Community Detection: Modularity Optimization & Spectral Clustering
Modularity of partitioning S of graph G:

- $Q \propto \sum_{s \in S} \left[(\text{# edges within group } s) - (\text{expected # edges within group } s) \right]$

$$Q(G, S) = \frac{1}{2m} \sum_{s \in S} \left[\sum_{i,j \in s} A_{ij} - \sum_{i,j \in s} \frac{k_i k_j}{2m} \right]$$

$$= \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Normalizing const.: $-1 < Q < 1$

Modularity Q tells us whether S represents any significant community structure

- So, let’s find S that maximizes modularity itself!
Method 2: Modularity Optimization

- Let’s split the graph into 2 communities
- Want to directly optimize modularity:
 \[
 \max_S Q(G, S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s} (A_{ij} - \frac{k_i k_j}{2m})
 \]

- Community membership vector \(s \):
 - \(s_i = 1 \) if node \(i \) is in community 1
 - \(s_i = -1 \) if node \(i \) is in community -1

\[
Q(G, s) = \frac{1}{2m} \sum_{i \in N} \sum_{j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \frac{s_i s_j + 1}{2}
= \frac{1}{4m} \sum_{i, j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j
\]
Define:

- Modularity matrix: $B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$
- Membership: $s = \{-1, +1\}$

Then: $Q(G, s) = \frac{1}{4m} \sum_{i \in N} \sum_{j \in N} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$

$= \frac{1}{4m} \sum_{i,j \in N} B_{ij} s_i s_j$

$= \frac{1}{4m} \sum_i s_i \sum_j B_{ij} s_j = \frac{1}{4m} s^T B s$

$= B_{ii} \cdot s$

Task: Find $s \in \{-1, +1\}^n$ that maximizes $Q(G, s)$

Note: each row/col of B sums to 0: $\sum_j A_{ij} = k_i$, $\sum_j \frac{k_i k_j}{2m} = k_i$ but $\sum_j \frac{k_j}{2m} = k_i$
Symmetric matrix A
- is Positive Semidefinite: $A = U \cdot U^T$
- Then solutions λ, x to equation $A \cdot x = \lambda \cdot x$:
 - Eigenvectors x_i ordered by the magnitude of their corresponding eigenvalues λ_i ($\lambda_1 \leq \lambda_2 \ldots \leq \lambda_n$)
 - x_i are orthonormal (orthogonal and unit length)
 - x_i form a coordinate system (basis)
 - If A is Positive Semidefinite: $\lambda_i \geq 0$ (and they always exist)
- Eigendecomposition theorem: Can rewrite matrix A in terms of its eigenvectors and eigenvalues:
 $$A = \sum_i x_i \cdot \lambda_i \cdot x_i^T$$
Modularity Optimization

- **Rewrite:** \(Q(G, s) = \frac{1}{4m} s^T B s \) in terms of its eigenvectors \(x \) and eigenvalues \(\lambda \):

\[
\begin{align*}
 &= s^T \left[\sum_{i=1}^{n} x_i \lambda_i x_i^T \right] s \\
 &= \sum_{i=1}^{n} s^T x_i \lambda_i x_i^T s \\
 &= \sum_{i=1}^{n} \left(s^T x_i \right)^2 \lambda_i
\end{align*}
\]

- So, if there would be no other constraints on \(s \) then to maximize \(Q \), we make \(s = x_n \)

 - **Why?** Because \(\lambda_n \geq \lambda_{n-1} \geq \cdots \)
 - Remember \(s \) has fixed length (\(||s|| = 1 \))!
 - Assigns all weight in the sum to \(\lambda_n \) (largest eigenvalue)
 - All other \(s^T x_i \) terms are zero because of orthonormality
Let’s consider only the first term in the summation (because λ_n is the largest):

$$\max\limits_s Q(G, s) = \sum_{i=1}^n (s^T x_i)^2 \lambda_i \approx (s^T x_n)^2 \lambda_n$$

Let’s maximize: $\sum_{j=1}^n s_j \cdot x_{n,j}$ where $s_j \in \{-1, +1\}$

To do this, we set:

- $s_j = \begin{cases} +1 & \text{if } x_{n,j} \geq 0 \\ -1 & \text{if } x_{n,j} < 0 \end{cases}$ (j−th coordinate of $x_n \geq 0$)

- Continue the bisection hierarchically
Summary: Modularity Optimization

- Fast Modularity Optimization Algorithm:
 - Find leading eigenvector x_n of modularity matrix B
 - Divide the nodes by the signs of the elements of x_n
 - Repeat hierarchically until:
 - If a proposed split does not cause modularity to increase, declare community indivisible and do not split it
 - If all communities are indivisible, stop

- How to find x_n? Power method!
 - Start with random $v^{(0)}$, repeat:
 - When converged ($v^{(t)} \approx v^{(t+1)}$), set $x_n = v^{(t)}$

$$v^{(t+1)} = \frac{Bv^{(t)}}{|Bv^{(t)}|}$$
Girvan-Newman (previous lecture):
- Based on the “strength of weak ties”
- Remove edge of highest betweenness

Modularity:
- Overall quality of the partitioning of a graph
- Use to determine the number of communities

Fast Modularity Optimization:
- Transform the modularity optimization into an eigenvalue problem
Spectral Clustering for Graph Partitioning
Three basic stages:

1) **Pre-processing**
 - Construct a matrix representation of the graph

2) **Decomposition**
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors

3) **Grouping**
 - Assign points to two or more clusters, based on the new representation

But first, let’s define the problem
Graph Partitioning

- **Undirected graph** $G(V, E)$:

- **Bi-partitioning task:**
 - Divide vertices into two disjoint groups A, B

- **Questions:**
 - How can we define a “good” partition of G?
 - How can we efficiently identify such a partition?
What makes a good partition?

- Maximize the number of within-group connections
- Minimize the number of between-group connections
Graph Cuts

- Express partitioning objectives as a function of the “edge cut” of the partition

- **Cut:** Set of edges with only one vertex in a group:

\[
cut(A, B) = \sum_{i \in A, j \in B} w_{ij}
\]

A

[Diagram showing two sets A and B with edges between them.]

cut(A, B) = 2
Graph Cut Criterion

- **Criterion:** Minimum-cut
 - Minimize weight of connections between groups
 \[
 \arg \min_{A,B} \text{cut}(A,B)
 \]
- **Degenerate case:**
- **Problem:**
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity
Graph Cut Criteria

- **Criterion:** Conductance [Shi-Malik, ’97]
 - Connectivity between groups relative to the density of each group
 \[
 \phi(A, B) = \frac{\text{cut}(A, B)}{\min(\text{vol}(A), \text{vol}(B))}
 \]
 \[
 \text{vol}(A): \text{total weight of the edges with at least one endpoint in } A: \text{vol}(A) = \sum_{i \in A} k_i
 \]

 - Why use this criterion?
 - Produces more balanced partitions

- How do we efficiently find a good partition?
 - **Problem:** Computing optimal cut is NP-hard
A: adjacency matrix of undirected G

- $A_{ij} = 1$ if (i, j) is an edge, else 0
- x is a vector in \mathbb{R}^n with components (x_1, \ldots, x_n)
- Think of it as a label/value of each node of G

What is the meaning of $A \cdot x$?

$$
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix} =
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
$$

$$
y_i = \sum_{j=1}^{n} A_{ij} x_j = \sum_{(i,j) \in E} x_j
$$

- Entry y_i is a sum of labels x_j of neighbors of i
What is the meaning of Ax?

- j^{th} coordinate of $A \cdot x$:
 - Sum of the x-values of neighbors of j
 - Make this a new value at node j

- Spectral Graph Theory:
 - Analyze the “spectrum” of matrix representing G
 - **Spectrum**: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i: $\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$

 $$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

 Note: We sort λ_i in ascending (not descending) order!

$$A \cdot x = \lambda \cdot x$$
Example: d-regular graph

- Suppose all nodes in G have degree d and G is connected
- What are some eigenvalues/vectors of G?

$$Ax = \lambda x$$

What is λ? What x?

- Let’s try: $x = (1, 1, \ldots, 1)$
- Then: $Ax = (d, d, \ldots, d) = \lambda x$. So: $\lambda = d$
- We found an eigenpair of G: $x = (1, 1, \ldots, 1)$, $\lambda = d$

Remember the meaning of $y = Ax$:

Note, this is just one eigenpair. An n by n matrix can have up to n eigenpairs.
d is the largest eigenvalue of A

- G is d-regular connected, A is its adjacency matrix
- **Claim:**
 - d is the largest eigenvalue of A,
 - d has multiplicity of 1 (there is only 1 eigenvector associated with eigenvalue d)
- **Proof:** *Why no eigenvalue $d' > d$?*
 - To obtain d we needed $x_{1i} = x_{1j}$ for every i, j
 - This means $x_1 = c \cdot (1,1, \ldots, 1)$ for some const. c
 - **Define:** $S =$ nodes i with maximum possible value of x_{1i}
 - Then consider some vector y which is not a multiple of vector $(1, \ldots, 1)$. So not all nodes i (with labels y_i) are in S
 - Consider some node $j \in S$ and a neighbor $i \notin S$ then node j gets a value strictly less than d
 - So y is not eigenvector! And so d is the largest eigenvalue!
Example: Graph on 2 components

- **What if** G is not connected?
 - G has 2 components, each d-regular
- **What are some eigenvectors?**
 - $x = \text{Put all 1s on } A \text{ and 0s on } B \text{ or vice versa}$
 - $x' = (1, \ldots, 1, 0, \ldots, 0)$ then $A \cdot x' = (d, \ldots, d, 0, \ldots, 0)$
 - $x'' = (0, \ldots, 0, 1, \ldots, 1)$ then $A \cdot x'' = (0, \ldots, 0, d, \ldots, d)$
 - And so in both cases the corresponding $\lambda = d$

- **A bit of intuition:**
 - $\lambda_n = \lambda_{n-1}$
 - $\lambda_n - \lambda_{n-1} \approx 0$

2^{nd} largest eigval. λ_{n-1} now has value very close to λ_n
More intuition:

- If the graph is connected (right example) then we already know that $x_n = (1, \ldots, 1)$ is an eigenvector.
- Since eigenvectors are orthogonal then the components of x_{n-1} sum to 0.
 - Why? Because $x_n \cdot x_{n-1} = \sum_i x_n[i] \cdot x_{n-1}[i]$.
- So we can look at the eigenvector of the 2nd largest eigenvalue and declare nodes with positive label in A and negative label in B.
- But there is still lots to sort out.
Adjacency matrix \(A \):

- \(n \times n \) matrix
- \(A=[a_{ij}], a_{ij}=1 \) if edge between node \(i \) and \(j \)

Important properties:

- Symmetric matrix
- Eigenvectors are real and orthogonal
Degree matrix (D):

- $n \times n$ diagonal matrix
- $D = [d_{ii}]$, $d_{ii} =$ degree of node i
Matrix Representations

- Laplacian matrix \((L)\):
 - **\(n \times n\)** symmetric matrix
 - \[
 L = D - A
 \]

- What is trivial eigenpair?
 - \(x = (1, \ldots, 1)\) then \(L \cdot x = 0\) and so \(\lambda = \lambda_1 = 0\)

- Important properties:
 - **Eigenvalues** are non-negative real numbers
 - **Eigenvectors** are real and orthogonal

11/12/2014
3 Facts about the Laplacian L

(a) All eigenvalues are ≥ 0
(b) $x^T Lx = \sum_{ij} L_{ij} x_i x_j \geq 0$ for every x
(c) $L = N^T \cdot N$

- That is, L is positive semi-definite

Proof: (the 3 facts are saying the same thing)

- (c)\Rightarrow(b): $x^T Lx = x^T N^T N x = (x N)^T (N x) \geq 0$
 - As it is just the square of length of length of $N x$

- (b)\Rightarrow(a): Let λ be an eigenvalue of L. Then by (b)
 $x^T Lx \geq 0$ so $x^T Lx = x^T \lambda x = \lambda x^T x \Rightarrow \lambda \geq 0$

- (a)\Rightarrow(c): is also easy! Do it yourself.
λ_2 as optimization problem

- **Fact:** For symmetric matrix M:

 $$\lambda_2 = \min_x \frac{x^T M x}{x^T x}$$

- **What is the meaning of $\min x^T L x$ on G?**

 - $x^T L x = \sum_{i,j=1}^n L_{ij} x_i x_j = \sum_{i,j=1}^n (D_{ij} - A_{ij}) x_i x_j$

 - $= \sum_i D_{ii} x_i^2 - \sum_{(i,j) \in E} 2x_i x_j$

 - $= \sum_{(i,j) \in E} (x_i^2 + x_j^2 - 2x_i x_j) = \sum_{(i,j) \in E} (x_i - x_j)^2$

 Node i has degree d_i. So, value x_i^2 needs to be summed up d_i times. But each edge (i,j) has two endpoints so we need $x_i^2 + x_j^2$.

11/12/2014

Proof:

\[
\lambda_2 = \min_x \frac{x^T M x}{x^T x}
\]

- Write \(x\) in axes of eigenvects \(w_1, w_2, \ldots, w_n\) of \(M\).
 So, \(x = \sum_i^n \alpha_i w_i\)
- Then we get: \(Mx = \sum_i \alpha_i Mw_i = \sum_i \alpha_i \lambda_i w_i\)
- So, what is \(x^T M x\)?
 \[
x^T M x = (\sum_i \alpha_i w_i)(\sum_i \alpha_i \lambda_i w_i) = \sum_{ij} \alpha_i \lambda_j \alpha_j w_i w_j
 = \sum_i \alpha_i \lambda_i w_i w_i = \sum_i \lambda_i \alpha_i^2
 \]
 To minimize this over all unit vectors \(x\) orthogonal to: \(w = \min\) over choices of \((\alpha_1, \ldots, \alpha_n)\) so that:
 \[\sum \alpha_i^2 = 1\text{ (unit length)}\]
 \[\sum \alpha_i = 0\text{ (orthogonal to }w_1)\]
 To minimize this, set \(\alpha_2 = 1\) and so \(\sum \lambda_i \alpha_i^2 = \lambda_2\)
λ₂ as optimization problem

What else do we know about x?

- \(x\) is unit vector: \(\sum_i x_i^2 = 1\)
- \(x\) is orthogonal to 1\(^{st}\) eigenvector \((1, \ldots, 1)\) thus: \(\sum_i x_i \cdot 1 = \sum_i x_i = 0\)

Remember:

\[
\lambda_2 = \min \sum_{(i,j) \in E} (x_i - x_j)^2 \quad \text{subject to} \quad \sum_i x_i = 0
\]

We want to assign values \(x_i\) to nodes \(i\) such that few edges cross 0.
(we want \(x_i\) and \(x_j\) to subtract each other)

Balance to minimize
Find Optimal Cut [Fiedler’73]

- Back to finding the optimal cut
- Express partition \((A,B)\) as a vector
 \[
 y_i = \begin{cases}
 +1 & \text{if } i \in A \\
 -1 & \text{if } i \in B
 \end{cases}
 \]
- We can minimize the cut of the partition by finding a non-trivial vector \(x\) that minimizes:
 \[
 \arg \min_{y \in [-1,+1]^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2
 \]

Can’t solve exactly. Let’s relax \(y\) and allow it to take any real value.
Rayleigh Theorem

\[
\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T Ly
\]

- \(\lambda_2 = \min_y f(y) \): The minimum value of \(f(y) \) is given by the 2\(^{nd} \) smallest eigenvalue \(\lambda_2 \) of the Laplacian matrix \(L \)
- \(x = \arg \min_y f(y) \): The optimal solution for \(y \) is given by the corresponding eigenvector \(x \), referred as the Fiedler vector
Suppose there is a partition of G into A and B where $|A| \leq |B|$, s.t. $\alpha = \frac{(\# \text{ edges from } A \text{ to } B)}{|A|}$ then $\lambda_2 \leq 2\alpha$

This is the approximation guarantee of the spectral clustering: Spectral finds a cut that has at most twice the conductance as the optimal one of conductance α.

Proof:

- Let: $a=|A|$, $b=|B|$ and $e=\# \text{ edges from } A \text{ to } B$
- Enough to choose some x_i based on A and B such that:
 \[
 \lambda_2 \leq \frac{\sum (x_i-x_j)^2}{\sum_i x_i^2} \leq 2\alpha \quad \text{(while also } \sum_i x_i = 0)\]

Note: $|A|<|B|$
Proof (continued):

1) Let’s set:
\[x_i = \begin{cases}
-\frac{1}{a} & \text{if } i \in A \\
\frac{1}{b} & \text{if } i \in B
\end{cases} \]

Let’s quickly verify that \(\sum x_i = 0 \):
\[a \left(-\frac{1}{a} \right) + b \left(\frac{1}{b} \right) = 0 \]

2) Then:
\[\frac{\sum (x_i - x_j)^2}{\sum x_i^2} = \frac{\sum_{i \in A, j \in B} (\frac{1}{b} + \frac{1}{a})^2}{a \left(-\frac{1}{a} \right)^2 + b \left(\frac{1}{b} \right)^2} = e \cdot \frac{(\frac{1}{a} + \frac{1}{b})^2}{\frac{1}{a} + \frac{1}{b}} = \]
\[e \left(\frac{1}{a} + \frac{1}{b} \right) \leq e \left(\frac{1}{a} + \frac{1}{a} \right) = e \frac{2}{a} \leq 2 \alpha \]

Which proves that the cost achieved by spectral is better than twice the OPT cost.

\[e \ldots \text{number of edges between } A \text{ and } B \]
Putting it all together: The Cheeger inequality

\[\frac{\alpha^2}{2k_{\text{max}}} \leq \lambda_2 \leq 2\alpha \]

where \(k_{\text{max}} \) is the maximum node degree in the graph

- Note we only provide the 1\text{st} part: \(\lambda_2 \leq 2\alpha \)
- We did not prove \(\frac{\alpha^2}{2k_{\text{max}}} \leq \lambda_2 \)
- Overall this always certifies that \(\lambda_2 \) always gives a useful bound
So far...

- **How to define a “good” partition of a graph?**
 - Minimize a given graph cut criterion

- **How to efficiently identify such a partition?**
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph

- **Spectral Clustering**
Three basic stages:

1) **Pre-processing**
 - Construct a matrix representation of the graph

2) **Decomposition**
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors

3) **Grouping**
 - Assign points to two or more clusters, based on the new representation
1) **Pre-processing:**
- Build Laplacian matrix L of the graph

2) **Decomposition:**
- Find eigenvalues λ and eigenvectors x of the matrix L
- Map vertices to corresponding components of λ_2

How do we now find the clusters?
3) **Grouping:**
- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two

How to choose a splitting point?
- Naïve approaches:
 - Split at 0 or median value
- More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>

Split at 0:
- **Cluster A:** Positive points
- **Cluster B:** Negative points
Example: Spectral Partitioning
Example: Spectral Partitioning

Components of x_2

Value of x_2

Rank in x_2
Example: Spectral partitioning

Components of x_1

Components of x_3
How do we partition a graph into k clusters?

Two basic approaches:

- **Recursive bi-partitioning** [Hagen et al., ’92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable

- **Cluster multiple eigenvectors** [Shi-Malik, ’00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...
Why use multiple eigenvectors?

- **Approximates the optimal cut** [Shi-Malik, ’00]
 - Can be used to approximate optimal k-way normalized cut
- **Emphasizes cohesive clusters**
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to “approximate a clustering”
- **Well-separated space**
 - Transforms data to a new “embedded space”, consisting of k orthogonal basis vectors
 - Multiple eigenvectors prevent instability due to information loss
Many other partitioning methods

- **METIS:**
 - Heuristic but works really well in practice
 - http://glaros.dtc.umn.edu/gkhome/views/metis

- **Graclus:**
 - Based on kernel k-means

- **Louvain:**
 - Based on Modularity optimization

- **Clique percorlation method:**
 - For finding overlapping clusters
 - http://angel.elte.hu/cfinder/