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Abstract—Many social information websites require users to
organize content by marking user generated content with ‘“tags”.
In order for such sites to maintain their organization, this
tagging process should be as accurate as possible. One way
the website can facilitate accurate tagging is to recommend
tags for users based on the content they generate. For our
project, we will study tag recommendations in the context of the
social question and answer site StackOverflow. We introduce the
algorithm NetTagCombine, which utilizes the network properties
of StackOverflow to improve upon existing machine learning
methods for tag recommendation.

1 INTRODUCTION

N many community-based information web sites, such

as StackOverflow, users contribute content in the form
of questions and answers, allowing others to learn through
the collaboration and contributions of the community. These
web sites often rely upon tags as metadata that assists in
the indexing, categorization, and search for particular content
with just a few key words. Almost always, users are given
the responsibility to choose tags which identify their own
content. Tagging, however, can prove to be a confusing process
for inexperienced users who may not be familiar with the
tags available to them. In addition, general human error or
malicious users could lead to improperly tagged posts that
disrupt the organization of information on the website.

As such, there is a clear motivation behind implementing
stronger and more accurate tag recommendation systems. The
most obvious benefit stems from the fact that tags help ensure
that website data is properly categorized and easily searchable
by users. A tag recommendation model can improve tag
accuracy and effectiveness in a number of ways. For example,
new users would not have to worry as much when choosing
appropriate tags for their questions, and so the act of asking
questions is an easier experience and results in better tags
being chosen. Furthermore, recommending tags decreases the
possibility of introducing tag synonyms into the tagspace, as
is commonly done through human error. Tag synonyms are
discussed more in Section 3.2.

The development of tag recommendation systems for user
created content is a relatively new field and most previous
work has taken place within the last couple of years. Thus,
tag recommendation is a field in which the state of the
art is still being actively developed, and the most accurate
methods for recommending tags have yet to be established.
One way we believe that existing machine learning methods
for tag recommendation can be improved upon is to utilize
the graph features of the underlying network structure of these
social information websites. Based on this intuition, the goal
of our algorithm NetTugCombine is to analyze whether the
underlying network structure of StackOverflow can be used to

accurately recommend tags for user-produced content and to
improve upon the current algorithms in this developing field.

2 PRIOR WORK AND MOTIVATION

We first surveyed the recent literature and research in tag
recommendation systems to get an idea of what improvements
could be made. We discovered two recent papers, published
in 2013 and 2014, that detail two algorithms, TagCombine
and EnlagRec, for tag recommendation on sites like Stack-
Overflow. The improvements we can make to these algorithms
(Section 2.3), along with recent discussion about community
detection in graphs (Section 2.4), give us motivation for a new,
improved tag recommendation model.

2.1 TagCombine Algorithm

In [1], Xia et al. propose an automatic tag recommenda-
tion algorithm 7agCombine. There are three components of
TagCombine, each of which tries to assign the best tags to
untagged objects: (1) multi-label ranking component, which
predicts tags using a multi-label learning algorithm, (2) simi-
larity based ranking component, which uses similar objects to
recommend tags, and (3) tag-term based ranking component,
which analyzes the historical affinity of tags to certain words in
order to suggest tags. The recommendation algorithm methodi-
cally computes various weighted sums of the three components
to attempt to find the best overall model. A recall@Qk score
is then calculated for each prediction model from stratified
10-fold cross validation. (The recall@k metric is discussed
more in Section 4.1.) The results demonstrate that TagCombine
performs significantly better than all other cited models.

2.2 EnTagRec Algorithm

In [2], Wang et al. propose a tag recommendation sys-
tem dubbed EnTagRec. The proposed EnTagRec computes
tag probability scores using two separate methods, Bayesian
Inference and Frequentist Inference, and then takes a weighted
sum of the probability scores. Bayesian Inference relies on a
posts textual data to compute the probability that a given tag
is associated with the post. EnTagRec formulates posts into a
bag-of-words model and then trains a Labeled Latent Dirichlet
Allocation model which is used to compute tag probability
scores for a post. The Frequentist Inference approach infers
a set of tags after some preprocessing of a post, and then
utilizes a network of tags to select additional tags that are
similar to the ones in the set. The network of tags is con-
structed with the tags as nodes and weighted edges between
two tags based on the Jaccard similarity of the posts that
contain those tags. Experimental results show that EnTagRec
performs significantly better than TagCombine from [1] on
StackOverflow, Ask Ubuntu, and Ask Different datasets, but
yields only comparable results on Freecode datasets.
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2.3 Motivation for NetTagCombine

In [1], Xia et al. propose a recommendation system that
relates the textual features of posts to tags with reasonably
good results. However, one weakness of TagCombine is that it
fails to look at the network structure of software information
sites. Posts on sites like StackOverflow are ultimately con-
nected to each other through an underlying network structure
where users and tags that appear on multiple posts represent
connections between said posts. In fact, the main purpose
of tags is to group similar posts and create an organized
structure that allows for more convenient and logical browsing
of posts. Thus, it is not too farfetched to conjecture that
knowledge of the networks structure could be used to en-
hance a tag recommendation system. In fact, in [2], Wang
et al. use not only textual analysis of posts, but also basic
network analysis of the tags. Although the results of EnTagRec
outperformed those of TagCombine, it is difficult to quantify
the improvement directly caused by the network features, as
the machine learning models used by the two algorithms are
also different. Our proposed algorithm, NetTagCombine, will
use TagCombine as its baseline instead of EnTagRec, primarily
because TagCombine has no network features to begin with.
By adding network related components for tag recommen-
dation to TugCombine, we can unambiguously quantify the
improvement these network features have to offer by directly
comparing our results to those of TagCombine. Furthermore,
the machine learning models used in TagCombine are also
simpler than those used in EnTagRec, making them more
tractable to implement in the timeframe we were given.

2.4 Prior Work in Community Detection

In [3], McAuley and Leskovec discuss a method for au-
tomatically detecting “circles” in networks of users based on
similarities in user profiles. This motivated us to consider using
community detection in improving tag recommendation. Since
tags serve as a method of organizing posts into topics, in a way,
tags represent the topic-based communities of these websites.
As such, algorithms that infer the community structure in
network representations of these websites could give us a way
to recommend tags to posts that belong to certain communities.

We considered multiple algorithms in the SNAP library for
detecting communities, the Girvan-Newman method [4], the
Clauset-Newman-Moore method [5], the clique percolation
method [6], and a recent algorithm known as BIGCLAM [7].
Of these methods, we decided to use the BIGCLAM method
for two reasons. The first comes from recent work in over-
lapping communities. In [8], Yang and Leskovec detail how
intersections of communities in social networks are more often
densely connected, contrary to the past belief that communities
were densely connected and fewer connections existed at
the intersections. BIGCLAM, also implemented by Yang and
Leskovec, takes these newer findings on overlapping commu-
nities into account, whereas the older methods focus more on
the older assumptions of the structure of social communities.
In particular, Girvan-Newman and Clauset-Newman-Moore do
not even allow for nodes to lie in multiple communities, which
is definitely a drawback considering that posts can easily lie

at the intersection of many topics. The second reason is that
B1GCLAM is a parallelizable method that runs much faster
than the other algorithms, allowing us to run the algorithm
more times on our data. More on how BIGCLAM is utilized
in NetTagCombine will be described in Section 4.

3 DATA AND NETWORK ANALYSIS

We begin by discussing our data collection and some key
points in our preprocessing of the StackOverflow dataset in
Sections 3.1 and 3.2. We then explore various graphs that can
be constructed from the underlying StackOverflow network
structure, which we will apply in our new tag recommendation
model.

3.1 Data Collection

StackOverflow is a member of the StackExchange network,
and all user content contributed on this network is cc-by-sa
3.0 licensed. Our data set is the September 26, 2014 snapshot
for StackOverflow, downloaded from the StackExchange data
dump (see [9]). The raw data set contains approximately 20
gigabytes of compressed XML files corresponding to Badges,
Comments, PostHistory, PostLinks, Posts, Tags, Users, and
Votes.

As in [1], we chose to look at only the first 50,000 questions
posted on StackOverflow, with creation dates ranging from
July 2008 to December 2008. Thus, we also stripped down our
data set of users, answers, comments, and tags to only those
related to 50,000 questions. By using the same data as the au-
thors of TagCombine, we eliminate any discrepancies that may
have arisen from doing so otherwise. We also preprocessed
the text of each post, using the snowballstemmer-1.2.0
Python package to stem word tokens. Furthermore, we re-
moved stop words and any word tokens from our consideration
set that did not appear at least 20 times, since rare words are
not very helpful in generating accurate models. Finally, we
considered only the tags that appeared more than 50 times
among the first batch of questions, since less-common tags
would not likely be recommended to a user anyways.

3.2 Tag Synonyms

We refer to two tags as tag synonyms if their names
are different but they refer to the same concept, such as
.net-3.5and .net-framework-3.5. Tag synonyms are
a direct result of a question poster being given full discretion
to assign tags to his or her post and to arbitrarily create new
tags. This negatively impacts the strength of the tagspace,
since a user searching for questions related to .net-3.5
could completely miss the highly-related questions tagged with
.net-framework-3.5. While we intend our tag recom-
mendation system to help prevent future synonym groups, the
currently existing groups must be addressed. Since the pruning
of tag synonyms is currently done manually by volunteer
contributors, there are still many synonym groups throughout
the site. Figure 1 is a screenshot of the Tag Synonyms page of
StackOverflow taken on December 9, and we can see that the
maintenance of this list varies in consistency.
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Master «— Synonym Creator
libgxt qut| =1 Nejat
2h ago
spam-prevention spamming animuson 4
14h ago
spam-prevention antispam animuson 4
14h ago
spam-prevention spam-blocking animuson 4
14h ago
spam-prevention spam-detection animuson 4
14h ago
spam-prevention spam-filtering animuson #
14h ago
java-bytecode-asm java-asm x 11 raphw
1d ago
ecmascript-6 es animuson 4
1d ago
encryption encrypted = 146 Artiom B.
dec 4 at 12:34
facebook facebook-sdk-ios | x 3 Sean Vieira
dec 3 at21:40

Fig. 1. Screenshot of Taug Synonyms page.

To be able to test the effects of tag synonyms on our tag
recommendation model, we prepared a separate tag list derived
from our initial set of 437 tags after manually pruning for tag
synonyms. Since these tags are among the more popular tags in
the StackOverflow community, we were only able to reduce
this new set to a size of 428 after coalescing tags such as
report and reporting. We expect this pruned list of tags
to moderately, but not drastically, improve our results.

3.3 Network Features

The underlying structure of the StackOverflow network is
diverse and complex since users and tags can be related
through various questions, answers, and comments. We picked
certain relationships between objects that we deemed to likely
be the most indicative of the best tags to recommend and
constructed the appropriate graphs. We briefly describe them
in the following sections.

3.3.1 Network Based on Post Similarity: A natural graph
to consider on the StackOverflow data would be the graph
in which the nodes are questions and edges connect two
questions if tf-idf vectors of their textual bodies have cosine
similarity above a certain threshold. This graph essentially
connects posts in StackOverflow based on a measure of topical
similarity. Our reasoning for choosing tf-idf vectors and cosine
similarity is because TagCombine also uses this measure for
similarity between posts, which will be discussed in Section
4.1.2. Figure 2 shows the degree distribution of such a graph
when the threshold for cosine similarity is chosen to be 0.3.

We notice that this degree distribution looks much like a
power law distribution. Most questions are only similar to a
few other questions on StackOverflow, while a few questions
are similar to many others. In particular, we can observe the
kinds of questions that are similar to many others. Figure 3
shows one such question.

Notice that Figure 3 references XML parsing, C#, .NET, and
regular expressions, all of which are very common topics on
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Fig. 2. Degree distribution of the Post Similarity network.

Regular expression to remove XML tags and their content

I have the following string and | would like to remove <bpt *>*¢/bpt> and <ept *>*¢/ept> (notice the
additional tag content inside them that alse needs to be removed) without using a XML parser (overhead too
3 large fortiny strings)

The big <bpt i="1" x="1" type="bold"»><b></bpt>black<ept i="1"></b></ept> <bpt i="2" x="

Any regex in VB.NET or C# will do.
c# | et xml vb.net| regex

edited Sep 23 '08 at 16:12 asked Sep 23'08 at 15:17

Fig. 3. Post #121656 from the StackOverflow website. Retrieved on 12/9/14
from http://stackoverflow.com/questions/121656.

StackOverflow. In general, the posts that have high degrees are
at the intersection of multiple popular topics. This is backed
up by [8], in which we see that the intersection of communities
in a network are densely connected. These well-connected
posts are likely to lie at the intersection of communities
in this network, which motivates us to use this graph in
tag recommendation. Since tags are StackOverflows method
of organizing posts into topical categories or communities,
extracting communities on this graph could lead to information
about what tags to recommend to new questions that are
similar to posts in a given community.

3.3.2 Network Based on User Interaction: We also experi-
mented with the following StackOverflow network. The users
of StackOverflow are represented as nodes of our network,
and two users u and v are linked with an edge if u answers a
question posted by v such that the answer reaches a predefined
threshold in positive rating. In this case, two users share
similar topical interests, which lead to their interactions on
StackOverflow through question and answer. Figure 4 is a plot
of the degree distribution of this network when the threshold
of positive rating is set to at least 2 upvotes.

The power law distribution occurs as a result of the fol-
lowing explanation. The users with degrees between 10 and
100 have the highest question to answer ratio, around 0.196,
while the users with degrees between 1 and 10 have the lowest
question to answer ratio, around 0.118. This means that a
question posted on StackOverflow is likely to elicit multiple
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Fig. 4. Degree distribution of the User Interaction network.

answers, resulting in a medium sized degree for users that
post questions. Many infrequent users that answer questions
will only receive interactions with the user that posted the
question leading to low degrees for these users. On the extreme
end, users with degree over 100 have answered on average 148
questions each, which indicate that the tail of the distribution is
populated mainly by power users or experts on StackOverflow.

The motivation for using such a graph banks on the as-
sumption that users probably only post on a few topics in
StackOverflow, and that new questions by a user are likely
to share tags with a previous post by the same user. Thus, if
we could organize users into communities and assign tag rep-
resentatives for these communities, these tag representatives
could become recommendations for questions posted by users
from that community.

3.3.3 Bipartite Graph between Users and Tags: On sites
such as StackOverflow, relationships exist between users and
tags since users will tend to interact most with the tags they
are interested in or posses the most expertise with. In order
to analyze these relationships, we generated a bipartite graph
where nodes on one side of the graph represented users and
nodes on the opposite side of the graph represented tags. The
edges of the graph were constructed and weighted to represent
a users contribution and interaction with each tag. Questions,
answers, and comments made by a user on a post associated
with a particular tag each contributed to that users score with
the tag in question. User-made questions were evaluated as the
most significant form of contribution to a tag since each post
is defined by the original question and thus added the most to
a users tag score. Answers were evaluated as the next most
significant form of contribution since answers make up the
majority of the structure of a post (not including the question)
and require some level of expertise with the tags associated
with the post. Comments were evaluated as significantly less
indicative of a contribution to a tag since they are generally
not a significant contribution to the content of a post. User
tag scores were then used as weights for the edges connecting
each user to each tag. Tags which scored 0 points with a user
did not contain an edge to that user since this meant that the

user had not interacted with the tag. Figure 5 shows the degree
distribution of the users in the bipartite graph.
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Fig. 5. Degree distribution of the bipartite graph between users and tags.

From the plot we can see that the number of tags each user
was associated with followed a power law distribution. This
indicates that most users interact with a very small number
of tags while a select few users contribute to a large number
of tags. Such a trend is consistent across many more standard
examples of social networks with the vast majority of users
having a very limited number of connections and only a small
portion of users having a large amount of connections. Thus
the degree distribution suggests that the users on StackOver-
flow behave in a manner similar to those of other social
networks. In addition, the fact that most users are associated
with a limited pool of tags suggests that recommending tags
based on users associated with a post could yield accurate
results. For example, if the majority of users interacting on
a post all have high tag scores with the same tag, then since
most users have a limited pool of associated tags, we can be
fairly confident that the post in question should be assigned
the shared tag.

4 ALGORITHM AND RESULTS

Now, we discuss our implementation of our tag recom-
mendation models and their results on the StackOverflow
data set. In Section 4.1, we implement our own version
of TagCombine to establish a baseline with which we can
compare our results. In Sections 4.2 and 4.3, we describe our
improvements to propose our new algorithm, NetTagCombine.
Finally, in Sections 4.4 and 4.5, we analyze the performance
of our proposed system.

4.1 Original TagCombine Components

To start, using the procedures described in [1], we im-
plemented the three major components of the TagCombine
algorithm to establish a baseline for the performance of our
tag recommendation system. By reproducing a working imple-
mentation of TagCombine, we will then be able analyze the
effect of our improvements on tag recommendation accuracy.
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In [1], we are introduced to the concept of the recall@k
metric for measuring the success of a tag recommendation
model, where k is a tunable parameter that determines how
many tags the model recommends for each object. Intuitively,
over n objects, the recall@k metric measures the average
success rate in predicting correct tags for each object, where
a “correct” tag is simply a tag that has been used to label that
particular object by an actual user. Let I?; be the set of tags
recommended for object i (so, |R;| = k), and let T; be the
actual set of tags used to label object i. Then, the formula for
recall@QF is:

1 <~ |R; NT;
recall@Qk = — —_—
"2 T

We now give a quick overview of each component of
TagCombine. A full description of each component can be
found in [1].

4.1.1 Multilabel Learning Algorithm: The first component
of TagCombine utilizes Binary Relevance to obtain the like-
lihood of a post to be associated with each tag given the
text of the post. Given a tag set L and a question ¢, the
Binary Relevance method will create |L| datasets each of
which corresponds to the classification of whether a different
tag in L should be applied to g given the text in the body of
q. Assuming that tags are independent from one another, Tag-
Combine performs multinomial Naive Bayes on each dataset
and concatenates the resulting probabilities to obtain a score
vector Y whose elements Y; correspond to the probability that
the i tag is used to label the post. The values of the resulting
score vector are then used to directly obtain the likelihood for
each tag.

4.1.2 Similarity Based Ranking Component: The second
component of TagCombine is based on assigning tags via
similar posts. Given a new question g, TagCombine first finds
similar posts to ¢ using cosine similarity. First the idf of each
term in our dictionary is computed. The idf of a term ¢ is
given by the formula

# of total documents

idf(t) =
idf(t) log(# of documents containing t)

Next, for all posts p, the tf-idf of a term ¢ in a post p is
computed using

tfdf(¢,p) = tf(¢, p) x idf(t)

where tf(t, p) is the raw frequency of the term ¢ in post p. The
tf-idf vector of a post p, tfidf(p), then refers to the vector of
tfidf(¢,p) values over all terms ¢. The cosine similarity between
an old post p and the new question ¢ would therefore be

tfidf(p) x thidf(q)
[efidf(p) || fidf(q) |

Using this cosine similarity formula, we can find py, ..., pso,
the 50 most similar posts to ¢g. Let T, ..., T5¢ denote the sets
of tags used in each of these posts. We compute a likelihood
for each tag g for question q using the following formula

e

sim(p, q) =

Essentially, each of the top 50 posts casts a vote for each tag
used in these posts. The overall likelihood of a tag g is then
proportional to the number of votes received by the tag.

4.1.3 Tag-term Based Ranking Component: The third com-
ponent of TagCombine analyzes the co-occurrence of each tag
with each term in order to recommend the top tags based on
a posts text. The co-occurrence, or affinity score, between a
tag ¢t and word w is defined as

# of posts with ¢ and w

t =
co(t, w) # of posts with ¢

Then, for a given post p comprised of a set of words, the
tag-term based ranking score for a tag ¢ is calculated as

TagAff(p,t) =1 — [ ] (1 — co(t, w)).
wep
Intuitively, a tag to will be recommended for a post if it shares
high co(t, w) affinity scores with for the words w of the post.
Tag to has a high affinity score with w if it had previously
been used as a tag for many posts containing w.

4.1.4 Analysis of TagCombine: To establish a baseline for
our tag recommendation system, we evaluated each individual
component as standalone along with the entire TagCombine
algorithm itself using 10-fold cross validation. As will be dis-
cussed more in Section 4.3, TagCombine methodically assigns
weights «, 3, and ~y to the Multilabel Classifier scores, Similar-
ity Ranking scores, and Tag Term Affinity scores, respectively.
Thus, the algorithm fine-tunes these parameters to determine
how much (or little) each component should be applied to
produce the optimal tag recommendation system. In our runs
of TagCombine, we found that («,S,v) = (0.6,0.6,0.8)
produced the best recall@k scores.

H recall@b ‘ recall@10

Multilabel Classifier 0.456 0.547
Similarity Ranking 0.435 0.523
Tag Term Affinity 0.235 0.326

Our TagCombine H 0.486 ‘ 0.574
[1] Cited TagCombine || 0.596 | 0.724

We can see that our standard implementation of TagCombine
does significantly worse than the cited TagCombine. To rem-
edy for this, we also calculated tag-adjusted recall@Fk scores.
From earlier, we defined T; to be the set of all tags that are
actually used to label post i. The description of recall@k in
[1] is ambiguous in explaining whether an element of T; can
be any tag in the StackOverflow network, as we assumed in the
first table, or only the top 437 that we filtered in Section 3.1.
So, we define recall Adj@k scores to be calculated the same
as recallQk except that T; can contain tags only from the list
of the top 437. These scores will undoubtedly be higher, since
our recall@k scores will no longer suffer from being unable
to predict tags in 7; that are outside our relevant tagspace.

H recall Adj@Q5 ‘ recall Adj@Q10

Multilabel Classifier 0.587 0.703
Similarity Ranking 0.569 0.681
Tag Term Affinity 0.304 0.420

Our TagCombine H 0.617 \ 0.748
Cited TagCombine H 0.596 ‘ 0.724
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Our recall AdjQk scores are much closer to those from the
original TagCombine algorithm, perhaps suggesting that [1]
also modified their set of tags attached to each post. However,
as a reminder, we are only interested in how applying the un-
derlying StackOverflow network can potentially improve upon
our tag recommendation model, and so the interesting results
will be the difference between the recallQk (or recall AdjQk)
scores of our new model and those of our baseline. Our method
of calculating scores and the actual score values do not matter
as long as they are consistent.

Clearly, the composite TagCombine score is not a linear
combination of its individual components. So, before con-
tinuing on to improve TagCombine, we also analyzed the
contribution of each individual component to the TagCombine
scores, using recall@5 as an example. To do so, we held two
parameters constant at their optimal values while varying the
third. The Multilabel Classifier is weighted by «, Similarity
Ranking is weighted by 3, and Tag Affinity is weighted
by v, so to test the significance of the Similarity Ranking
component, for example, we held o and  constant while
varying (3. Figure 6, Figure 7, and Figure 8 plot «, (3, and
v, respectively.

TagCombine (Beta = 0.6, Gamma = 0.8): Alpha vs. recall@5
049 T

0485 +
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0475 +
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recall@5
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Fig. 6. Multilabel Classifier contribution to TagCombine.

TagCombine (Alpha = 0.6, Gamma = 0.8): Beta vs. recall@5
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Fig. 7. Similarity Ranking contribution to TugCombine.

TagCombine (Alpha = 0.6, Beta = 0.6). Gamma vs. recall@5
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Fig. 8. Tag Affinity contribution to TugCombine.

One way we can measure the contribution of each indi-
vidual component is to compare the recall@5 score when its
corresponding parameters value is 0 (not used) and to the score
when the parameter value is optimal. We can see that the Simi-
larity Ranking component has the most significant contribution
(= 0.041), then the Multilabel Classifier component (= 0.03),
and finally the Tag Affinity component (=~ 0.006). So, when
evaluating the improvements in our new tag recommendation
model, in addition to comparing composite recall@k scores,
we can also look at the contribution of our added network
component.

4.2 Network Based Improvements to TagCombine

In order to improve upon the tag recommendation accuracy
of TagCombine, we sought to include components that utilized
the structure of networks present in the StackOverflow data.
Preliminary analysis of the graphs in Section 3 supported
our original intuition that user and tag interactions on Stack-
Overflow did exhibit behavior consistent with the interactions
of users on more classical examples of social network sites.
By leveraging this behavior, we constructed components that
could accurately recommend tags using the structure present
in the underlying networks of StackOverflow and without
relying on textual data. Incorporating these improvements into
TagCombine would allow us to add another dimension of
information to the original algorithm and obtain results that
leverage more of the data present in StackOverflow.

4.2.1 New Component: Our primary improvement to Tag-
Combine was the addition of a fourth component that utilized
the network structure stemming from the interaction of users
with tags to predict the probability of each tag being associated
with a given post. We begin by constructing the bipartite graph
between users and tags described in Section 3.3.3. Given a post
p, we compile a list of users who contributed to ¢ and use the
edge weights between the users and each tag to determine the
tags ranking score. Define @; to be the edge weight between
the user who posted the original question of p, and define the
i'" tag and B; to be the edge weight between the user who
posted the best answer for p and the i*" tag. Next, for each
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comment in p, we sum up the edge weights between the user
who posted the comment and the ¢-th tag, and define this value
to be C;. Now, for each answer in p, find the sum of the edge
weights between the user who posted the answer and the i-th
tag, and let this value be A;. Using these values, the score for
the i-th tag for post p, S; is given by:

Si = kQi + AB; + uCi + v A;

where k, A, i, and v are constant weights evaluated by 10-fold
cross validation to maximize tag recommendation accuracy.
Calculating the score value S; for each tag gives us the
likelihood of each tag to be used to label p.

4.2.2 Modification to Similarity Component: The second
improvement we made to TagCombine was to add features
based on community detection to the similarity component.
Using the graph in 3.3.1, we first run the SNAP implementa-
tion of BIGCLAM to group posts in StackOverflow into 1000
different communities, which we will label C1, ..., Cyggg. For
each community C}, define the set of tag representatives R,
to be the set of tags that appear in at least 80% of the posts
in Cj. In the similarity component of TagCombine, we now
make the following modifications to the computation of the
likelihood of assigning a tag g to a new question q.

Lig.q) = {i:g €T} + 3 {j:pi €Cj, g € R}

7 22| Tal + 22 i - pi € G}
That is, of the top 50 similar posts p1, ..., pso, each commu-
nity these posts belong in will also be able to contribute their
tag representatives to the likelihoods of assigning tags to the
new question q.

4.3 NetTagCombine Algorithm

In our proposed tag recommendation system, NetTagCom-
bine, we add our new Network-Based Ranking Component,
alongside the other components of TagCombine. Building
upon the equation for TaugCombine given in [1], for all tags ¢
with respect to some post p, our new NetTagCombine score
can be given by

NetTagCombiney(t) = a x MultiLabel,(t)+
B x SimRank,(t)+
v X TagTermy(t)+
0 x Networky(t)

where «,8,7,0 € [0,1] represent the different weights of
the components. Here, we have added the term of § x
Networky(t) to represent our new fourth component that uses
the underlying network structure. To adjust for this fourth
component, Algorithm 1 (next page) describes the pseudocode
for NetTagCombine.

4.4 Results of NetTagCombine

After incorporating our new Network Based component
and updating the Similarity Ranking component, we now
had a working version of NetTugCombine, a tag recommen-
dation system that used the underlying network structure
of StackOverflow. Once again, we evaluated each individual

component as standalone along with the entire NetTagCombine
algorithm itself using 10-fold cross validation. This time, the
addition of ¢ gave us an additional parameter to vary. In
our runs of NetTagCombine, we found that (a,3,7,0) =
(0.4,0.4,1.0,0.6) produced the best recall@k scores. We give
the results of our new or updated components as well as
NetTagCombine itself. We have also included some previous
numbers for easy comparison.

H recall@5b ‘ recall@10

New Similarity Ranking 0.462 0.550
Network 0.341 0.418
NetTagCombine H 0.517 \ 0.602
Our TagCombine 0.486 0.574

[1] Cited TagCombine 0.596 0.724

Just like our previous set of results, we also calculated the
recall AdjQFk scores:

H recall AdjQ5 ‘ recall Adj@Q10

New Sim. Ranking 0.594 0.709
Network 0.450 0.549
NetTagCombine H 0.679 \ 0.787
Our TagCombine 0.617 0.748
Cited TagCombine 0.596 0.724

Our new algorithm NetTagCombine shows significant improve-
ments over our baseline numbers. For example, we once again
measure the contribution of our Network Based component by
holding a, 8, and y constant while varying our new parameter
0. Figure 9 shows the resulting plot.

NetTagCombine (Alpha = 04, Beta = 0.4, Gamma = 1.0): Deltavs. recall@5
052

0515 +

051 +

0505 -

recall @5

05

0495 +

049 -

0485

Delta
Fig. 9. Network contribution to NetTagCombine.

We can see that, for recall@5 scores, the Network Based
component has a significant contribution (= 0.031), which
places it on par with the large contributions we found in our
initial analysis of TagCombine. We also note how the influence
of the underlying StackOverflow network through our updated
Similarity Ranking component and Network Based component
affects the differences between recall@Qk and recall AdjQk
scores. For our implementation of TagCombine, there was
about a 27% improvement from recall@5 to recall Adj@5 and
about a 30% improvement from recall@10 to recall Adj@10.



CS 224W FINAL PROJECT, AUTUMN 2014

Algorithm 1 NetTagCombine algorithm

1 a,B,7,0 <0
2: for all posts p do
3: for all tags t € TAGS do

4: Compute MultiLabel,(t), SimRank,(t), TagTerm,(t), and Networky(t)
5: end for

6: end for

7: for all o from 0 to 1, every time increment by 0.2 do

8: for all 5 from O to 1, every time increment by 0.2 do

9: for all v from O to 1, every time increment by 0.2 do

10 for all § from O to 1, every time increment by 0.2 do

11 Compute NetTagCombiney(t) for all tags t on posts p

12: Evaluate effectiveness of («,/3,7,0) from recall@k scores
13: end for

14: end for

15: end for

16: end for

17: return Best (a,3,7,0)

Then, for NetTagCombine, we saw about a 31% improvement
from recall @5 to recall Adj@5 and about a 30% improvement
from recall@10 to recall Adj@10. Thus, while the addition of
the Network Based component improves accuracy in all cases,
it does particularly well when we predict the top 5 tags. This
is even more promising, since it is more user-friendly to show
fewer, but more accurate tag predictions.

To give some additional perspective on the performance of
our algorithm, we calculated the recall@k and recall AdjQk
scores for NetTagCombine after pruning the tagspace for tag
synonyms as discussed in Section 3.2. This reduced the size of
our tagspace by a small amount from 437 to 428. We give the
previous results from using our “original” tagspace alongside
our new results from using the “pruned” tagspace.

H Original | Pruned
recall@b 0.517 0.547
recall AdjQ5 0.679 0.716
recall@10 0.602 0.654
recall Adj@Q10 0.787 0.851

As expected, the removal of tag synonyms from the tagspace
allows NetTagCombine to perform better. Now, our algorithm
does not suffer from making an “incorrect” prediction (such
as report instead of reporting) when the root cause
is a tag synonym group. An important point is that, while
NetTagCombine can aide in the prevention of future tag
synonyms from being introduced as discussed in Section 1,
the existence of previous synonyms will hurt its performance
and still must be pruned manually. If a synonym group already
exists in the tagspace, then there is clearly no guarantee that
NetTagCombine will always recommend one tag over another.

4.5 Other Considerations

We also tried to use BIGCLAM to detect user communities
on the graph in Section 3.3.2. For each user community Uj,
we would compute the set of tag representatives S; for Us.
A tag g would be in in S; if at least 80% of the users in the

community have posted a question or answered a question that
was tagged with g. Then given a question posted by an existing
user u, we would loop through all U; the user belonged in and
compute a likelihood for assigning a tag g to the user as

Lig = W05

That is, the likelihood of assigning tag g to a question
posted by user u would be proportional to the frequency
the tag appeared as a representative of the communities u
was in. However, adding this component did not improve
the performance of NetTagCombine, as it is likely that any
information produced by this network component is redundant
with those outputted by our improvements in Sections 4.2.1
and 4.2.2.

5 CONCLUSION

In this paper, we developed a tag recommendation sys-
tem NetTagCombine that combined the text-based machine
learning tag recommendation techniques of 7agCombine with
our newly developed network-based tag recommendation tech-
niques. By incorporating network structure and analysis into
its tag recommendation system, NetTagCombine was able
to yield significantly higher tag recommendation accuracy
when compared to TagCombine on the StackOverflow dataset.
Our results confirm our original intuition: StackOverflow and
possibly other such user content based software information
web sites have an underlying network structure that can be
used to obtain additional information about posts and predict
tags more accurately.

Our work demonstrates that network analysis can be em-
ployed to obtain data about the similarities present in content
on information web sites without relying on information found
within the body of a post. The network analysis we employed
did not strictly focus on the textual content of posts, yet it
was still able to produce accurate tag recommendations by
analyzing the posts’ positions in the StackOverflow networks.
Since the information is obtained through entirely different
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inputs, there is little overlap between the data provided through
network analysis and the data provided through text-based
machine learning. Thus, we conclude that the use of network
structure for tag recommendations is a promising avenue for
the improvement of tag recommendation accuracy.

5.1 Future Work

As discussed in Section 2.3, we chose to evaluate our
network-based improvements upon an implementation of 7ag-
Combine instead of the more recent EnTagRec. Future work,
then, would be to apply our improvements to an implemen-
tation of EnTagRec and analyze whether EnTagRec improves
in a similar manner to what we have seen in TagCombine.
Furthermore, incorporating a network component into our
model invites the possibility of a dynamic tag recommendation
system. Tagging a post is not an action limited to post creation
time. While this has already been addressed simply by the
fact that we are using user interaction and collaboration —
events that happen after post creation — to assist tag rec-
ommendations, we have so far only modeled the network
based on one snapshot in time. Since there is public access
to the entire log of post edit history, it would be interesting
to see how our tag recommendations and recallQk scores
would change over time given snapshots in which more or less
users had contributed to certain posts. Any discovered insights
or trends would provide commentary on the effectiveness of
future dynamic tag recommendations systems that constantly
restructure their models along with the network itself.
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APPENDIX

Throughout the entire scope of this project, we worked on
each component together in person rather than split up the
work in portions to be done individually. For example, we
always peer-programmed when writing code (to help decrease
the number of bugs), and we collaborated on writing every
paper using writelatex.com. We feel that it would be
difficult to explicitly list out different individual contributions,
and we believe that each member did an equal and fair amount
of work. As such, we request that we each be given the same
individual grade.



