
- Let w'_s be max weight in-edge of s in G'
- Since $G \subseteq G'$: $w_s \leq w'_s$ and $w_{rs} = w'_{rs}$
- \[
 F_c(G \cup \{(r,s)\}) - F_c(G)
 = \max(w_s, w_{rs}) - w_s
 \geq \max(w'_s, w_{rs}) - w'_s
 = F_c(G' \cup \{(r,s)\}) - F_c(G')
\]
NetInf: The Algorithm

- **The algorithm:**
 - Use **greedy hill-climbing** to maximize $F_C(G)$:
 - Start with empty G_0 (G with no edges)
 - Add k edges (k is parameter)
 - At every step i add an edge to the graph G_i that maximizes the marginal improvement

$$e_i = \arg\max_{e \in G \setminus G_{i-1}} F_C(G_{i-1} \cup \{e\}) - F_C(G_{i-1})$$
Experiments: Synthetic data

- **Synthetic data:**
 - Take a graph G on k edges
 - Simulate info. diffusion
 - Record node infection times
 - Reconstruct G

- **Evaluation:**
 - How many edges of G can NetInf find?
 - Break-even point: 0.95
 - Performance is independent of the structure of $G!$
NetInf achieves $\approx 90\%$ of the best possible network!
With 2x as many infections as edges, the break-even point is already 0.8 - 0.9!
Memetracker dataset:
- 172m news articles
- Aug ‘08 – Sept ‘09
- 343m textual phrases
- Times $t_c(w)$ when site w mentions phrase c

Given times when sites mention phrases
Infer the network of information diffusion:
- Who tends to copy (repeat after) whom
Example: Diffusion Network

- 5,000 news sites:

- Blogs
- Mainstream media
Diffusion Network (small part)

Blogs
- alternet.org
- vikiality.com
- britanniaradio.blogspot.com
- washingtonmonthly.com
- thinkprogress.org
- cinie.wordpress.com
- blogs.abcnews.com
- prolifeblogs.com
- d-day.blogspot.com
- usnews.com
- washingtonpost.com
- americanpowerblog.blogspot.com
- thepoliticalcarnival.blogspot.com
- awakr.com
- theguardian.co.uk
- archive.salon.com
- salon.com
- democraticunderground.com
- seekingalpha.com
- news.cnet.com
- forum.macrumors.com

Mainstream media
- crap713three.blogspot.com
- nosheepleshere.blogspot.com
- rsmccain.blogspot.com
- techdirt.com
- www.techdirt.com
- gle.am
- deadspin.com
- forum.dvdtalk.com
- boxset.com
- gizmodo.com
- joystiq.com
- thekevinpipe.com
- engadget.com
- apple.wowgolddir.com
- kotaku.com

11/19/2014