Announcements:
1) HW3: Due 9:30am Friday 11/7
 Snap site was down (Gates network problems)
 We give you 1 extra day if you are using a late period you still have to submit by Tue 9:30am)
2) HW4 has been posted
3) Project milestones due in 1 week
 We expect ~50% project completed
 Also no late periods

Kronecker Graphs
Macroscopic Evolution of Networks
How do networks evolve at the macro level?

- What are global phenomena of network growth?

Questions:

- What is the relation between the number of nodes $n(t)$ and number of edges $e(t)$ over time t?
- How does diameter change as the network grows?
- How does degree distribution evolve as the network grows?
Network Evolution

- $N(t)$... nodes at time t
- $E(t)$... edges at time t
- Suppose that
 \[N(t + 1) = 2 \cdot N(t) \]
- Q: what is:
 \[E(t + 1) = ? \quad \text{Is it } 2 \cdot E(t)? \]
- A: More than doubled!
 - But obeying the Densification Power Law
Q1) Network Evolution

- What is the relation between the number of nodes and the edges over time?
- First guess: constant average degree over time
- Networks are denser over time
- Densification Power Law:

\[E(t) \propto N(t)^a \]

\(a \) ... densification exponent (1 ≤ a ≤ 2)
Densification Power Law

- the number of edges grows faster than the number of nodes – **average degree is increasing**

\[E(t) \propto N(t)^a \]

or equivalently

\[\frac{\log(E(t))}{\log(N(t))} = \text{const} \]

- densification exponent: \(1 \leq a \leq 2\):
 - \(a=1\): linear growth – constant out-degree (traditionally assumed)
 - \(a=2\): quadratic growth – fully connected graph
Prior models and intuition say that the network diameter slowly grows (like \(\log N \)).

Diameter shrinks over time:
- As the network grows, the distances between the nodes slowly decrease.

How do we compute diameter in practice?
- **Long paths**: Take 90\(^{th}\)-percentile or average path length (not the maximum)
- **Disconnected components**: Take only largest component or average only over connected pairs of nodes.
Diameter of a Densifying G_{np}

Is shrinking diameter just a consequence of densification?

Densifying random graph has increasing diameter

\Rightarrow There is more to shrinking diameter than just densification!
Is it the degree sequence?

Compare diameter of a:

- Real network (red)
- Random network with the same degree distribution (blue)

Densification + degree sequence gives shrinking diameter
How does degree distribution evolve to allow for densification?

- **Option 1)** Degree exponent γ_t is constant:
 - **Fact 1:** If $\gamma_t = \gamma \in [1, 2]$, then: $\alpha = 2/\gamma$

A consequence of what we learned in the Power law lecture:
- Power-laws with exponents <2 have infinite expectations.
- So, by maintaining constant degree exponent α the average degree grows.
- How does degree distribution evolve to allow for densification?
- Option 2) γ_t evolves with graph size n:
 - **Fact 2:** If $\gamma_t = \frac{4n^{x-1}-1}{2n^{x-1}1}$, then: $\alpha = x$

Notice: $\gamma_t \rightarrow 2$ as $n_t \rightarrow \infty$

Remember, the expected degree in a power law is:

$$E[X] = \frac{\gamma_t - 1}{\gamma_t - 2} x_m$$

So γ_t has to decay as a function of graph size n_t for the avg. degree to go up.
Kronecker Graphs Model
Models of Networks

- What is the goal of modeling networks?
 - Discover structural properties of networks
 - Small-world, Edge clustering, Heavy-tailed degrees
 - Find a model that gives graphs with such properties
 - Erdos-Renyi, Watts-Strogatz, Barabasi-Albert model

- Today’s lecture:
 - Can we have a model that attempts to reproduce all of these properties?
 - Can we fit the model to a network and accurately reproduce the network?
How can we think of network structure recursively? **Intuition:** Self-similarity

- **Object is similar to a part of itself:** the whole has the same shape as one or more of the parts

Mimic recursive graph/community growth:

- **Kronecker graph** is a way of generating self-similar matrices
Kronecker: Graph Growth

Intermediate stage

Initiator graph

\[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{pmatrix}
\]

(3x3)

After the growth phase

\[
K_2 = K_1 \otimes K_1
\]

(9x9)
Kronecker graphs:

- A recursive model of network structure

\[K_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \]

\[K_2 = K_1 \otimes K_1 = \begin{pmatrix} K_1 & K_1 & 0 \\ K_1 & K_1 & K_1 \\ 0 & K_1 & K_1 \end{pmatrix} \]

3 x 3 \rightarrow 9 x 9 \rightarrow 81 x 81 adjacency matrix
Kronecker Product: Definition

- **Kronecker product** of matrices A and B is given by

$$C = A \otimes B = \begin{pmatrix} a_{1,1}B & a_{1,2}B & \cdots & a_{1,m}B \\ a_{2,1}B & a_{2,2}B & \cdots & a_{2,m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}B & a_{n,2}B & \cdots & a_{n,m}B \end{pmatrix}$$

Size: $N \times M \times K \times L$ to $N \times K \times M \times L$

- Define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices
Kronecker Graphs

- **Kronecker graph**: a growing sequence of graphs by iterating the Kronecker product:

\[K_1^{[m]} = K_m = K_1 \otimes K_1 \otimes \ldots \otimes K_1 = K_{m-1} \otimes K_1 \]

- **Note**: One can easily use multiple initiator matrices \((K_1', K_1'', K_1''')\) (even of different sizes)
Kronecker Initiator Matrices

Initiator K_1

K_1 adjacency matrix

K_3 adjacency matrix
Kronecker Graphs: First Fun Fact

First fact about Kronecker Graphs!
- For K_1 on N_1 nodes and E_1 edges, K_m (m^{th} Kronecker power of K_1) has:
 - $N(m) = N_1^m$ nodes
 - $E(m) = E_1^m$ edges
- So, we get the densification power-law!
 - $E(t) \propto N(t)^a$, so: $E_1^t = (N_1^t)^a$ What is a?
 - $a = \frac{\log(E(t))}{\log(N(t))} = \frac{\log(E_1^t)}{\log(N_1^t)} = \frac{\log(E_1)}{\log(N_1)}$

Since $E(t) > N(t)$, then $a > 1$
Properties of deterministic Kronecker graphs (can be proved!)

- Properties of static networks:
 - Power-Law like Degree Distribution
 - Power-Law eigenvalue and eigenvector distribution
 - Constant Diameter

- Properties of evolving networks:
 - Densification Power Law *(just proved)*
 - Shrinking/Stabilizing Diameter (for Stochastic Kronecker graphs)
Observation: Edges in Kronecker graphs:

\[\text{Edge} \ (X_{ij}, X_{kl}) \in G \otimes H \]

iff \((X_i, X_k) \in G \) and \((X_j, X_l) \in H\)

where \(X \) are appropriate nodes in \(G \) and \(H \)

Why?

- An entry in matrix \(G \otimes H \) is a multiplication of entries in \(G \) and \(H \).
Theorem: **Constant diameter:** If graphs G, H have diameter d then $G \boxtimes H$ has diameter d

What is distance between nodes u, v in $G \boxtimes H$?

- Consider some nodes $u = [a, b], v = [a', b']$ in $G \boxtimes H$
- Then, path a to a' in G is less d steps: $a_1, a_2, a_3, \ldots, a_d$
- And path b to b' in H is less d steps: $b_1, b_2, b_3, \ldots, b_d$
- **How many steps from u to v?**
 - We know edge $([a_1, b_1], [a_2, b_2])$ is in $G \boxtimes H$
 - So it takes $< d$ steps to get from u to v in $G \boxtimes H$

Consequence:

- If K_1 has diameter d then graph K_k also has diameter d
Stochastic Kronecker Graphs
Stochastic Kronecker Graphs

- Create $N_1 \times N_1$ probability matrix Θ_1
- Compute the k^{th} Kronecker power Θ_k
- For each entry p_{uv} of Θ_k include an edge (u, v) in K_k with probability p_{uv}

\[
\begin{array}{cccc}
0.25 & 0.10 & 0.10 & 0.04 \\
0.05 & 0.15 & 0.02 & 0.06 \\
0.05 & 0.02 & 0.15 & 0.06 \\
0.01 & 0.03 & 0.03 & 0.09 \\
\end{array}
\]

Kronecker multiplication

Instance matrix K_2

Flip biased coins

Probability of edge p_{uv}
How do we generate an instance of a stochastic Kronecker graph?

<table>
<thead>
<tr>
<th>Probability of edge p_{uv}</th>
<th>Need to flip n^2 coins!! Way too slow!!</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Flip biased coins

Is there a faster way? YES!

Idea: Exploit the recursive structure of Kronecker graphs

“Drop” edges one by one
Generation of Kronecker Graphs

- **A faster way to generate Kronecker graphs**

\[\Theta = \begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix} \]

- **How to “drop” an edge into a graph** \(G \) on \(n = 2^m \) nodes

\[
\begin{array}{c|c|c|c}
 & v_1 & v_2 & v_3 & v_4 \\
\hline
v_1 & a \cdot a & a \cdot b & b \cdot a & b \cdot b \\
\hline
v_2 & a \cdot c & a \cdot d & b \cdot c & b \cdot d \\
\hline
v_3 & c \cdot a & c \cdot b & d \cdot a & d \cdot b \\
\hline
v_4 & c \cdot c & c \cdot d & d \cdot c & d \cdot d \\
\end{array}
\]

\[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix}
\]

Adjacency matrix \(G \)
A faster way to generate Kronecker graphs

\[\Theta = \begin{array}{cc} a & b \\ c & d \end{array} \]

How to “drop” an edge into a graph \(G \) on \(n = 2^m \) nodes

Adjacency matrix \(G \)
A faster way to generate Kronecker graphs

\[\Theta = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

How to “drop” an edge into a graph \(G \) on \(n = 2^m \) nodes

Adjacency matrix \(G \)
A faster way to generate Kronecker graphs

How to “drop” an edge into a graph G on $n = 2^m$ nodes:

- We may get a few edges colliding. We simply reinsert them.
Fast Kronecker generator algorithm:

- **Insert 1 edge on graph G on $n = 2^m$ nodes:**
 - Create normalized matrix $L_{uv} = \Theta_{uv}/(\sum_{op} \Theta_{op})$
 - For $i = 1 \ldots m$
 - start with $x = 0, y = 0$
 - Pick an row/column (u, v) with prob. L_{uv}
 - Descend into quadrant (u, v) at level i of G
 - This means: $x += u \cdot 2^{m-i}, y += v \cdot 2^{m-i}$
 - Add an edge $G[x, y] = 1$
Problem: Spikes in Node Degrees!

- SKG
- Noisy SKG (0.05)
- Nosiy SKG (0.10)
Solution: Noisy SKG

- **Solution: Noisy Stochastic Kronecker Graphs**
 - **Idea:** Add noise to the matrix Θ
 - There are many ways how one could do this, but here is the correct way!
 - Assume $\Theta = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and G has 2^m nodes
 - **Then create “noisy” matrices** $\Theta_1 \ldots \Theta_m$ where:
 - $\Theta_i = \begin{bmatrix} a - \frac{2x_i a}{a+d} & b + x_i \\ c + x_i & d - \frac{2x_i d}{a+d} \end{bmatrix}$
 - Where x_i is a random number on interval $[-X, +X]$
 - And X is the noise level.
 - **Apply Kronecker generator to this set of matrices**
SKG Degree Distribution

- SKG, no noise
- Noisy SKG, X=0.1
Stochastic Kronecker Graphs

What is known about Stochastic Kronecker?

- **Undirected** Kronecker graph model with:
 - **Connected**, if:
 - \(b + c > 1 \)
 - **Connected component of size** \(\Theta(n) \), if:
 - \((a + b)(b + c) > 1\)
 - **Constant diameter**, if:
 - \(b + c > 1 \)
 - **Not searchable** by a decentralized algorithm

\[
\Theta_1 = \begin{bmatrix} a & b \\ b & c \end{bmatrix}
\]

\[a > b > c\]

[Mahdian-Xu, WAW ’07]
Kronecker Graphs: Estimation

How to estimate Θ given a G?

- **KronFit**: Maximum likelihood estimation
- Given real graph G
- Find Stochastic Kronecker initiator Θ which

$$\Theta = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\text{arg max}_{\Theta} P(G | \Theta)$$

To solve this we need to:

- Efficiently calculate $P(G | \Theta)$
- Then maximize over Θ (e.g., using gradient descent)
Given G and Θ we calculate likelihood that Θ generated G: $P(G|\Theta)$

$$P(G|\Theta) = \prod_{(u,v) \in G} \Theta_k[u,v] \prod_{(u,v) \notin G} (1 - \Theta_k[u,v])$$

Likelihood of edges in the graph \quad Likelihood of edges not in the graph

<table>
<thead>
<tr>
<th>Θ_k</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.10</td>
<td>0.10</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.15</td>
<td>0.02</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.02</td>
<td>0.15</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Challenge 1: Node Correspondence

- Nodes are unlabeled
- Graphs G' and G'' should have the same likelihood $P(G' | \Theta) = P(G'' | \Theta)$
- One needs to consider all node correspondences σ
- All correspondences are a priori equally likely
- There are $O(n!)$ correspondences

$P(G' | \Theta) = P(G'' | \Theta)$

$$
\begin{array}{cccc}
0.25 & 0.10 & 0.10 & 0.04 \\
0.05 & 0.15 & 0.02 & 0.06 \\
0.05 & 0.02 & 0.15 & 0.06 \\
0.01 & 0.03 & 0.03 & 0.09 \\
\end{array}
$$
Assume that we solved the node correspondence problem

Calculating:

\[P(G | \Theta) = \prod_{(u,v) \in G} \Theta_k[u,v] \prod_{(u,v) \notin G} (1 - \Theta_k[u,v]) \]

Takes \(O(n^2)\) time!
Node correspondence:
- Node permutation σ defines the mapping
- Randomly search over σ to find good mappings

Calculating the likelihood $P(G|\Theta, \sigma)$
- Calculate likelihood of empty graph (G with 0 edges)
- Correct it for edges that we observe in the graph

Details in Leskovec-Faloutsos, ICML '07

The algorithm (called Metropolis sampling):
1. Pick 2 nodes at random
2. Swap their IDs
3. Does it improve the fit $P(G|\Theta, \sigma)$? If, yes, keep the swap, else undo it
4. Go to (1)
Experiments: real networks

- **Experimental setup**
 - Given real graph G
 - Estimate parameters Θ
 - Generate synthetic graph K using Θ
 - Compare properties of graphs G and K

- **Note:**
 - We do not fit the graph properties themselves
 - We fit the likelihood and then compare the properties
Real and Kronecker are very close:

$$\Theta_1 = \begin{bmatrix} 0.99 & 0.54 \\ 0.49 & 0.13 \end{bmatrix}$$
What do estimated parameters tell us about the network structure?
What do estimated parameters tell us about the network structure?

\[\Xi = \begin{pmatrix} 0.9 & 0.5 \\ 0.5 & 0.1 \end{pmatrix} \]
Small and large networks are very different:

\[\Theta = \begin{bmatrix} 0.99 & 0.17 \\ 0.17 & 0.82 \end{bmatrix} \quad \Theta' = \begin{bmatrix} 0.99 & 0.54 \\ 0.49 & 0.13 \end{bmatrix} \]
Large scale network structure:

- **Nested Core-periphery**
 - Recursive onion-like structure of the network where each layer decomposes into a core and periphery
Implications (2)

- Remember the SKG theorems:
 - **Connected**, if $b+c > 1$:
 - $0.55 + 0.15 > 1$. No!
 - **Giant component**, if $(a+b) \cdot (b+c) > 1$:
 - $(0.99 + 0.55) \cdot (0.55 + 0.15) > 1$. Yes!
- Real graphs are in the parameter region analogous to the giant component of an extremely sparse G_{np}.